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ABSTRACT Autonomous driving is one of the promising technologies to tackle traffic accident and
congestion problems nowadays. Even though an autonomous vehicle is operated without humans, it is
necessary to reflect the driving characteristics of a human driver. This can increase user acceptance to
autonomous driving system, which in turn will improve driving safety because of human occupants’ trust
in it. In this paper, a combined trajectory planning and tracking algorithm is proposed for the vehicle
control. Firstly, traffic environments and driving styles are modeled with the Artificial Potential Field (APF)
approach. Secondly, those APF values are integrated into the Model Predictive Control (MPC) design
process, which can optimize the trajectories and control outputs. In this way, we add people’s driving
habits and styles into the controller, so that the controlled vehicle can move under the effects of the traffic
environments and human’s driving styles. At last, autonomous driving, which reflects two types of human
drivers’ driving styles (a cautious driving style and an aggressive one), is tested by the simulation experiments
in two scenarios (car-following and lane-changing). Furthermore, the result demonstrates that the proposed
algorithm can reflect driving styles. Accordingly, this novel controller can be utilized in the autonomous
vehicle control field.

INDEX TERMS Autonomous vehicle, artificial potential field, driving style, MPC, trajectory planning and
tracking.

I. INTRODUCTION
Autonomous driving is the current research hotspot, which
mainly includes trajectory planning and trajectory track-
ing [1]. Specifically, the trajectory planning of autonomous
driving is to design a trajectory suitable for driving envi-
ronments. Besides, the trajectory tracking is the part to exe-
cute the autonomous driving which ensures that the vehicle
follows the planned trajectory. Given that the first principle
of autonomous driving is safety, the trajectory planning and
trajectory parts should be capable of bypassing the obstacles
and moving within the road boundaries.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiangxue Li .

In order to achieve user acceptance, we should have the
autonomous vehicles which are not only safe and reliable
but also comfortable in terms of user experience. However,
the individual perception of comfort may vary considerably
among various vehicle users. For example, some users might
prefer sporty driving with high accelerations, while others
might prefer a soft style. Typically, a human driver’s style is
characterized by a large number of parameters representing
acceleration profiles, distances to surrounding vehicles, speed
during lane-changing, etc. [2]

A. PERSONALIZED DRIVER MODELS
In fact, driving behaviors vary greatly among different human
drivers according to their genders, ages, driving experience,
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driving habits, etc. [3]. Many researches have been carried
out on driving styles and individual driving. [4]– [6]. Further-
more, the corresponding driving trajectories can be planned
according to different types of his/her driving style. Subse-
quently, the autonomous vehicle users can switch to their own
preferred mode to improve driving comfort [7].

In recent years, some researches have been conducted on
autonomous vehicles in which driving styles are considered.
Specifically, Kuderer et al. [2]. propose a research from
demonstration approach to learn the model parameters for
each user from their observed driving styles. They propose a
feature-based inverse reinforcement learning (IRL)method to
learn driving styles from demonstrations. In this case, features
are mappings from trajectories to real values which cap-
ture important properties of driving styles. In addition, they
have shown that their approach is capable of learning cost
functions and reproducing different driving styles using data
from real drivers. Lefèvre et al. [8] present a learning-based
framework for the autonomous driving which combines a
driver model and a predictive controller. In this situation, the
learning-based driver model can generate commands resem-
bling those of a human driver. Moreover, the commands
generated by the driver model are utilized as a reference by
an MPC controller, which is in charge of guaranteeing safety.
Finally, they implement and test the proposed framework for
the longitudinal control of an autonomous vehicle. Hasen-
jager et al. [9] review personalization approaches for ADAS
systems that can be adopted according to the drivers’ prefer-
ences, driving styles, skills and driving patterns. Xing et al.
design a personalized joint time seriesmodeling system based
on deep learning method to jointly estimate the future energy
consumption index and predict leading vehicle trajectories
considering different driving styles [10], [11]. However, the
above method requires a large amount of data, and the imple-
mentation cost is high. In the light of this fact, the changing of
the learning model will be difficult once it is built completely.
Compared with the methods above, the method proposed in
this paper only needs to set the parameters of the APF in
advance, which has a lower cost and can be changed at any
time according to the needs of different individuals.

