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ABSTRACT Multi-modality imaging constitutes a foundation of precision medicine, especially in oncology
where reliable and rapid imaging techniques are needed in order to insure adequate diagnosis and treatment.
In cervical cancer, precision oncology requires the acquisition of 18F-labelled 2-fluoro-2-deoxy-D-glucose
(FDG) positron emission tomography (PET), magnetic resonance (MR), and computed tomography (CT)
images. Thereafter, images are co-registered to derive electron density attributes required for FDG-PET
attenuation correction and radiation therapy planning. Nevertheless, this traditional approach is subject to
MR-CT registration defects, expands treatment expenses, and increases the patient’s radiation exposure.
To overcome these disadvantages, we propose a new framework for cross-modality image synthesis whichwe
apply onMR-CT image translation for cervical cancer diagnosis and treatment. The framework is based on a
conditional generative adversarial network (cGAN) and illustrates a novel tactic that addresses, simplistically
but efficiently, the paradigm of vanishing gradient vs. feature extraction in deep learning. Its contributions
are summarized as follows: 1) The approach –termed sU-cGAN- uses, for the first time, a shallow U-Net
(sU-Net) with an encoder/decoder depth of 2 as generator; 2) sU-cGAN’s input is the sameMR sequence that
is used for radiological diagnosis, i.e. T2-weighted, Turbo Spin Echo Single Shot (TSE-SSH) MR images;
3) Despite limited training data and a single input channel approach, sU-cGAN outperforms other state of the
art deep learning methods and enables accurate synthetic CT (sCT) generation. In conclusion, the suggested
framework should be studied further in the clinical settings. Moreover, the sU-Net model is worth exploring
in other computer vision tasks.

INDEX TERMS Cervical cancer, computed tomography, deep learning, generative adversarial network,
magnetic resonance imaging, U-Net.
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I. INTRODUCTION
In the current era of precision medicine, magnetic resonance
(MR) imaging emerged as a key element of oncological
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diagnosis and staging [1], especially for the female pelvis
for which computed tomography (CT) images preclude
uterus substructures delineation or tumorous tissue discrim-
ination [2]. Consequently, MR is considered as the imaging
modality of choice in gynecological cancers in general and
in cervical cancer in particular [2]–[4], as it produces images
with exquisite soft tissue contrast, provides detailed multi-
parametric structural and functional radiological data, and
requires no x-ray exposure to the patient, [1]. Nevertheless,
no current MR-only radiation therapy workflow can be rou-
tinely adopted in clinical practice due to multiple factors.
At a logistic level, MR requires longer acquisition time than
CT, which increases patient discomfort and machine and
MR technologists time expenses [5]. Also, MR images do
not provide electron density information needed for dose
calculations of the radiation therapy plan and for attenuation
correction for Positron Emission Tomography (PET)/MR [6].
However, most of the MR-based radiation therapy workflows
requires the acquisition of at least an initial planning CT
before initiation of the radiotherapy treatment. Subsequently,
the MR acquired throughout the radiation therapy treatment
timeline can be registered to the planning CT, and electron
density information can be retrieved [7]. Nonetheless, this
approach remains sub-optimal as dosimetric accuracy can be
affected by MR to CT registration imperfections [8]–[11].

To overcome the need for CT acquisition, a multitude of
synthetic CT (sCT) generation methods have been designed,
experimentally studied, and applied in clinical research [12].
Thesemethods are classically divided into atlas-based, tissue-
based, and voxel-based techniques [13]. In atlas-based meth-
ods, a library consisting of a previously collected MR-CT
pair is used. Each newly-acquired MR volume is registered
to its best matching MR volume from the library and the
registration field is then applied to the library CT images to
produce an sCT for the new patient [14]. Atlas-basedmethods
are subject to deformable registration artifacts, notably in
areas with altered anatomy due to tumor growth or surgi-
cal void [15], [16]. As for tissue-based methods, the image
volume is first divided into tissue classes such as air, fat,
and bone. Then, each tissue class is assigned a Hounsfield
Unit (HU) value [12]. Tissue-basedmethods are dependent on
manual segmentation and, similarly to atlas-based methods,
do not operate at a voxel-level. Voxel-based methods over-
come the limitations of atlas-based and tissue-based methods
and offer the advantage of applying an MR image intensity
to CT HU transformation at a voxel level. This approach was
initially based on statistical modeling [17], thresholding [18]
or clustering [19], but more recent research is being focused
on deep learning [20] given its convenient ability of automatic
feature extraction, correlation, and combination.

