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ABSTRACT The tracking performance of mobile robot is often affected by uncertainties from the deviation
of initial conditions, external disturbances and varying loads, etc. An Udwadia-Kalaba based adaptive
robust control is proposed for the trajectory tracking of an omnidirectional mobile robot in the presence
of uncertainties. The proposed control includes nominal control part based on Udwadia-Kalaba theory and
adaptive robust control part. The desired trajectory is considered as a virtual servo constraint applied to the
robot system and converted into the second order standard form. So that the analytical form of constraint
force could be obtained via Udwadia-Kalaba Fundamental Equation (UKFE). The system will precisely
obey the given constraint (i.e., the desired trajectory) under the obtained constraint force in ideal cases. No
auxiliary variables are required and it is effective whether the constraints are holonomic or nonholonomic.
The designed adaptive law is in leakage type and the adaptive parameters are adjusted according to the
performance of the system in order to compensate for the effect caused by uncertainty in the system. No
extra information of uncertainty is needed except for the existence of uncertainty bound. Comparing with
PID control, it can be found that the proposed control has better performance and can realize higher precision
trajectory tracking control.

INDEX TERMS Udwadia-Kalaba theory, adaptive robust control, constraint following, uniformly bounded,
uncertainty.

I. INTRODUCTION
Benefitting from its characteristics of moving in any direc-
tion, omnidirectional mobile robots have more advantages
than traditional mobile platforms. Therefore, they have been
widely used in the fields of industry, medicine, and aerospace
in recent years. In the robot system, the tracking control of
robot has always been a hotspot. An enormous number of
approaches to realize the tracking control of robots have been
reported in the past decades. For example, in Reference [1],
the actual position of a mobile robot was evaluated by radio
frequency identification technology, and the trajectory of
robot was planned by sliding mode control. The dynamics of

The associate editor coordinating the review of this manuscript and

approving it for publication was Haibin Sun .

differential steering mobile robot was analyzed, and a fuzzy
control method was proposed in Reference [2]. The joint
simulation platform verified that themethod could be used for
the trajectory planning control. In Reference [3], Bang-bang
Control was applied to achieve the trajectory generation and
path planning of a three-wheeled omnidirectional mobile.

As for traditional methods of the trajectory tracking con-
trols, the error of prescribed trajectory and feedback signal are
utilized directly. From a quite different view, the prescribed
trajectory is first treated as a virtual servo constraint and
then is applied to the mobile robot system in this work. The
controller is designed to provide the ideal constraint force
which makes the system obey the system constraints (i.e.,
the desired trajectory). Such an indirect approach to use the
given trajectory is so called the constraint-following control.
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The design work is formulated to identify the constraint force
under ideal or non-ideal constraints. The Udwadia-Kalaba
Fundamental Equation (UKFE) is a powerful tool to achieve
such purpose. The UKFE [4]–[6] was put forward in the
1990s and is a significant breakthrough in analytical mechan-
ics. It gives the basic motion equations of multi-body systems
under ideal or non-ideal constraints. By transforming the
constraints into the second order standard form, the analytical
solution of constraint force could be obtained no mater the
constraint is holonomic or nonholonomic, ideal or nonideal.
The UKFE is not only effective in control design, but also
in dynamical modeling of mechanical systems. For example,
in reference [7], the dynamic model of the three-wheel steer-
ing car was obtained by U-K theory, and then the trajectory
tracking control of the vehicle was carried out by using
UKFE. In reference [8], an adaptive controller was designed
based on UKFE for constraint tracking of differential mobile
robot.

In practical application, uncertainty arises due to the exis-
tence of varying loads, external interferences and mechanical
errors, etc. Thus, the controller based on ideal condition
can not achieve the expected performance. Many scholars
began to bridge the gap between the ideal and the reality.
In [9], a robust adaptive controller was designed, which was
composed of disturbance observer and adaptive compensator.
In the experiment, it can track and control the wheeled mobile
robot with uncertainty. Reference [10] used linear extended
state observers to evaluate the uncertainty of the differen-
tial robot. On this basis, an adaptive sliding mode control
method was used to compensate the uncertainty to realize
the trajectory tracking. In [11], an adaptive controller was
designed for the trajectory tracking of an autonomous vehicle.
After processing the expected motion parameter values of
the vehicle, the controller used the updated values for the
real-time control and the uniform ultimate boundedness was
achieved. The adaptive neural network method was used to
control different mechanical systems, and it was verified that
the performance could be better under full state constraints
in [12]. According to [13], a real-time navigation and tra-
jectory tracking controller for nonholonomic mobile robot
based on biological excitation was proposed by combining
back-stepping technology with neural dynamics.In addition,
fuzzy theory is also a popular method to deal with uncertainty,
such as [14], [15]. The stability of the system was proved
via Lyapunov minimax approach. A robust controller based
on UKFE was proposed in [16]. And then, a performance
index, incorporating fuzzy and deterministic performance,
was designed to solve the optimal design of the proposed
control. The effectiveness of the joint utilization of UKFE
and various control methods, such as optimal control, fuzzy
control, etc., was also verified in [17]–[21].