B. AUTONOMOUS VEHICLE BASED ON APF AND MPC
Actually, advanced trajectory planning methods for
autonomous vehicles include APF approach, random search
method, and other intelligent algorithm-based methods, such
as the neural network algorithm, the genetic algorithm, and
the swarm intelligence algorithm, etc. In this case, the APF
approach is one of the most attractive trajectory planning
methods because of its simple structure, clear mathematical
description, and good real-time performance. The APF is
firstly applied in trajectory planning of mobile robots [12],
and it can generate a path for a vehicle to reach the target
point without any collisions by assigning reasonable potential
field functions for obstacles. Similarly, Huang et al. [13]
present a novel motion planning and tracking framework for
automated vehicles based on the APF elaborated a resistance

approach. In addition, Wang et al. [14] present an obstacle
avoidance path planning method for autonomous driving
vehicles, and they study the path planning mechanisms of
human drivers and demonstrate a safety APF model. These
trajectory planning methods based on the APF all meet
the safety requirements, but none of them consider various
driving styles of human drivers.

MPC method is one of the most effective methods in
trajectory tracking. Specifically, it can transform the vehicle
tracking control into a limited time domain and constrained
optimization problem. In addition, theMPCmethod is widely
used in trajectory tracking of autonomous vehicles because
of its ability to deal with constrained control problems.
Guo et al. [15] propose an implementation scheme for an
MPC path following controller, which considers the feasible
road region and vehicle shape. Zhang et al. [16] integrate
trajectory planner and tracking controller for autonomous
vehicles to implement the collision avoidance. Li et al. [17]
propose an obstacle avoidance controller based on nonlinear
MPC, which is designed in the autonomous vehicle navi-
gation. Berntorp et al. [18] put forward a nonlinear MPC
scheme that adapts a tire model in response to the estimated
road surface. Velhal et al. [19] present an improved linear
time varyingMPC controller for automatic steering control of
unmanned vehicles, which can execute trajectory following at
high speed on the slippery roads. Du et al. [20] design a con-
troller that can simultaneously control the steering and speed
of unmanned vehicles based on nonlinear MPC. Besides,
the genetic algorithm is utilized to speed up optimization
solutions.

As a matter of fact, MPC controller can also be used
for trajectory planning by adding penalty of obstacles into
the cost function of the MPC. Abbas et al. [21] estab-
lish an obstacle avoidance function through adding the dis-
tance between the obstacle and the vehicle. Soloperto et al.
[22] provide a novel robust collision avoidance approach
based on a general tube-based MPC framework. Wang
et al. [23] take vehicle shapes into consideration as a
convex polygonal region and develop a convex quadratic
programming MPC scheme for the real-time collision
avoidance.

In fact, the trajectory planning and tracking for
autonomous vehicles are generally divided into two indepen-
dent units. To be specific, the local trajectory planner designs
a suitable trajectory, and then the tracking controller follows
the planned trajectory. In recent years, some researches have
begun to integrate trajectory planning and tracking into a uni-
fied module. For example, Huang et al. [24] add APF func-
tions to the cost function. Likewise, Rasekhipour et al. [25]
also designed an APF-based MPC controller for autonomous
vehicles. Huang et al. [26] show a control algorithm com-
bining APF approach with MPC, and they use the optimizer
of the MPC controller to replace the gradient-descending
method in the conventional APF approach. However, they
only ensured the driving safety and did not consider different
driving styles.
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It is noteworthy that different autonomous vehicle occu-
pants actually prefer different driving styles according to their
own preferences or driving habits. However, only the traffic
safety and congestion issues are considered in the conven-
tional autonomous driving systems, which makes it impossi-
ble for us to select different driving style modes reflecting
the occupants’ preferences. Those situations may cause an
unacceptability issue with autonomous driving. In addition,
its occupants’ unacceptability may cause dangers once some
emergency traffic scenarios occur [9].

C. CONTRIBUTIONS
This paper proposed trajectory planning and tracking algo-
rithms of the autonomous vehicles conforming to various
driving styles, and the scenarios of autonomous driving
include car-following and lane-changing. In these scenarios,
the driving styles consist of the cautious one and the aggres-
sive one, which can be switched by the user. In this paper,
the trajectory planning and tracking problem is transformed
into a unified optimization problem based on the APF model-
ing of driving environments and driving styles. Additionally,
the local trajectory determined by the APF can be selected
with the optimization algorithm in the MPC controller by
adding the APF values to the cost function. In this way, we
can generate a reference trajectory reflecting human drivers’
driving style. Compared the data-driven driver model (deep
learning, inverse reinforcement learning, etc.), the model here
combining model-based with data-driven is easy to be built
(simple structures and not based on hug data). In addition, to
some tents, it is physically explainable, which is difficult for
most data-driven methods.