Breakthroughs in computational imaging over the last
decade enabled a significant acceleration of the radia-
tion therapy workflows in general, and particularly of
PET/MR-based workflows. Ideally, a conveniently auto-
mated PET/MR-based workflow should be based entirely on
a single MR sequence for diagnosis, quantitative PET/MR

attenuation correction, auto-contouring, and radiation ther-
apy planning. Practically, such workflow has not yet
been reported. In cervical cancer, for example, diagnosis
would require a T2-weighted, Turbo Spin Echo-Single Shot
(TSE-SSH) MR sequence [3], [4], however, neither sCT gen-
eration methods using T2-weighted, TSE-SSHMR sequence
as input nor auto-contouring have been validated for the
female pelvis.

In this manuscript, we present a new deep learning frame-
work for sCT generation for the female pelvis. Our method
leverages the generative adversarial network (GAN) image
synthesis potential with the U-Net features extraction capac-
ity. Compared to the previously published studies, the novel-
ties of this manuscript are summarized as follows:

(1)We introduce the sU-cGANmodel that entails a shallow
U-Net (sU-Net) with an encoder/decoder depth of 2, as the
generator of a conditional GAN (cGAN) network. Given a
simplified structure of its generator, sU-cGAN exhibits a
lower number of trainable parameters when compared to the
commonly used cGAN networks.

(2) While most of the previously published articles used
multiple MR sequences as input features, sU-cGAN employs
a single channel input model by only requiring the heavily
T2-weighted, MR sequence; it has not been studied for the
female pelvis sCT generation yet.

(3) Despite structure simplification and a single channel
input, we demonstrate that sU-cGAN enables accurate and
rapid sCT generation via an exhaustive, contour-based com-
parative analysis.

(4) By complementing our previously reported auto-
contouring report in cervical cancer [21], this study con-
stitutes a novel approach for PET/MR-based attenuation
correction and radiation therapy planning in patients with
cervical cancer, where the complete workflow (radiological
diagnosis, quantitative PET/MR attenuation correction, auto-
contouring, and radiation therapy planning) can be solely
based on a single MR sequence, i.e. T2-weighted, TSE-SSH.

In Section II of this manuscript, we briefly review
the basics of the commonly used MR imaging fea-
tures as well as U-Net and GAN networks. We then
introduce in Section III the proposed sU-cGAN model.
In Sections IV and V, we present the experimental setup and
discuss the comparative analysis. Lastly, conclusions and
future directions are drawn in Section VI.

II. RELATED WORK
A. MR INPUT FOR sCT GENERATION
For MR-only radiotherapy and PET/MR attenuation cor-
rection, most of the voxel-based sCT production methods
used conventional T1-, T2- or Dixon-derived sequences as
input [12]. T1-weighting is achieved via applying short time
of echo (TE) and time of repetition (TR), while T2-weighting
is achieved by applying long TE and TR [22]. As for the
Dixon sequence, it takes advantage of chemical shift effects
in order to yield in-phase (IP) and opposed-phase (OP)
images [23]. Dixon water and fat images can then be created
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by adding and subtracting the IP and OP images [23]. There-
fore, the end result of the Dixon sequence is the production 4
interrelated images: IP, OP, water, and fat.

The usual choice of conventional T1-, T2-, or Dixon-
derived sequences as input for sCT generation algorithms
derives essentially from two factors: 1) data availability,
as conventional T1 and T2 sequences are the most widely
used in clinical radiology [22], and Dixon sequences are used
in the currently available PET/MR systems for attenuation
correction [24]. 2) Dixon sequences allow the use of up to
4 channels as input, which empowers the features extrac-
tion capacity of the sCT generation methods and potentially
improves the overall accuracy [25]. However, conventional
T1 and T2 sequences usually require longer acquisition time
than CT, which is a source of discomfort to the patient and
leads to geometric distortions in MR images [5].