The contributions of this work are as follows. Firstly,
being different from the traditional approaches which take the
trajectory tracking error as the state variable, the proposed
control is designed in an indirect way by abstracting the
desired trajectory as a servo constraint. Secondly, the required

constraint force is obtained by using UKEF so that the system
will obey the constraint of given trajectory. This approach
is indirect, simple and effective no matter the constraint
is holonomic or nonholonomic. Thirdly, an adaptive robust
control term is introduced to enhance the performance when
uncertainty arises. No more information about uncertainty is
required except for the existence of its uncertainty bound. The
uniform boundedness and uniform ultimate boundedness are
ensured when the proposed control is exerted. The remaining
sections are organized as follows: In the second section,
the dynamic model of three wheeled omnidirectional mobile
robot is established. In the third section, an adaptive robust
controller based on Udwadia-Kalaba theory is designed. The
fourth section proves the stability of the controller via Lya-
punov function, which satisfies uniform stability and uniform
asymptotic stability. The fifth section verifies the effective-
ness of this approach by numerical simulation.

II. DYNAMIC MODEL
Fig.1(a) and Fig.1(b) show a three wheeled omnidirectional
mobile robot and its structure diagram respectively. The angle
between the axes of adjacent omnidirectional wheels is 120◦

and the centers of the omnidirectional wheels are distributed
on the same circle. The axis of the wheels points to the center
of the robot. The three omnidirectional wheels are driven by
DC motors. Thus, the robot not only can move along the
tangent direction of the wheel surface, but also along the axis
direction of the wheel. Through the combination of these two
basic motion modes, the robot can move in any direction in
the plane.

TABLE 1. Symbols and definitions of each parameter of the robot.

Select χ = (X ,Y , θ)T as the generalized coordinate to
describe the shape and position of the robot. The robot coordi-
nate system is XoOoYo, the earth coordinate system is XOY ,
and the counterclockwise rotation is positive. The symbols
and definitions of each parameter of the robot are shown in
Table 1.
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FIGURE 1. An omnidirectional wheeled mobile robot.

From the geometric characteristics of Fig.1(b), the rela-
tionship between the speed of the robot in the earth coordinate
system and the speed in its own coordinate system is: Vx =
Ẋ cos θ + Ẏ sin θ,Vy = −Ẋ sin θ + Ẏ cos θ , and the rotation
angular velocity of the robot ω = θ̇ . These relationships
could be expressed in matrix form:VxVy

ω

 =
 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ẊẎ
θ̇

 . (1)

In the robot coordinate system, we decompose the velocity
component of each axis into the velocity direction of each
wheel, and we can get the relationship between them: VA

VB
VC

 =
 0 1 L
− sinφ − cosφ L
sinφ − cosφ L

VxVy
ω

 . (2)

According to (1) and (2), the relationship between the
speed of each wheel and the generalized coordinates is:VAVB

VC

=
 − sin θ cos θ L
sin(θ − φ) − cos(θ − φ) L
sin(θ + φ) − cos(θ + φ) L

 ẊẎ
θ̇

. (3)

The driving force of each wheel generated by the DCmotor
can be simplified as the following model [3]:

F = T1U − T2V , (4)

where F is the driving force exerted on the omnidirectional
wheel by the DC motor, V is the linear velocity of the cor-
responding wheel, U is the corresponding voltage applied to

the motor, T1 and T2 are constants determined by the type of
motor and the geometric model of the robot.

In the case of pure rolling between each wheel and the
ground, the sum external force moment of mobile robot is
generated by the three driving wheels:

I θ̈ = (FA + FB + FC )L. (5)

Unlike traditional wheeled robots, the speed direction of
the omnidirectional mobile robot is arbitrary and not nec-
essarily perpendicular to the axis of the driving wheel. It is
difficult to find the relationship between the velocity and its
generalized coordinates. Therefore, we give the relationship
between the driving force and the acceleration in the earth
coordinate system. According to the structural characteristics
of the robot, the net force generated by the three wheels could
be decomposed along the direction of the earth coordinate
system. Then, we can get the relationship between the accel-
eration components (i.e., X and Y axes) and the generalized
coordinates as follows:{
mẌ = [FA cos θ − FB cos(θ − φ)− FC cos(θ + φ)]
mŸ = [−FA sin θ + FB sin(θ − φ)+ FC sin(θ + φ)].