This paper is organized as follows: In Section 2, the
car-following behavior and the lane-changing behavior are
analyzed. In Section 3, the APF models, which include envi-
ronment and driving style APF, are established. In Section 4,
the trajectory planning and tracking methods considering
driving styles are represented. In Section 5, the proposed
method is evaluated under several typical traffic scenarios,
and the results are presented and discussed. Finally, Section 6
wraps up the paper by concluding the major findings.

II. DRIVING BEHAVIOR ANALYSIS
Typical vehicle behaviors on highway roads mainly include
free-flowing, car-following and lane-changing, and the latter
two behaviors are more complex for trajectory planning and
tracking. Taking this into account, we chose some indicators
reflecting driving style by analyzing the differences of driving
behaviors in car-following and lane-changing scenarios.

A. CAR-FOLLOWING BEHAVIOR ANALYSIS
In the car-following scenario on highways, the longitudinal
acceleration can be chosen as an indicator for a driver’s
driving style. In the process of approaching the preceding
vehicle, the local vehicle needs to decelerate, and the main
difference among drivers is the vehicle speed changing. The
reason is that drivers’ perceptions of longitudinal acceleration
vary greatly. In this case, Wang et al. [27] analyze the driving

styles in car-following scenarios. To be specific, they select
three feature variables extracted from the Safety Pilot Model
Deployment (SPMD) database, which include the distance
from leading car, longitudinal accelerations, etc. For aggres-
sive driving, the acceleration ranges are ≤ −0.24m/s2 and
≥ 0.23m/s2.
Another indicator to reflect a driver’s driving style is the

Time Headway (THW), which means the time spent in the
local vehicle driving from its front to the rear of the preceding
vehicle. Wang et al [28] indicate that THW is a typical
variable that describes the characteristics of a driver. Further-
more, Bing Zhu et al. [29] also analyze the differences of
THW among different drivers, and the THW of aggressive
and cautious drivers are 1.32 seconds and 2.14 seconds,
respectively.

In summary, we choose the longitudinal acceleration and
the THW as the behavioral indicators reflecting the driving
style of the autonomous vehicle in the car-following scenario.

B. LANE-CHANGING BEHAVIOR ANALYSIS
Lane-changing behavior is the behavior of the vehicle driving
from the current lane to the adjacent lane with considering
driving intention, comfort, etc. [30]. In this case, once the
driver decides to change lanes, he should determine whether
or not to execute lane-changing immediately based on the cur-
rent driving environment. In [31], it points out that the lane-
changing behaviors come into two categories: mandatory
lane-changing and arbitrary lane-changing. To be specific,
mandatory lane-changing must be accomplished within a
certain time. Moreover, arbitrary lane-changing is performed
when the driver tending to complete the driving task quickly
encounters a slower obstacle vehicle in front. In this situation,
we focus on the latter one which is the main lane-changing
behavior on freeways.

The influence of driving style on lane-changing behav-
ior on highways is analyzed in [32]. Fairclough el al. find
that during conducting overtaking maneuvers, conservative
drivers prefer a higher THW (Mean = 1.76 s) than either
the neutral drivers (Mean = 1.23 s) or the aggressive drivers
(Mean = 1.15 s). Doshi el al. [33] analyze differences in
measured time from lane-changing initiation to lane crossing
(time-to-lane-crossing) for different driving styles in the sim-
ulator experiment. It shows a significant difference (p< 0.05)
among the different groups. In the case of lane-changing,
they study how long it takes the drivers to drive from the
initiation of the maneuver to the point of lane crossing, and
they have given a distribution of the ‘‘time-to-lane-crossing’’
as a function of the driving style. Actually, the mean lane-
changing durations of aggressive and cautious drivers are 1.7s
and 2.5s, respectively. In all, we chose two feature variables
(THW, lane-changing durations) to reflect the driver’s driving
style in the lane-changing scenario.

III. THE DESIGN OF APF MODELING
The analysis above show differences between cautious and
aggressive drivers. These differences are concerned with the
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longitudinal acceleration and the time headway in the car-
following behavior, as well as the lane-changing duration
and the THW in the lane-changing behavior. Therefore, these
indicators are utilized to quantify driving styles in the APF
modeling,

The APF modeling includes environment and driving style
APF. To be specific, the environment APF describes the
interaction of the autonomous vehicle with its surrounding
environment. On the other hand, the driving style APF is
adopted to express the influence of various driving styles on
the trajectory planning.