Compared to the conventional spin echo, the TSE-SSH
enables the acquisition of the complete K-space data in a
single TR [26] by applyingmultiple phase encoding gradients
of increasing amplitude during a single TR so that multiple
echoes are generated [27] and only half of the K-space needs
to be sampled (Fig. 1(b)) [27]. As a result, the acquisition
time is greatly shortened, which reduces the geometric dis-
tortion and minimizes the breathing and motion artifacts [27].
As such, T2-weighted TSE-SSH MR imaging was included
in the recommendations of the International Federation of
Gynecology and Obstetrics (FIGO) [3] and the European
Society of Urogenital Radiology [4] as it combines the advan-
tage of soft tissue differentiation with the T2 contrast and the
geometric fidelity with the TSE-SSH acquisition scheme.

B. GAN FRAMEWORK
The GAN framework was introduced in 2014 by
Goodfellow et al. [28], and has been eminently exploited
and developed in different areas of computational imaging
in general, and in image synthesis in particular [29]. In its
original form, the framework consisted of a generator G(·)
able to generate a synthetic image G(z) when given a random
noise z as input. G competes with a discriminator D(·) whose
task is to differentiate whether a given input is a measured x
or synthetic G(z) image. G and D are trained simultaneously
in a min-max game fashion, whereG is attempting to produce
realistic data that misleads D in its classification task, while
D is optimizing its capacity of synthetic vs. measured image
discrimination. Mathematically, the GAN loss function LGAN
can be designated as follows:

LGAN (D,G) = Ex∼pdata(x)
[
logD(x)

]
+Ez∼pz(z)

[
log(1− D(G(z)))

]
(1)

In order to accomplish a class-oriented image synthesis,
Mirza et al. adjusted the GANmodel to include a conditional
class c such as image modality or category [30]. This frame-
work was labeled as conditional GAN (cGAN), and its loss
function LcGAN can be designated as follows:

LcGAN (D,G) = Ex∼pdata(x)
[
logD(x|c)

]
+Ez∼pz(z)

[
log(1− D(G(z|c))

]
(2)

In 2016, Isola et al. [31], [32] adapted the cGANmodel to the
task of supervised image to image translation by making the
following changes: 1) The input image ywas considered to be
itself the conditional class; and 2) The noise was considered
to be embedded in the input image y and was counteracted
by applying several layers of dropout at training and testing
time [31]. With the above modifications, the cGAN loss
function in the case of supervised image to image translation
3cGAN can be written as:

LcGAN (D,G) = Ex,y
[
logD(x|y)

]
+ Ex,y

[
log(1− D(G(y))

]
(3)

Since then, the cGAN framework for image to image
translation has been widely applied in the medical literature,
notably for pelvic sCT generation. In 2018, Maspero et al.
generated a pelvic sCT via a cGAN framework using MR
Dixon training data from 32 patients having prostate, rec-
tal or cervical cancer [33]. Using a similar approach, Brou
Boni et al. reported sCT generation from T2-weighted MR
images in 19 male patients with prostate or rectal cancer [34].
In addition, Fetty et al. also used T2-weighted MR images
to compare the performance of different cGAN generators
across different MRmagnetic field strengths [35]. To the best
of our knowledge, cGAN-based pelvis sCT generation via
T2-weighted TSE-SSH has not yet been studied.

C. U-NET
In a landmark manuscript published in 2015,
Ronneberger et al. devised - for the initial purpose of seman-
tic segmentation - a deep learning network named U-Net
given its symmetrically arranged encoding and decoding
pathways [36]. Due to its exceptional ability of feature extrac-
tion, even in the settings of limited data, the U-Net model
was also studied for image synthesis. In fact, Isola et al.
had adopted a U-Net architecture as generator in their cGAN
framework for image to image translation [31]. While Ron-
neberger et al. had used an encoder/decoder depth of 3 [36],
Isola et al. executed their experimental analysis with a U-Net
encoder/decoder depth of 8, yielding a total of 50 × 106