(6)

According to (3), (4), (5) and (6), a general form (the
second-order type) of mechanical system is obtained:m 0 0

0 m 0
0 0 I

ẌŸ
θ̈

+ 3T2
2

1 0 0
0 1 0
0 0 2L2

ẊẎ
θ̇


= T1

−sin θ sin(θ−φ) sin(θ+φ)
cos θ −cos(θ−φ) −cos(θ+φ)
L L L

UAUB
UC

. (7)

III. CONTROLLER DESIGN
The uncertainty is an inevitable problem in mechanical
system when designing the controller. Suppose a general
mechanical system with uncertainty is expressed as follows:

M (χ (t), δ(t))χ̈ (t)+ C(χ̇ (t), χ(t), δ(t))χ̇ (t)

+G(χ (t), δ(t)) = τ (t), (8)

where t ∈ R is the time, χ (t) ∈ Rn stands for the coordinate
reflecting the shape and position of the system (n = 3 in
this work), χ̇ (t) is the corresponding velocity, χ̈ (t) ∈ Rn

is the corresponding acceleration, δ(t) ∈ 6 ⊂ Rk is the
parameter describing the uncertainty of the system, and 6 is
the possible boundary set of δ(t). Furthermore, τ (t) ∈ Rn

is the control input of the system, M (χ, δ) is the inertia
matrix, C(χ̇ , χ, δ)χ̇ is the Coriolis force or centrifugal force,
G(χ, δ) is the gravitational force. The dimensions ofM (χ, δ),
C(χ̇ , χ, δ),G(χ, δ) are determined by the specific occasions.
Assumption 1: For χ ∈ Rn and δ ∈ 6, the matrixM (χ, δ)

is positive definite.
For the uncertain system, the matrices M , C and G are all

consisted of two parts (the nominal part and the uncertain
part) [22]:

M (χ, δ) = M̄ (χ )+ M̃ (χ, δ),
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C(χ̇ , χ, δ) = C̄(χ̇ , χ)+ C̃(χ̇ , χ, δ),

G(χ, δ) = Ḡ(χ)+ G̃(χ, δ), (9)

where M̄ (χ ) is the nominal part (i.e., the known quantity),
M̃ (χ, δ) is the uncertain part, and so is the matrix C and G.
Now we define the following variables:

P(χ ) = M̄−1(χ),

P̃(χ, δ) = M−1(χ, δ)− M̄−1(χ ),

D(χ, δ) = M̄−1(χ)M−1(χ, δ)− I .

The trajectory that the mechanical system needs to satisfy
is given as follows:

n∑
i=1

Eli(χ, t)χ = dl(χ, t), l = 1, . . . ,m(m ≤ n). (10)

The above trajectory, i.e., Equation (10), can be treated as the
system constraint. It can be further written as: E(χ, t)χ =
d(χ, t), where E = [Eli]m×n, d = [d1, d2, . . . , dm]T . Notice
that this is a zero-order form constraint. Its corresponding
first-order form is obtained after taking the derivative of the
zero-order form with respect to time t:

n∑
i=1

Ali(χ, t)χ̇i = cl(χ, t). (11)

Equation (10) and its corresponding matrix form can be
treated as a position constraint, while Equation (11) can be
treated as a velocity constraint. Both Ali and cl are first-order
differentiable continuous functions. The (11) can be reorga-
nized as follows:

A(χ, t)χ̇ = c(χ, t), (12)

where A = [Ali]m×n and c = [c1, c2, . . . , cm]T .
By differentiating (11) with respect to time t, we get

n∑
i=1

Ali(χ, t)χ̈i = −
n∑
i=1

(
d
dt
Ali(χ, t)

)
χ̇i +

d
dt
cl(χ, t) (13)

Rewriting the above expression in matrix form, the constraint
in the second-order form is then obtained:

A(χ, t)χ̈ = b(χ, χ̇, t). (14)

Remark 1: It has been illustrated in many works (see
References [23]–[26]) that the second-order constraint can
be used directly in different control issues such as trajec-
tory tracking, stability analysis and optimality. Obviously,
Equation (14) is an acceleration type of constraint and it is
linear with the acceleration. The information that satisfies the
zero-order and first-order initial conditions is still retained
in the initial conditions of the second-order constraint (i.e.,
Equation (14)).
Assumption 2: The matrix A(χ, t) is of full rank for

(χ, t) ∈ Rn
× R. There exists at least one vector solution

χ̈0 to Equation (14).

Remark 2: The Assumption 2 actually means that all con-
straints applied to the system should be reasonable and there
is no conflict or contradiction between all constraints.