A. ENVIRONMENT APF
1) THE APF OF BOUNDARY LINES
The vehicle can only drive between boundary lines. Thus,
such APF prevents the vehicle from leaving the highway by
making the APF values stay within infinite boundaries. On
each side of the highway, we employ the following used in
robotics motion planning:

Uroad = Aroad
/ (
y− yroad,j

)
(1)

where Aroad is a APF factor, and yroad,j is the lateral position
of the jth highway boundary line.

2) THEPOTENTIAL OF LANE LINE
In fact, the potential of lane lines differs from that of boundary
lines in that the former is utilized to guide the vehicle moving
along them. This APF value decreases while the vehicle
approaches the lane centerlines, so we employ a quadratic
function as follows:

Ulane = Alane (y− ylane)2 (2)

where Alane is a APF factor, and ylane is the lateral position of
the lane’s centerline.

3) THE APF OF TARGET POINT
As the vehicle moves forward along the lane, its front direc-
tion should always be selected as its target. This APF can
ensure that the local vehicle moves forward, so that the APF’s
front part decreases when the distance from a front targeting
point to the local vehicle decreases. That is to say, the APF
of a targeting point is proportional to this distance and should
be non-negative. Therefore, we employ a simple first order
function to describe this APF value:

Ugoal = κ (x − xcar ) (3)

where κ is a coefficient of the target APF value, x is the
longitudinal position of targeting point.

4) THE APF OF OBSTACLE VEHICLE
The method to establish the APF of an obstacle vehicle is
similar to the study of Wolf, et al. [26], [34]. We firstly
establish the APF along the longitudinal direction of the
obstacle vehicle, and then its total APF is expended based
on the longitudinal APF. The area of the obstacle’s potential
field is divided into three parts, which is shown in Fig. 1.

FIGURE 1. The potential description of the obstacle vehicle.

FIGURE 2. The APF of the obstacle vehicle.

At an arbitrary point p in any section, we want to calculate
the APF value of the local vehicle, and the APF distribution
rule is presented as follows:

Acar


Ucar , p ∈ Section1∪ ∈ Section2
vr/ (K − S) , p ∈ Section3 ∩ vr > 0
0, p ∈ Section3 ∩ vr ≤ 0

(4)

where Ucar is the maximum value of the APF, vr denotes
the relative speed between the local vehicle and the obstacle
vehicle, and K denotes the longitudinal distance between the
local vehicle and the obstacle vehicle. Besides, S denotes the
safe distance, and it can be calculated as:

S = φ · Vr + Smin (5)

where, φ is a scale coefficient, and Smin is the minimum safe
distance.

A Gaussian-like function is adopted to model the lateral
APF distribution illustrated in Equation (6).

Acarall = Acar exp
(
−d2/2σ 2

car

)
(6)

whereAcar is the longitudinal APF value defined above, and d
denotes the lateral distance from the local point to the nearest
point on the obstacle vehicle. As shown in Fig. 1, if the point
is inArea 1, then d = d1; if the point is inArea 2, then d = d2;
if the point is in Area 3, then d = d3. Additionally, σcar
represents the attenuation coefficient of the obstacle vehicle
APF, and the APF of the obstacle vehicle is shown in Fig. 2.

All the APF values described above are combined to form a
total environmental APF. The schematic diagram of the total
environmental APF is shown in Fig. 3.We note that the Y-axis
represents the road width,−1.5 to 1.5 represents the left lane,
and 1.5 to 4.5 represents the right lane. Apart from this, the
X-axis represents the position of the road in the longitudinal
direction. The Z-axis represents the magnitude of the APF,
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FIGURE 3. The APF of the traffic environment.

and the colder the color is, the lower the APF value is at
that position. In addition, the Red Cross represents the lowest
point of the APF on the right lane. The black point represents
the current position of the local vehicle, and it will go to the
lowest point of the APF along the direction of the arrow if
there is no obstacle in front.

B. THE AP OF DRIVING STYLE
1) THE APF OF TIME HEADWAY
In the car-following mode, time headway APF ensures that
the local vehicle maintains a certain safety distance to the
front obstacle vehicle. This safety distance is determined
according to the current drivingmode the user select. Accord-
ingly, we employ a quadratic function, as shown below.

Uthw = Athw
(
THW cur − THW exp

)2 (7)

where Athw is an APF factor, and THW cur and THW exp
are current and expected time headway. In this case, time
headway APF decreases when the current time headway
approaches the expected value, so it can guide the local
vehicle to follow its preceding vehicle with a desired time
headway.