trainable parameters [31], [32]. To counteract this computa-
tional inconvenience, Bass et al. performed image synthesis
using a convolutional capsule GAN while implementing a
U-Net generator with the traditional encoder/decoder depth
of 3 [37]. Using a similar generator to that of Bass et al. [37],
Ben-Cohen et al. were able to generate synthetic Positron
Emission Tomography (PET) images from measured CT in a
cGAN framework [38]. In the rest of this manuscript, we will
use the model adopted by Ben-Cohen et al. as a benchmark
for comparison andwill refer to thismodel as U-cGAN. In our
current application, the number of trainable parameters for
U-cGAN is 4,868,614.
Our group introduced, for semantic segmentation, the

sU-Net concept with an encoder/decoder depth of 2 [21].
Compared to the commonly used U-Net, sU-Net tends avoid
unnecessary complexity by limiting the number of parameters
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FIGURE 1. Conventional Spin Echo (a) and TSE-SSH (b). The dark-colored upper rows in
K-space in (b) are acquired. The clear-colored lower rows with dotted arrows (b) are filled in
K-space using conjugate symmetry. Full arrows to the acquired K-space rows in (b) were not
represented for image simplification. SSG = slice select gradient, PEG = phase encoding
gradient, FEG = frequency encoding gradient.

to be optimized, avoiding the vanishing gradient effect, and
requiring less training data. When supplemented by gen-
eral anatomical topography knowledge, sU-Net performed
accurate and rapid image segmentation for five structures on
T2-weighted, TSE-SSH MR images of patients with cervical
cancer [21]. Herein we propose the first use of the sU-Net
model for image synthesis.

III. THE PROPOSED sU-cGAN FRAMEWORK
The proposed sU-cGAN structure is illustrated in Fig. 2,
and its number of trainable parameters is 3,163,142. The
generator consists of an sU-Net that takes two-dimensional
(2D) T2 weighted, TSE-SSHMR transverse image slices as a
single channel input. The choice of this input derives from the
FIGO recommendation explained in Section II.A, and would
significantly and cost-effectively accelerate the workflow of
the cervical cancer diagnosis, staging, and radiation therapy
planning.

The sU-Net contracting and expanding pathways com-
prise the succession of convolutional [39], batch normaliza-
tion [40], and rectified linear unit [41] layers. Convolutional
layers filter their input by applying convolution kernels via
the multiply-accumulate operation [42]. Batch normalization
layers set the parameters mean and variance to 0 and 1,
respectively, and thus enhancing convergence [43]. Rectified
linear unit threshold values are at 0 by applying the activation
function fReLU defined as:

fReLU (x) = max(0, x) (4)

Due to its non-saturating and linear form, the rectified
linear unit accelerates further the gradient convergence and
shortens the training time when compared to other activation
functions such as hyperbolic tangent or sigmoid [44]. At each
encoding stage in the descending branch, a 2 × 2 max pool-
ing [45] layer scales down the size of the hidden layers while

conserving an invariance to translations [46]. In contrast,
an up-convolution layer is used at each decoding stage in
the ascending branch, and thus projecting the feature maps
into a higher dimensional space [47]. The ascending layers
features are concatenated with the descending layers features,
enabling sU-Net of improved pixel representation through the
integration of high- and low-level features [48].

As for the discriminator, it consists of three blocks of the
arrangement of convolutional [39], batch normalization [40],
and rectified linear unit [41] layers, followed by a single
convolution layer, and terminated by a sigmoid layer that
scales the output to [0,1].

We incorporated in the sU-cGAN loss function the L1
distance that is defined as follows:

L1(G) = Ex,y [||x − G(y)||] (5)

This approach is based on the previous experience with
GAN frameworks where adding L1 yielded synthetic images
close to the ground truth, with minor blurring at the edges ad
negligible artifacts [31], [49]. Consequently, LsU−cGAN can
be finalized as:

LsU−cGAN = LcGAN (D,G)+ λL1(G) (6)

where λ is amultiplicative factor that weights the contribution
of L1 into the sU-cGAN total loss.