Now let

τ1(t) = M̄
1
2 (χ )(A(χ, t)M̄

1
2 (χ ))+[b(χ̇ , χ, t)

+A(χ, t)M̄−1(χ )(C̄(χ̇ , χ)χ̇ + Ḡ(χ ))]. (15)

Here the τ1 denotes the first part of the control and it
originates from the UKFE. For the given constraint (14), the
system will meet the constraints if the control has the form
of (15). That is, the τ1 in (15) is the ideal case of the control.
The superscript ‘‘+’’ here denotes the Moore-Penrose (M-P)
generalized inverse matrix. For a matrix M , its M-P general-
ized inverse matrixM+ defers to the following algorithm:

M+MM+ = M+, (16)

MM+M = M , (17)

M+M = (M+M )T , (18)

MM+ = (MM+)T . (19)

Assumption 3: Based on the Assumption 2, for a given
positive definite matrix � ∈ Rm×m, and let:

H (χ, δ, t) = �A(χ, t)P(χ )D(χ, δ)M̄ (χ )A(χ, t)T

× (A(χ, t)AT (χ, t))−1�−1. (20)

There exists a possibly unknown constant ρc > −1 and for
all (χ, t) ∈ Rn

× R,

1
2
min
δ∈6

λmin(H (χ, δ, t)+ HT (χ, δ, t)) ≥ ρc. (21)

Then, let

τ2(t) = −kcM̄ (χ )AT (χ, t)(A(χ, t)AT (χ, t))−1

×�−1ϒ(χ̇ , χ, t), (22)

whereϒ(χ̇ , χ, t) = A(χ, t)χ̇−c(χ, t), thereby ϒ̇(χ̇ , χ, t) =
A(χ, t)χ̈−b(χ, χ̇, t). Theϒ(χ̇ , χ, t) can represent the track-
ing error of the constraint. If there exists following error of
constraint, this part of control is a negative feedback to drive
the system to follow the constraint. Hence, the τ2 can be
treated as the second part of the control.
Assumption 4: (i) For any (χ̇ , χ, t) ∈ Rn

× Rn
× R and

δ ∈ 6, there exists a known function0(α, χ̇, χ, t) ∈ R+ with
an unknown k dimensional constant vector α ∈ (0,∞)k such
that

(1+ ρc)−1max
δ∈6

[
∥∥∥�A(χ, t)P̃(χ, δ)(−C(χ̇ , χ, δ)χ̇

−G(χ, δ)+ τ1(t)+ τ2(t))−�A(χ, t)P(χ)

× (C̃(χ̇ , χ, δ)χ̇ + G̃(χ, δ))
∥∥∥ ≤ 0(α, χ̇, χ, t), (23)

(ii) for any (α, χ̇, χ, t), the function 0(α, χ̇, χ, t) can be
decomposed into the product of αT and a column vector func-
tion, that is to say, there exists a vector function 0̃(χ̇ , χ, t) ∈
Rk
+ such that:

0(α, χ̇, χ, t) = αT 0̃(χ̇ , χ, t). (24)
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Now we propose the controller as follows:

τ (t) = τ1(t)+ τ2(t)+ τ3(α̃, t), (25)

where

τ3(α̃, t) = −[M̄ (χ )AT (χ, t)(A(χ, t)AT (χ, t))−1�−1]

×µ(α̃, χ̇ , χ, t)σ (α̃, χ̇ , χ, t)0(α̃, χ̇ , χ, t), (26)

and for a positive real number ε ∈ R+,

σ (α̃, χ̇ , χ, t) = ϒ(χ̇ , χ, t)0(α̃, χ̇ , χ, t), (27)

µ(α̃, χ̇ , χ, t)=

{∥∥∥σ−1(α̃, χ̇ , χ, t)∥∥∥, if ‖σ (·)‖> ε,

ε−1, if ‖σ (·)‖≤ ε.
(28)

Here σ (·) denotes σ (α̃, χ̇ , χ, t). The τ3 term (treated as the
third part of control) is designed to deal with the control
fluctuation caused by system uncertainty. The vector α̃ in τ3
is designed to estimate the unknown vector α, and τ3 changes
with the change of α̃ to compensate for the uncertainty.
The adaptive vector α̃ follows the following law:

˙̃α = ka0̃(χ̇ , χ, t) ‖ϒ(χ̇ , χ, t)‖ − kbα̃, (29)

where ka,b ∈ R+. For the adaptive law of (29), α̃i(t0) > 0,
where α̃i(t0) is the i-th element of vector α̃ at time t0. Since
α̃i(t0) is a positive value, α̃i(t) > 0 for all t > t0. The value of
vector α̃ will increase rapidly to restrain the further increase
of the error when the following error of the system increases.
The α̃ will decrease when the position of the system is close
to the ideal position.
Theorem 1: Let ψ := [ϒT , (α̃ − α)T ]T ∈ Rn+k . Sup-

pose the mechanical system (8) is subjected to the con-
straints (14), the controller has the following performance
under the assumptions 1-4:
(i) Uniform boundedness: For any r > 0, there exists

a finite positive real number d(r), if ‖ψ(t0)‖ ≤ r , then
‖ψ(t)‖ ≤ d(r) for all t ≥ t0.
(ii) Uniform ultimate boundedness: For any r > 0 and d̄ >

d (d > 0), if ‖ψ(t0)‖ ≤ r , then ‖ψ(t)‖ ≤ d̄ when t ≥
t0 + T (d̄, r), where T (d̄, r) <∞.

In order to analyze the stability of the controller, a reason-
able Lyapunov function is given as

V (ϒ, α̃) = ϒT�ϒ + ka−1(1+ ρc)(α̃ − α)T (α̃ − α). (30)

For the sake of simplicity, we have omitted the parameters
in the function except for some ambiguous places. Taking the
first order derivative of (30) with respect to t , we have

V̇ = 2ϒT�ϒ̇ + 2ka−1(1+ ρc)(α̃ − α)T ˙̃α. (31)

Next, let’s analyze the content on the right side of equa-
tion (31) term by term. By introducing (8) into the first term
on the right side of (31), we can get

2ϒT�ϒ̇ = 2ϒT�(Aχ̈ − b)

= 2ϒT�
{
A
[
M−1(−Cχ̇ − G)

+M−1(τ1 + τ2 + τ3)
]
− b

}
, (32)

where

M−1 = P+ P̃, −Cχ̇ − G = (−C̄χ̇ − Ḡ)+ (−C̃χ̇ − G̃).

(33)

Based on equation(33),

A[M−1(−Cχ̇ − G)+M−1(τ1 + τ2 + τ3)]− b

= A[(P+ P̃)(−C̄χ̇ − Ḡ− C̃χ̇ − G̃)+ (P+ P̃)

× (τ1 + τ2 + τ3)]− b

= A[P(−C̄χ̇ − Ḡ)+ P(τ1 + τ2)+ P(−C̃χ̇ − G̃)

+ P̃(−Cχ̇ − G+ τ1 + τ2)+ (P+ P̃)τ3]− b. (34)

Next, by (15), we have A[P(−C̄χ̇− Ḡ)+Pτ1]−b = 0. From
Assumption 4(i),

2ϒT�A[P̃(−Cχ̇ − G+ τ1 + τ2)+ P(−C̃χ̇ − G̃)]

≤ 2 ‖ϒ‖
∥∥∥�A[P̃(−Cχ̇ − G+ τ1 + τ2)+ P(−C̃χ̇ − G̃)]∥∥∥

≤ 2 ‖ϒ‖ (1+ ρc)0(α, χ̇, χ, t). (35)

Based on (22),

2ϒT�APτ2 = 2ϒT�AP[−kcM̄AT (AAT )−1�−1(Aχ̇ − c)]

= 2ϒT (−kc)(Aχ̇ − c) = −2kc‖ϒ‖2. (36)

According to (26),

2ϒT�A(P+ P̃)τ3
= 2ϒT�AP{−[M̄AT (AAT )−1�−1]µσ0(α̃, χ̇ , χ, t)}

+ 2ϒT�APD{−[M̄AT (AAT )−1�−1]

×µσ0(α̃, χ̇ , χ, t)}. (37)

By applying equation (27), we have

2ϒT�AP{−[M̄AT (AAT )−1�−1]µσ0(α̃, χ̇ , χ, t)}

= −2(ϒ0(α̃, χ̇ , χ, t))Tµσ

= −2σ Tµσ = −2µ‖σ‖2. (38)

According to the Rayleigh principle [27], we have

2ϒT�APD{−[M̄AT (AAT )−1�−1]µσ0(α̃, χ̇ , χ, t)}

= −2µσ T 1/2{[�APDM̄AT (AAT )−1�−1]

+ [�APDM̄AT (AAT )−1�−1]T }σ

≤ −2µ
1
2
λm(H + HT )‖σ‖2 ≤ −2µρc‖σ‖2. (39)

Based on (37) and (38), we have

2ϒT�A(P+ P̃)τ3 ≤ −2µ(1+ ρc)‖σ‖2. (40)