2) THE APF OF LANE-CHANGING DURATION
The APF of lane-changing Duration is defined as follows:

Utime = Atime
(
t − texp

)2 (8)

where Atime is an APF factor, and texp is the desired lane-
changing duration of different driving styles. The APF of
lane-changing duration guides the vehicle to complete the
lane-changing within the desired time. In order to facili-
tate the programming of the algorithm, the lane-changing
duration is converted into longitudinal distance in the lane-
changing process. Subsequently, the desired lane-changing
time can be obtained by adjusting the APF coefficient of
adjacent lanes. In the lane-changing scenario, the average
lane-changing speed can be estimated based on current speed.
Therefore, the longitudinal distance can be obtained by mul-
tiplying the lane-changing duration by the average speed.

IV. THE TRAJECTORY PLANNING AND TRACKING
CONSIDERING DRIVING STYLES
This section presents a combined trajectory planning and
tracking algorithm for autonomous vehicles. Actually driving

FIGURE 4. Vehicle kinematic model.

styles are taken into consideration in the method adopted in
this method, which is different from other trajectory plan-
ningmethods. The combined trajectory planning and tracking
method is based on the MPC method, and the proposed
APF for environment and driving style are added as parts of
the objective function to avoid obstacle and reflect driving
style simultaneously. The modeling methods under the car-
following mode and the lane-changing mode are presented as
follows.

A. CAR-FOLLOWING MODE
1) VEHICLE MODEL
The vehicle kinematics model is described in Fig. 4. Given
the rear axle midpoint of the vehicle (x, y), the speed v is
calculated as following.

v = ẋ cosϕ + ẏ sinϕ (9)

where (x, y) stands for the vehicle position in the Cartesian
coordinate, φ denotes the counterclockwise orientation of
the vehicle from the x-axis, v denotes the speed, δf denotes
the road front wheel steering angle. The vehicle kinematics
model is illustrated below.

χ =

 ẋ
ẏ
ϕ̇

 =
 cosϕ

sinϕ
tan δf

/
l

 v (10)

2) COSTFUNCTION
The cost function contains three parts. The first part is the
APF UAPF_follow:

UAPF follow=Uroad + Ugoal + Uthw (11)

where the environment APF Uroad and Ugoal are used to
restrict the local vehicle to drive in the current lane, and the
driving style APF Uthw is used to reflect the driving style.

The APF in the car-following scenario is shown in Fig.5,
and the picture on the left is a schematic diagram of a car-
following scenario. Additionally, the picture on the right
shows the corresponding APF, and the X-axis represents the
position of the road in the longitudinal direction. The Y-axis
represents position of the road in lateral direction, in which
[−1.5, 1.5] is the right lane, and [1.5, 4.5] is the left lane.
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FIGURE 5. (a) Potential Field in the Car-Following Scenario (cautious) (b)
Potential Field in the Car-Following Scenario (aggressive).

The bump in the right lane represents the obstacle car, which
will generate a gravitational APF at a certain distance behind
it, attracting the local car in a certain position behind it.
Subsequently, the local car can maintain THW in a set value.
In the APF diagram, the Red Cross represents the lowest point
of the current APF and the local car will always go towards
the position which has lower APF. Because of the existence of
such a THWAPF, the lowest point of the APF will always be
kept at a fixed distance (THW∗vcar ) from the car ahead. As
shown below, Fig.5 (a) represents the cautious style, while
Fig.5 (b) represents the aggressive style.

The second part of the cost function is speed tracking, and
the last part is the control increment. Subsequently, the cost
function is created in the following form.

Jfollow = (ξ (t) , u (t − 1) ,1u (t))

=

Np∑
i=1

∥∥UAPF follow (t + i |t )
∥∥2
Q

+

Np∑
i=1

‖v (t + i |t )− vdes‖2R +
Nc∑
i=1

‖1u (t + i |t )‖2S

(12)

where u(t) = [v(t), δ(t)] denotes the vehicle’s control input
vector at time t, 1u (t) stands for the sequence of the future
control increments, UAPF_follow (t + i |t ) represents the APF
value of the vehicle at time instant t+ i, v (t + i |t ) represents
the longitudinal velocity at time instant t+i,1u (t + i |t ) rep-
resents the control increment at time instant t + i, Np denotes
the prediction horizon, Nc denotes the control horizon, vdes
denotes the desire speed, and Q, R and S are weight matrix.