IV. EXPERIMENT
A. DATA ACQUISITON
An IRB-approved study was conducted at University Hospi-
tals Cleveland Medical center to retrospectively review the
charts of adult female patients treated between June 2015 and
June 2018 for a biopsy-proven cervical cancer. Among these
patients, 11 had undergone a planning CT and PET/MR.
PET/MR images were acquired using a Philips Ingenuity
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FIGURE 2. sU-cGAN structure. The number on the top/side of the boxes represent the number of features. The white boxes represent the concatenated
feature maps.

TF PET/MR system [50], [51], according to our institu-
tion protocol as follows: Field of view (FOV) of 300 mm,
slice thickness of 4-5 mm, voxel size in the antero-posterior
and left-right of 0.53-0.63 mm, TE of 80 milliseconds, TR
of 1097 milliseconds, and a total scan duration of 60 seconds.
T2-weighted, TSE-SSH MR Images were resampled to a
pixel spacing of 3.2 mm × 3.2 mm × 5 mm and were
manually contoured. The contouring process was described
in detail elsewhere [21]. Five structures were identified: gross
tumor volume (GTV); bilateral femurs; bladder; and anorec-
tum. CT was acquired using a Philips Brilliance 16 multislice
CT scanner (Cleveland, OH). Both MR and CT images were
acquired using full bladder filling and three hours after fasting
in order to decrease bowel peristalsis.

T2-weighted, TSE-SSH MR, and CT Images were
de-identified and uploaded into MIM (MIM Software,
Inc, Cleveland, OH). CT images were registered to the
T2-weighted, TSE-SSH images using the MIM Reg Refine
deformable image registration tool [52]–[55]. Images
were then visually inspected and loaded into MATLAB
2020a (MathWorks, Inc.) using the COMKAT Image
Tool [56], [57], and intensities were normalized to [0, 1]
for training. Fig. 3 displays an example of CT, T2-weighted
TSE-SSHMR images, and the manually delineated contours.
Patient age, tumor histology, radiological FIGO stages, and
final images size are summarized in Table 1.

TABLE 1. Patients’ age, tumor’s histology, radiological FIGO stages, and
final images size.

B. TRAINING AND PREDICTION
The weights in the convolutional and up-convolutional layers
were initialized using He initializer [58] by sampling from
a normal distribution where the mean is 0 and the variance
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FIGURE 3. Axial, coronal, and sagittal (left to right) views of T2-weighted
TSE-SSH MR (a), with the measured CT (b) after registration. Manual
contours were initially drawn on the MR images (b), then projected to the
CT images (d). GTV: Violet, Right Femur: blue, Left Femur: Green, Bladder:
Orange, Anoerctum: Grey.

TABLE 2. Training and prediction sample size at each experiment
instance.

is inversely proportional to the filter size and the channels
number [58]. A leave-one-out training and validation method
was adopted in our experimental design wherein 10 datasets
are used for training, and the one remaining dataset is used for
testing. Left/right flipping was used for data augmentation.
Using MATLAB 2020a (MathWorks, Inc.), the experiment
was performed on an Intel R©Xeon R©Silver 4116 CPU,
12 Cores, 24 Logical Processors, 2.10GHz, 128G RAM,
NVIDIA TITAN XP, 24 GB GPU. The number of slices used
for training and prediction at each experiment instance are
listed in Table 2.

To highlight the performance of sU-cGAN, we also ran
three separate experiences using U-cGAN [38], VGG16 [59]
and ResNet [60]. The U-cGAN structure is described in III.C.

It has the same loss function of sU-cGAN, but it differs
from by its generator structure. VGG16 and ResNet are two
commonly used networks in the field of image analysis and
these have been detailed elsewhere [59], [60]. The minibtach
size was 1, the maximum number of epochs was 200, and the
Adam random gradient descent algorithm was used for loss
function minimization [61].LsU−cGAN .was used as an objec-
tive function. As for the hyperparameter λ, an initial analysis
of its effect had already been initiated by Isola et al. [31],
and was subsequently adopted by different researchers in the
medical imaging field [35], [37], [38]in which the choice of
λ = 100 yielded the best results. In line with the previously
published literature [31], [37], [38], we chose λ = 100 in the
U-cGAN and sU-cGAN loss functions.