Recall that if ‖σ‖ > ε,−2µ(1 + ρc)‖σ‖2 = −2 1
‖σ‖

(1 +
ρc)‖σ‖2 = −2(1+ρc) ‖σ‖. If ‖σ‖ ≤ ε,−2µ(1+ρc)‖σ‖2 =
−2 ‖σ‖

2

ε
(1 + ρc). By combining (35), (36), and (40), for all

‖σ‖ > ε,

2ϒT�ϒ̇ ≤ −2kc‖ϒ‖2 − 2(1+ ρc) ‖σ‖

+ 2 ‖ϒ‖ (1+ ρe)0(α, χ̇, χ, t), (41)

for all ‖σ‖ ≤ ε,

2ϒT�ϒ̇
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≤ −2kc‖ϒ‖2 − 2
‖σ‖2

ε
(1+ ρc)+ 2 ‖ϒ‖ (1+ ρe)

×0(α, χ̇, χ, t)

= −2kc‖ϒ‖2 + (1+ ρc)[−2
‖σ‖2

ε
+ 2 ‖ϒ‖0(α̃, χ̇ , χ, t)]

+ (1+ ρc)[−2 ‖ϒ‖0(α̃, χ̇ , χ, t)+2 ‖ϒ‖0(α, χ̇, χ, t)].

(42)

For the part −2 ‖σ‖
2

ε
+ 2 ‖ϒ‖0(α̃, χ̇ , χ, t), its maximum

value is ε2 (1+ ρc). Then, we have

2ϒT�ϒ̇ ≤−2kc‖ϒ‖2 +
ε

2
(1+ ρc)+ (1+ ρc)

× [−2 ‖ϒ‖0(α̃, χ̇ , χ, t)+2 ‖ϒ‖0(α, χ̇, χ, t)].

(43)

According to Assumption 4(ii),

−2 ‖ϒ‖0(α̃, χ̇ , χ, t)+ 2 ‖ϒ‖0(α, χ̇, χ, t)

= −2 ‖ϒ‖ α̃T 0̃(χ̇ , χ, t)+ 2 ‖ϒ‖αT 0̃(χ̇ , χ, t)

= 2 ‖ϒ‖ (α − α̃)T 0̃(χ̇ , χ, t). (44)

Then, for all ‖σ‖,

2ϒT�ϒ̇ ≤ −2kc‖ϒ‖2 +
ε

2
(1+ ρc)

+ 2 ‖ϒ‖ (1+ ρc)(α − α̃)T 0̃(χ̇ , χ, t). (45)

According to (29), the second term on the right side of (31)
could be written as

2ka−1(α̃ − α)T ˙̃α

= 2ka−1(α̃ − α)T (ka0̃(χ̇ , χ, t) ‖ϒ‖ − kbα̃)

= 2(α̃−α)T 0̃(χ̇ , χ, t) ‖ϒ‖−2ka−1kb(α̃ − α)T (α̃ − α+α)

= 2(α̃ − α)T 0̃(χ̇ , χ, t) ‖ϒ‖ − 2ka−1kb(α̃ − α)T (α̃ − α)

− 2ka−1kb(α̃ − α)Tα

≤ 2(α̃ − α)T 0̃(χ̇ , χ, t) ‖ϒ‖ − 2ka−1kb‖α̃ − α‖
2

+ 2ka−1kb ‖α̃ − α‖ ‖α‖ . (46)

Combining (45) and (46), we have

V̇ ≤ −2kc‖ϒ‖2 + (1+ ρc)
ε

2
− 2ka−1kb(1+ ρc)‖α̃ − α‖

2

+ 2ka−1kb(1+ ρc) ‖α̃ − α‖ ‖α‖

≤ −κ1‖γ ‖
2
+ κ2 ‖γ ‖ + κ3, (47)

where ‖γ ‖2 = ‖ϒ‖2 + ‖α̃ − α‖2, ‖α̃ − α‖ ≤ ‖γ ‖, κ1 =
min{2kc, 2ka−1kb(1+ ρc)}, κ2 = 2ka−1kb(1+ ρc) ‖α‖, κ3 =
(1+ ρc)ε/2.
When ‖γ ‖ > (κ2 +

√
κ22 + 4κ1κ3)/(2κ1), the derivative

of (47) is negative definite. According to References [28] and
[29], the system is uniform boundedness with

d(r) =



√
ξ2

ξ1
R, if r ≤ R√

ξ2

ξ1
r, if r > R

R =
1
2κ1

(κ2 +
√
κ22 + 4κ1κ3), (48)

where ξ1 = min{λmin(�), (1 + ρc)/ka}, ξ2 =

max{λmax(�), (1 + ρc)/ka}, and uniform ultimate bounded-
ness with

d =

√
ξ2

ξ1
R,

T (d̄, r) =


0 if r ≤ d

√
ξ2

ξ1

ξ2r2 − (ξ12
/
ξ2)d̄2

κ1d̄2(ξ1
/
ξ2)− κ2d̄(ξ1

/
ξ2)

1/2
− κ3

.