The cost function, i.e., Equation (12) includes three parts.
Specifically, the first part is the APF value of the local
vehicle, which is calculated by the vehicle kinematics model
combined with APF function. The APF is introduced into
the objective function to find those points with minimum
potential field value as the optimal trajectory. In this case,
the trajectory planning is mainly dependent on the APF, so
the corresponding weights should be larger. The second part
ensures that the local vehicle maintains the current desired
speed. The third part is utilized to limit the control increment
with the aim of preventing large change of control increment,
so that the movement state of the vehicle can be changed
gently and guarantee the comfort.

When we take into account the real driving conditions, the
constraints are configured as follow:

0 ≤ v ≤ 1.1 ∗ vdes
v̇min ≤ v̇ ≤ v̇max
−25

◦

≤ δ ≤ 25
◦

−0.47
◦

/s ≤ δ̇≤0.47
◦

/s (13)

In summary, the optimal control problem of the trajectory
planning considering driving style under car-following mode
is:

min1u(t)
{
Jfollow = (ξ (t) , u (t − 1) ,1u (t))

}
s. t. ξ (k + 1) = f (ξ (k) , u (k))

u (k) = u (k + 1)+1u (k)

umin (k) ≤ u (k)≤umax (k)

1umin (k) ≤ 1u (k) ≤ 1umax (k) (14)

The first element of the calculated control increment
sequence is set as an input to the autonomous vehicle, and
the next period continues the same optimization problem.

B. LANE-CHANGING MODE
The trajectory planning and tracking in the lane-changing
mode is similar to the method in the car-following mode.
The states of autonomous vehicles come into the free-flowing
and lane-changing in the lane-changing mode. In the light
of this fact, the logic in the lane-changing mode can be
summarized as follows: selecting corresponding style for the
lane-changing, and the local vehicle enters in the free running
mode. When the triggering condition of lane-changing is
reached, the vehicle begins to change lanes in the corre-
sponding driving style. After the lane-changing process is
completed, the vehicle returns to the free running mode.
The triggering condition of the lane-changing is the dis-

tance to the front vehicle, and the distance of different driving
modes vary according to the analysis of Section ćò. If the
driving mode is set as the cautious one, the local vehicle will
begin to change lanes only when the triggering condition of
cautious style is reached. In the free driving mode, the vehicle
drives at the set speed and will not change lanes. Accordingly,
the objective function of free-driving mode can be shown as
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FIGURE 6. (a) Potential field in the lane-change scenario when the
lane-changing triggering condition is reached (cautious), (b) Potential
field in the lane-changing scenario when the lane-changing triggering
condition is reached (aggressive).

below:

Jfree = (ξ (t) , u (t − 1) ,1u (t))

=

Np∑
i=1

∣∣∣∣UAPFfree (t + i |t )∣∣∣∣2Q
+

Np∑
i=1

‖v (t + i |t )− vdes‖2R +
Nc∑
i=1

‖1u (t + i |t )‖2S

(15)

where UAPF_free is the sum of road potential, lane potential
and target potential, as following.

UAPF free = Uroad + Ugoal + Ulane (16)

UAPF_free only contains environmental APF, because driv-
ing style is not considered in the free-flowing mode. Vehicle
APF is not included, and the other parts of the cost function
are the same as Equation (12). The triggering condition is
embedded in the free-flowing mode, and it will judge the
THW with the threshold in each step. Once the triggering
condition reached, the local vehicle will switch to the lane-
changing mode. As shown in Fig.6, the picture in the left is
the schematic diagram of lane-changing scenario, once the
local vehicle crosses the red dotted line, it will switch to
the lane-changing mode. The environment APF in this lane-
changing mode is also presented in Fig.6. In this situation, the
X-axis represents the position of the road in the longitudinal

direction, and the Y-axis represents position of the road in
lateral direction, in which [−1.5, 1.5] is the right lane and
[1.5, 4.5] is the left lane. Besides, the bump in the right lane
represents the obstacle vehicle, when the THW of the local
vehicle reaches the preset value, the local vehicle will switch
to the lane-changing mode. In this mode, the APF in adjacent
lane is much lower than current lane, so the local vehicle
will change lane along the direction of the APF downward.
Fig.6 (a) represents the cautious style, while Fig.6 (b) repre-
sents the aggressive style. Under the cautious style, the THW
of entering the lane-changing mode is longer than that of the
aggressive style, and it also takes longer to change the lane.