C. PERFORMANCE EVALUATION
For each network, we recorded the training and prediction
times. After visual inspection, we applied an air mask to the
images in order to exclude air outside the body. We then
reported for each sCT image volume the mean absolute
prediction error (MAPE), the root mean square deviation
and (RMSE) as defined in (7) and (8):

MAPE =
1
N

N∑
i=1

|HUCT (i)−HUsCT (i)| (7)

RMSE =

√√√√√ N∑
i=1

(HUCT (i)− HUsCT (i))2

N
(8)

where N represents the total number of voxels in a given
image volume and HUsCT (i) and HUCT (i) refer to the CT
number, expressed in Hounsfield Units, of the voxel i in the
sCT and measured CT, respectively. Furthermore, we also
included in the evaluation metrics the peak-signal-to-noise
ratio (PSNR) and the structural similarity index measure
(SSIM). SSIM was originally introduced by Wang et al. [62]
in 2004 as an objective metric that correlates with the per-
ception of the human visual system. PSNR was originally
introduced as a quality metric for video processing, then
was adopted later for evaluation of medical images [63].
Mathematically, PSNR can be defined as follows:

PSNR = 10 log10(MAX
2/MSE) (9)

where MAX represents the maximum intensity value, and
MSE represents the mean square error between sCT and the
measured CT. As for SSIM, it can be calculated as:

SSIM (sCT ,CT ) =
(2µsCTµCT + c1)(2δsCT ,CT + c2)

(µ2
sCT + µ

2
CT + c1)(δ

2
sCT + δ

2
CT + c2)

(10)

where µCT and µsCT represent the CT and sCT mean HU
respectively, δCT and δsCT correspond to the CT and sCT
image HU variance respectively, and δsCT,CT corresponds
to the HU covariance of the CT and sCT images. Finally,
we plotted for each contour the CT HU histogram, and its
overlay with the sCT histogram.
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TABLE 3. Performance Metrics for each of the trained networks.

D. RESULTS
Example sCT, generated using sU-cGAN, U-cGAN, VGG16,
and ResNet, are shown in Fig. 4. By visual inspection,

the images obtained using VGG16 and ResNet are blurred
and do not preserve any anatomical topography or internal
organs’ gross structure. In contrast, images with sU-cGAN
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TABLE 3. (Continued.) Performance Metrics for each of the trained networks.

and U-cGAN maintain the overall anatomical topography as
organs can be visually differentiated. The sU-cGAN appears
more similar to the measured CT than U-cGAN, with bone
being more intense on U-cGAN compared to the measured
CT, and both sU-cGAN and U-cGAN showing some fault
at the level of the bowels that should appear dark black.
Table 3 displays the MAPE, RMSE, PSNR, SSIM, and
training and prediction times with each of the four net-
works. In concordance with the visual findings, sU-cGAN
and U-cGAN clearly outperformed VGG16 and ResNet in
terms of MAPE, RMSE, PSNR, and SSIM. When compar-
ing the cGAN frameworks head-to-head, sU-cGAN achieved
the lowest mean MAPE (72.25 ± 25.42 with sU-cGAN
vs. 99.64 ± 61.43 with U-cGAN) the lowest mean RMSE
(115.74 ± 21.84 with sU-cGAN vs. 135.35 ± 53.95 with
U-cGAN), the highest PSNR (63.41 ± 1.67 with sU-cGAN
vs. 61.17 ± 2.20 with U-cGAN), and the highest SSIM
(0.839 ± 0.044 with sU-cGAN vs. 0.823 ± 0.044 with
U-cGAN). The overall superiority of the cGAN framework
over VGG16 and ResNet, and of sU-cGAN over U-cGAN
is also pronounced at the level of each contoured structure
as displayed in Table 4, where sU-cGAN had the lowest
MAPE and RMSE. Notably, sU-cGAN scored the lowest
mean MAPE with the bladder (MAPE = 64.05 ± 22.55)
and the lowest mean RMSE with the GTV (RMSE = 85.96
± 42.17). In terms of tissue types, sU-cGAN seems to
have better performance for soft tissue (GTV) and water-
containing organs (bladder) than bone (right and left femur)
and air-filled organs (anorectum). The sU-cGAN superior
performance is further evident in the HU histograms find-
ings displayed in Fig. 5, as the sU-cGAN HU distribution