(49)

IV. NUMERICAL SIMULATION
The total mass of mobile robot system may change during
the motion process in some occasions, such as watering the
plants, spraying pesticide, loading and unloading objects, etc.
We choose m̄ = 60 kg, m̃ = 0.5 sin(t) kg, I = 2 kg · m2, l
= 0.3 m. At the same time, in order to satisfy Assumption 4,
the function could be chosen as

0(α, χ̇, χ, t) = α1‖χ̇‖2 + α2 ‖χ̇‖ + α3

=
[
α1 α2 α3

] ‖χ̇‖2‖χ̇‖

1


= αT 0̃(χ̇ , χ, t), (50)

where α = [α1, α2, α3]T is an unknown constant vector.
Under the premise of satisfying the Assumption 4, we can
also choose the function 0(α, χ̇, χ, t) as follows

α1‖χ̇‖
2
+ α2 ‖χ̇‖ + α3 ≤ α(‖χ̇‖2 + 2 ‖χ̇‖ + 1)

= α(‖χ̇‖ + 1)2

= αT 0̃(χ̇ , χ, t), (51)

where α = max{α1, α2/2, α3}. Now, giving an expected tra-
jectory (circle): (X − 1)2 + (Y − 0.5)2 = 0.52, the trajectory
could also be written as:{

X = 0.5 sin t + 1
Y = 0.5 cos t + 0.5.

(52)

By deriving (52), we can get the first and second order
constraints in the form of (12) and (14) respectively:

A =
[
1 0 0
0 1 0

]
, c =

[
0.5 cos t
−0.5 sin t

]
,

b =
[
−0.5 sin t
−0.5 cos t

]
.

We choose the parameters of adaptive robust control as:� =
1.4 × I2×2, kc = 8, ε = 0.001, ka = 2, kb = 0.1, and the
initial condition:

χ0 = (1.05, 0.95, π/6),
χ̇0 = (0.1, 0.06,−0.02),
α̃(0) = 0.15.

8882 VOLUME 9, 2021



F. Dong et al.: Adaptive Robust Constraint Following Control for Omnidirectional Mobile Robot: An Indirect Approach

FIGURE 2. Trajectory diagram of the robot center point.

FIGURE 3. X-axis trajectory of center point.

It is noted that χ0 is not strictly on the ideal trajectory, and we
artificially give a deviation of the initial condition to test the
effectiveness of the proposed method.

TABLE 2. Comparison of control performance of two methods.

Fig.2 shows the trajectories of the robot under the same
condition using adaptive robust control and Proportion-
Integration-Differentiation (PID) control, respectively. Com-
paring with the traditional PID control method, the trajectory
of adaptive robust control basically coincides with the ideal
trajectory and the error is much smaller than that under
PID control. Table 2 shows the performance comparison of
the two control methods when tracking the given circular
trajectory. The parameters ēx,y in Table 2 are defined as ēx,y =(∫ T

0

∥∥ex,y(t)∥∥2dt/T)1/2, wherein T is the total time. The ēx,y

FIGURE 4. Y-axis trajectory of center point.

FIGURE 5. Control input.

denotes that the average value of the error between the actual
position of the robot center point and the ideal position on
each axis by neglecting the sign of the error. The emax =

max{e(t)}, (t ≥ ts), which represent that the maximum error
between the center point of the robot and the ideal position
after reaching the stable state, wherein ts is the time when the
system error is stable. The ŪA,B,C = (

∫ T
0

∥∥UA,B,C∥∥2dt/T )1/2
which can represent the average control inputs of
three drive motors by neglecting the sign of the input
value.

From the data in Table 2, it can be concluded that the
average tracking error, as well as the steady-state error under
adaptive robust control are much more smaller than those
under PID control when tracking the same trajectory. At the
same time, the cost of control is reduced. Fig. 3 and Fig. 4 are
obtained by decomposing the trajectory of the center point
of the robot into X and Y axes, respectively. The partial
enlarged drawing clearly shows that the trajectory of adaptive
robust control is closer to the ideal trajectory. Fig. 5 shows
the control input of each wheel. It can be seen from the
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FIGURE 6. Error comparison.