As mentioned before, the difference among different
driving style modes in lane-changing is the lane-changing
duration. With this in mind, we adjust the cost function in
lane-changing mode, which is shown as follows:

Jlane change = (ξ (t) , u (t − 1) ,1u (t))

=

Np∑
i=1

∥∥UAPFlane change (t + i |t )∥∥2Q
+

Np∑
i=1

‖v (t + i |t )− vdes‖2R

+

Nc∑
i=1

‖1u (t + i |t )‖2S (17)

where UAPFlane_change is defined as:

UAPFlane change = Uroad + Ugoal + Utime (18)

where, Ugoal is target APF, and Utime is lane-changing dura-
tion APF.
Environmental APF guides the vehicle to change lanes, and

driving style APF determines the lane-changing duration. The
other parts of the cost function are similar to Equation (12).
At the end of each step, lane-changing safety judgment is
introduced by calculating the vehicle APF of the predictive
trajectory points. If the APF value is too large, there will
be a risk of collision with the environment vehicle and the
lane-changing should be abandoned. In this situation, the
vehicle should decelerate to follow the front vehicle. After
the lane-changing, the vehicle returns to free-flowing mode,
and the triggering condition needs to be judged at each step.
In addition, the criterion of the finishing lane-changing is that
the vehicle crosses the lane line. The constraints are the same
as those in the car-following mode, thus the optimal control
problem of the trajectory planning considering driving styles
under the lane-changing mode is:

min1u(t)
{
Jlane change = (ξ (t) , u (t − 1) ,1u (t))

}
s. t. ξ (k + 1) = f (ξ (k) , u (k))

u (k) = u (k + 1)+1u (k)

umin (k) ≤ u (k)≤umax (k)

1umin (k) ≤ 1u (k) ≤ 1umax (k) (19)
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TABLE 1. Units for magnetic properties.

FIGURE 7. The scenarios definition.

TABLE 2. Computational efficiency of the algorithm.

V. THE SIMULATION EXPERIMENT
The proposed trajectory planning and tracking approaches
have been simulated by using MATLAB/Simulink and Car-
Sim. Huang et al. [26] presented a control algorithm combin-
ing the APF approach with the MPC, but their method does
not include driving styles. We also simulate their algorithm as
a comparison, and the parameters used in the way are listed
in the following Table 1.

A. TEST SCENARIO
The first scenario is used to verify the trajectory planning
and tracking method considering the driving style in the car-
following mode. The second scenario is used to verify the
trajectory planning and tracking method in the lane-changing
mode. The specific settings are as follows:
Scenario 1 is a car-following scenario. The road consists

of two lanes, and there are two vehicles in the same lane.
The distance between the two vehicles is 100 meters. The
environment vehicle is in front of the local vehicle, and
the speeds of the local vehicle and environment vehicle are
25m/s and 22m/s respectively. The local vehicle is in the car-
following mode. Scenario 1 is set up as shown in the Fig. 7.
Scenario 2 is a simple lane-changing scenario. In this

scenario, the local vehicle is in lane-changing mode, and the
distance between the two vehicles is 80 meters. Additionally,
the speeds of the ego vehicle and environment vehicle are
25m/s and 22m/s respectively.

B. THE SIMULATION RESULTS
The simulation run on the joint simulation platform of
Carsim-Simulink, in which the Carsim is used as high-fidelity

FIGURE 8. Scenario 1. (a) Speed curves under the two driving styles and
no driving style (b) Longitudinal accelerations of the local vehicle under
the two driving styles and no driving style.

vehicle model. The fmincon function in Matlab is chose
as solver. The PC used for simulation experiments is
Intel(R) i9-9900 CPU, RAM 16G. The computational effi-
ciency is shown in Table 2. The mean times per step for
scenario 1 and 2 are 0.15s and 0.18s. In algorithm, we set
the simulation step as 0.02s. Therefore, the algorithm cannot
meet the requirement of real-time computational efficiency,
which is the shortcoming for many MPC controllers [35].
Therefore, the algorithm proposed in this study can not be
put into application of real autonomous. And we will improve
this algorithm in future so that it can run in real-time.
Car-Following Scenario: Fig. 8(a) shows the speed curves

for the two driving styles and no driving style. The simulation
results of no driving style come from themethod of a previous
study [26]. As seen below, the red line indicates the speed
obtained under the aggressive driving style, the yellow line
shows that of the cautious driving style, and the blue line is
the result of no driving style. At the beginning, there will be a
short period of acceleration due to goal APF. With the contin-
uous action of the time headway APF, the speed of the vehicle
will gradually approach the front vehicle. Finally, the speed
of the local car will be the same as that of the car in front, then
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FIGURE 9. Time headway of the local vehicle under the two driving styles
and no driving style.

the former changes to a stable car-following state. The speed
dropping begins earlier in the cautious driving mode. This is
because its THW is large. And the speed dropping rate of the
aggressive driving mode is significantly larger than that of
the cautious driving mode. Under no driving style, the local
vehicle will contain 25m/s at first. When it gets close enough
to the car in front, the obstacle potential field forces it to slow
down and reach the same speed as the car in front.