is the closest to the measured CT HU distribution. Inter-
estingly, the sU-cGAN HU histograms of the left and right
femurs (Fig. 5(b) and 5(c)), is more uniform than the GTV
(Fig. 5(a)), bladder (Fig. 5(d)), and anorectum (Fig. 5(e)).
By visual comparison, the HU histograms overlay is more
similar to sU-cGAN than the three other networks. With
respect to prediction time, the four networks achieved an
extremely small prediction time ranging between 1.21 s
(VGG16 for Subject 1) and 3.21 s (ResNet for subject 9).
Numerically, VGG16 achieved the fastest training time and
prediction time. The training times for ResNet and U-cGAN
were in the range of 11 hours, while the training time for
sU-cGAN was in the range of 7 to 8 hours.

V. DISCUSSION
While conceptually based on an extensive use of diagnos-
tic and therapeutic tools, precision medicine is nowadays
challenged by the increased demand for cost-effective health
care practice [64]. This challenge has been more pronounced
lately with the current COVID-19 pandemic, in which exten-
sive multi-modality imaging has become a luxury rather than
a necessity. Under this perspective, in this study we intro-
duced a novel workflow for sCT generation in patients with
cervical cancer. The workflow complements our previously
published research and enables - using a single, shortly timed
MR sequence - the generation of sCT for PET/MR attenu-
ation correction and radiation therapy planning by making
use of automatic contouring and the generated sCT. Overall,
the workflow integrates the current cost effective ‘‘reduction-
ism’’ requirement, without jeopardizing the required preci-
sion for a patient-centered care. T2-weighted, TSE-SSH MR
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TABLE 4. Performance Metrics for each contour.

images can be easily and rapidly acquired across multiple
platforms and thus do not usually present a source of dis-
comfort for the patient. Therefore, the suggested approach
addressesmost of the inconveniences encountered in previous
MR-basedworkflow.A particularly important outcome is that
radiological diagnosis, PET/MR attenuation correction, auto-
matic contouring, and radiation therapy planning can now be
achieved based solely on T2-weighted TSE-SSHMR images.
Not only is there no need for multiple MR acquisitions,
we can now use the one MR acquisition that is routinely
collected in the clinical workflow.

From a computational point of view, the vanishing gradient
effect has been a drawback in deep learning since early
1990 [65]. While our workflow adopts the latest approaches
in the field of computer vision by combining cGAN ftrame-
work to U-Net structure, it also simplistically addresses the

vanishing gradient impasse by using an sU-Net. Compared
to the classic U-cGAN, sU-GAN decreases the number of
trainable parameters by 1,705,472, or 35%. The approach
of using a compact form of the commonly used U-Net thus
far has been successful in image synthesis and semantic
segmentation and should be further explored as it enabled
an accurate (MAPE < 80 HU) and rapid (prediction time
with sU-cGAN less than 3 s) sCT generation. While the
training time reduction of approximately four hours (11h with
U-cGAN vs. seven hours with sU-cGAN) might not be clin-
ically relevant as the training is usually done offline, such
difference further highlights the computational advantage of
sU-Net.

From a general perspective, lower sCT error is expected
to lead to higher accuracy in PET attenuation correction
and radiation therapy dose planning. This being said, the
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FIGURE 4. Axial, coronal, and sagittal (left to right) views of the
measured CT (a), sCT using sU-cGAN (b), sCT using U-cGAN (c), sCT using
ResNet (d), and sCT using VGG16 (e).

relationship between the amplitude of the sCT error and the
subsequent error inaccuracies in PET attenuation correction
and radiation therapy dose planning is not predictable. This
was previously studied by Fetty et al. who found no corre-
lation between MAPE and the radiation therapy dosimetric
plan evaluation [35]. Under this perspective, we focused the
validation of our study on HU accuracy and the convenience
of our method in the context of the usual diagnostic and ther-
apeutic workflow in gynecological malignancy. Nonetheless,
sCT quality is sensitive to the MR-CT registration accuracy
of the training data. However, our manuscript is proposing
the use of sCT for PET attenuation correction and radiation
therapy planning and not for diagnostic purposes. As such,

FIGURE 5. HU histograms of the GTV (a), right femur (b), left femur
(c), bladder (d), and anorectum (e) for CT, sU-cGAN, U-cGAN, VGG16, and
ResNet.
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the dosimetric inaccuracies engendered by MR-CT registra-
tion defects would be of lower amplitude than those of the
diagnostic inaccuracies. Nevertheless, the Reg Refine image
registration tool has been validated previously for dosimetric
applications in different clinical settings [52]–[55], including
CT to T2-weighted MR images registration.