FIGURE 7. The change of adaptive parameters with time t .

figure that the control input is relatively higher at the very
beginning to reduce the error (recall that the initial position is
far away from the ideal trajectory), and then decrease rapidly
since the trajectory constraint is met quickly. The control
input becomes stable after the following error goes into a
stable area. Fig. 6 is the tracking error comparison diagram
between adaptive robust control and PID control. After apply-
ing the proposed control τ , the tracking error is reduced to a
small area near zero at about 2 seconds, and it has always
been stabilized in that area over time. The tracking error of
PID control fluctuates greatly before stabilization, and the
maximum error of the PID control is 11 times more than
that of the adaptive robust control after it stabilizes. Fig. 6
shows the outstanding performance of the adaptive robust
control, that is, the error curve is smoother and converges to
a neighborhood of 0. Fig. 7 shows the change of adaptive
parameter α̃ with time t. In the beginning, the value of α̃
increases rapidly in order to suppress the deviation caused by
the initial conditions. Comparing with Fig. 6, the α̃ gradually
decreases along with the reduction of the following error
at t = 2s.

FIGURE 8. Effects of ka and kb on α̃max.

FIGURE 9. Effects of ka and kb on ē.

In addition, Fig. 8 and Fig. 9 show the effects of the design
parameters ka and kb of the adaptive law on the maximum
value of α̃ and the average tracking error. It can be con-
cluded that with the increase of kb and the decrease of ka,
the maximum value of α̃ in the control process increases
and the average error will decrease at the same time. When
the values of ka and kb are similar, the average error in the
control process is the minimum, while the pair of larger
ka and the smaller kb will increase the average error. This
result provides us a reference to select the appropriate design
parameters.

The trajectory of the above example is smooth. How about
the control performance if the trajectory contains inflection
point? Now, let’s choose the expected trajectory of robot to
be square which is expressed as:{

X = sign(cos t)cos2t
Y = sign(sin t)sin2t,

(53)

where sign stands for symbolic function. The trajectory con-
straints can be transformed into the forms of (12) and (14),
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FIGURE 10. Square trajectory tracking results.

FIGURE 11. X-axis trajectory of center point.

where

A =
[
1 0 0
0 1 0

]
, c =

[
−2sign(cos t) sin t cos t
2sign(sin t) sin t cos t

]
,

b =
[
−2sign(cos t)(cos2t − sin2t)
2sign(sin t)(cos2t − sin2t)

]
.

Follow the same steps as the previous example, the initial
condition is set as

χ0 = (1.1, 0.1, π/6),
χ̇0 = (0.1, 0.1,−0.02),
α̃0 = (0.15).

(54)

The parameters of controller and the uncertainty of the system
are the same as the previous example. Fig. 10 shows the
trajectory under the two control methods. It can be seen
that the trajectory has an obvious overshoot at the corner of
square when using PID control, while the adaptive robust
control is smoother and the error is smaller in linear track-
ing. Fig. 11 and Fig. 12 show the comparison between the

FIGURE 12. Y-axis trajectory of center point.

FIGURE 13. Y-axis trajectory of center point.

trajectory tracked by the two control methods and the ideal
trajectory of the center point on each axis when tracking the
square trajectory. Fig. 13 shows the total tracking error of
the two control methods. We can also see that the error of
PID control fluctuates greatly at the beginning. The error will
increase when it meets the square inflection point, while the
error of adaptive robust control is stable near zero after t = 2s.
The results of Fig. 2 to Fig. 13 verify the effectiveness of

the proposed control method. The trajectory tracking control
of omnidirectional mobile robot system can be realized even
there exists uncertainties. Moreover, no matter whether the
tracking curve is smooth or not, the adaptive robust control
can always achieve better tracking performances.

V. CONCLUSION
An adaptive robust controller based on UKFE is designed
and applied to the trajectory tracking of an omnidirectional
wheeled mobile robot. The control method considers the
uncertainty in the robot system, e.g., the mass in the sys-
tem is not deterministic. Most of the conventional trajectory

VOLUME 9, 2021 8885



F. Dong et al.: Adaptive Robust Constraint Following Control for Omnidirectional Mobile Robot: An Indirect Approach

tracking control methods take the tracking error as the state
variable to meet the corresponding requirements, and are lack
of robustness for the system with uncertainties. The control
method in this paper abstracts the expected trajectory as
virtual constraints so that the trajectory tracking problem is
converted to servo constraint following control problem. The
required constraint force can be obtained in the analytical
form via UKFE. This method is similar to mimic the way
of how nature meets constraints. An adaptive robust part
is designed to suppress the impact of uncertainty. No more
information is needed except for the existence of uncertainty
bound. Both the effectiveness and reliability of the method
are verified by theoretical proof and simulation experiment.
Moreover, it can satisfy the uniform boundedness and uni-
form ultimate boundedness of the system in the control pro-
cess. Compared with traditional PID control, it is derived
from a quite different way and has better tracking perfor-
mance, lower control costs.
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