Fig. 8(b) shows the longitudinal accelerations under the
two driving styles and no driving style, and the accelerations
are all within the limits of constraints. In addition to this,
the range of the acceleration in the aggressive driving mode
is obviously greater than that in the cautious driving mode.
Under no driving style, the acceleration of the car will be up
and down frequently.

The THW of the local vehicle under the two driving styles
is shown in Fig. 9. The THW can reflect the differences
in trajectory planning between the two driving style modes.
Because the speed of the local vehicle is greater than its
preceding vehicle, the THW is decreased continuously and
finally reaches an expected value. We can see the THW of
the aggressive driving mode dropping faster than the cautious
driving mode. The final THW in the cautious driving mode
reaches about 1.76 seconds, while it is at about 1.15 seconds
in the aggressive driving mode, which conforms to the expec-
tation. Under no driving style, the final THW of the local
vehicle is related to the APF of the vehicle in front.
Lane-Changing Scenario: The trajectories under the two

driving styles and no driving style are shown in Fig.10 (a).
It can be seen from the figure that the lane-changing of
the aggressive driving starts at about 190m. Furthermore,
it is not easy to observe the lane-changing duration in
Fig. 10(a). In order to intuitively analyze the difference in
lane-changing duration between the two driving styles, we
transform Fig. 10(1) to Fig. 10(b). In this scenario, the speed
of the two styles of vehicles is stable at 25m/s, so we can
calculate the lane-changing time through the lane-changing
distance. The lane-changing distance of aggressive driving
style is about 42 m, and the lane-changing duration is about
1.7 s, which is in line with the previous setting. Similarly,

FIGURE 10. Scenario 2. (a) Trajectories of the local vehicle planed under
the two driving styles and no driving style. (b) Trajectories adjusted.

as for cautious driving, the lane-changing distance is about
62 m, and the lane-changing duration under cautious driving
style mode is about 2.5s, which meets the requirements of the
current driving style mode. Under no driving style, the timing
of lane-changing is similar to that of the aggressive style, but
the duration of lane-change is longer than those in the two
driving styles.

Fig. 11(a) shows the longitudinal accelerations under the
two driving styles and no driving style. It can be noted that
the accelerations are both within the limits of constraints, and
the acceleration in the aggressive driving mode is obviously
greater than that in the cautious driving mode. Fig. 11(b)
shows the local vehicle heading angle under the two driving
styles and no driving style. As seen in the figure, the time
when the heading angle begins to change is when the lane-
changing begins. The turning angle amplitude of aggressive
mode is greater than that of cautious mode, which is also in
line with our expectations.

Fig. 12 shows the corresponding THW at lane-changing
state under the two driving styles and no driving style. In the
aggressive mode, the local car changes lanes when THW is
1.15s, and in the cautious mode, the local car changes lanes
when THW is 1.76s, which is exactly what we expected.
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FIGURE 11. Scenario 2. (a) Longitudinal accelerations of the local vehicle
under the two driving styles and no driving style. (b) Heading angle under
the two driving styles and no driving style.

FIGURE 12. The corresponding THW at lane-change state under the two
driving styles and no driving style.

Based on the results above, we can conclude that the local
car can reflect its own style in different driving modes. Under
no driving style, when the local vehicle changes the lane, its
THW is similar to that of the aggressive style, but the duration
of lane-changing is longer than those in the two driving styles.

VI. CONCLUSION
In this paper, a trajectory planning and tracking control
method of autonomous vehicles considering driving styles

has been proposed. A novel APF model is established, which
is made up of environmental APF and driving style APF.
Specifically, the environmental APF is adopted for obstacle
avoidance, while driving style APF is employed to generate
the planned trajectory, which conforms to human drivers’
different driving styles. The controller can plan a trajectory
and track it by adding the APF to the cost function of the
MPC. Therefore, the occupants of autonomous vehicles can
select different driving style modes, i.e., aggressive driving
mode and cautious driving mode. The result shows that the
planned trajectory can conform to the selected driving style
when the driving mode is selected. Compared with the result
of no driving style, the method in this study is more stable
and is in line with people’s habits.
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