While the sCT error obtained with our proposed method-
ology (MAPE range of [49.18; 116.04], Median 65.53 HU) is
comparable to the previously published articles, it is impor-
tant to note that our method has the advantage of using as
input the T2-weighted, TSE-SSH sequence used for diagnosis
and staging. Not only is this highly significant as there is no
extra acquisition time compared to methods that use special-
ized pulse sequences, there is also avoidance of the need for
image registration between different MRI sequences. Such
advantages are extremely useful for a method to be adopted
into routine clinical practice in gynecological brachyther-
apy and adaptive radiotherapy in which time preservation is
required and only a fewMRI sequences can be acquired while
the patient is on the treatment table. Furthermore, we must
indicate that comparison of metrics among different studies
is challenging, as comparisons are highly dependent on the
number of the datasets, registration accuracy, and image voxel
size and resolution. Given that many of the previously pub-
lished articles have used U-cGAN-derived models in their
studies, we would expect sU-cGAN to score better met-
rics when used on their datasets. Compared to T1-weighted
and T2-weighted images, the use of T2-weighted, TSE-SSH
images is expected to result in more accurate sCT genera-
tion, given the higher tissue geometric conformity with the
TSE-SSH images than with T1-weighted or T2-weighted
images.

The main limitations of the workflow are the number of
datasets, the inclusion of the pelvic area only, and the absence
of PET standardized uptake value validation. As such, future
studies should be initiated at multiple levels. First, the gen-
eralizability to brain/head and neck, thorax, and abdomen.
The success of sU-cGAN in the pelvic area that encompasses
multiple soft-tissue structures belonging to the female repro-
ductive system and in close proximity to the lower digestive
system, predicts a similar success in sCT generation for other
anatomical areas. Moreover, the choice of 2D architecture in
this study proceededmainly from the limited data availability.
Additionally, the results can be greatly improved if more data
is acquired, as our system can be upgraded to consider spatial
relationships in three dimensions using 3D sU-Net. Finally,
this work can be directly applied in adaptive radiotherapy in
which a planning MR is acquired immediately before each
radiation therapy plan. By acquiring T2-weighted TSE-SSH
images the acquisition time is reduced, and by applying our
contouring algorithm, planning is automated and physician
time expenses are reduced.

VI. CONCLUSION
A convenient method for sCT generation was presented in
this article, using a single MR sequence and an sU-Net

as the generator of a cGAN. Despite the simplified gener-
ator architecture, the anatomically complex female pelvic
structure, and the limited available data, sU-cGAN was
able to generate, in less than 3 s, an accurate sCT volume
with MAPE < 80 HU. The results are comparable to those
obtained by Maspero et al. [33], with the exception that
Maspero et al. used 32 sets of MR-CT pairs for training and
the used input consisted of Dixon sequences [33].

Given the TSE-SSH advantages, this method can generally
be used for PET/MR attenuation correction and radiation
therapy planning as it dramatically facilitates the automation
of the PET/MR and MR-only based cervical cancer treat-
ment conventional and adaptive workflows. Being routinely
collected for cervical cancer staging, the use of TSE-SSH
as input for sCT generation requires no additional cost or
time for data collection. Therefore, results can be further
optimized by acquiring more data, in both retrospective and
prospective studies. As for the sU-Net structure, our work for
semantic segmentation and image synthesis underscores the
potential of a simplified network structure to perform difficult
computer vision tasks when manipulated appropriately by
the human user. The results demand attention to reconsider
an essential paradigm in deep learning: ‘‘How deep is too
deep?’’ [66].
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