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ABSTRACT The multi-valued Bartlett (MVB) processor is useful for determining the locations of multiple
acoustic sources in the ocean [J. Acoust. Soc. Am. 97, 235–241 (1995)]. This approachwas originally applied
to a vertical line array of hydrophones. The application to a rectangular array is explored here. The MVB
processor is an eigen-processor that is based on the eigenvectors of the covariance matrix. It is multi-valued
in the sense that an ambiguity surface is constructed for each member of a subset of the eigenvectors that
correspond to the largest eigenvalues. The motivation for the approach is the fact that energy from different
sources tends to partition into different eigenvectors. One of the advantages of the MVB processor on a
rectangular array is that it is possible to determine if the partitioning is favorable without computing replica
fields, which is often the most time-consuming task of matched-field processing computations. Examples
are presented to illustrate the capabilities and limitations of the approach.

INDEX TERMS Ocean acoustics, matched-field processing, beamforming, eigen-processing, source local-
ization, replica fields, multi-valued Bartlett processor, rectangular array.

I. INTRODUCTION
A considerable amount of information may exist in a data set
that is collected with an m × n rectangular array of acoustic
receivers, where the horizontal dimension m and vertical
dimension n are both substantially greater than one. It seems
unlikely that a signal-processing technique that was originally
developed for a one-dimensional array would be capable
of realizing the full potential of a two-dimensional array.
A signal-processing technique that is designed specifically
for rectangular arrays is considered here for a matched-field
processing [1]–[3] scenario in which the array is placed in
an ocean acoustic waveguide with one of its axes oriented
vertically (the approach is also applicable to other problems
in acoustics and other fields). Some of the advantages of
the approach are illustrated for test cases involving multiple
moving sources.

Various single-valued ambiguity functions have been
developed, including the Bartlett processor, the maximum
likelihood and maximum entropy methods, the MUSIC
method [4], and the environmentally tolerant processor [5].
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There are cases for which some of these approaches appear
to have advantages, but they are merely different ways of
quantifying the correlation between test solutions and data.
Like the MUSIC method, the multi-valued Bartlett (MVB)
processor [6] is based on the eigenvectors of the covariance
matrix, but this approach is multi-valued in the sense that
multiple ambiguity surfaces are constructed, one for each
member of a subset of the eigenvectors. The motivation for
the MVB processor is the fact that energy from different
sources tends to partition into different eigenvectors. After
the signals from different sources have been isolated from
each other into different eigenvectors, the MVB processor
exploits this partitioning by analyzing each eigenvector sepa-
rately. In a single-valued ambiguity surface, it may be difficult
to assess the local maxima and decide which (if any) of
them correspond to sources rather than sidelobes. The MVB
processor does not require a subjective assessment of local
maxima; the main peak in each ambiguity surface is the only
one that is considered.

As multiple sources move through a waveguide, there may
be ambiguous points at which the acoustic fields from two or
more sources are correlated on the array. At such points, the
partitioning will be unfavorable, and the MVB processor will
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FIGURE 1. Results for example A. Complex pressure correlations between
adjacent vertical subarray pairs. The subarrays are highly correlated when
only one source is turned on (top). The subarrays are not correlated when
three sources are turned on (bottom).

break down. As illustrated in Fig. 2 of [6], however, it may
be possible to determine the paths of the sources by waiting
for them to move through points at which the partitioning
is favorable. With a vertical line array, this process typically
involves the computation of a large number of replica fields
(solutions of the wave equation) for comparison with the
data. With a rectangular array, it is possible to determine
when the partitioning is favorable (i.e., when the signals from
different sources have been isolated from each other) without
generating any replica fields. It can be a substantial advan-
tage to avoid generating replica fields, a task that requires
computations that may not be practical and environmental
information (e.g., sound speed and bathymetry) that may not
be available.

II. THE MVB PROCESSOR
The data from the array are used to estimate the covariance
matrix K [1–3], which may be expressed in terms of the
normalized eigenvectors x̂j and eigenvalues λj as follows:

K =
N∑
j=1

Kj, (1)

Kj = λjx̂jx̂∗j , (2)

FIGURE 2. Results for example B (red = source 1, green = source 2,
blue = source 3, orange = source 4). The bearings (top) cross at two
locations (the absolute value of bearing is shown since negative bearings
are ambiguous on the array). There are multiple crossings of two of the
SNR curves (bottom).

where λj > λj+1 and N = m × n is the number of receivers
in the array. Eigen-processing techniques are based on the
fact that signals from discrete point sources tend to partition
into different eigenvectors, while signals from distributed
noise sources, such as surface-generated ambient noise [7],
tend to be distributed among the eigenvectors. The MVB
processor,

Bj = û∗Kjû (3)

is based on the strategy of taking advantage of the partitioning
by beamforming on each eigenvector separately, where the
replica vector û corresponds to the field on the array due to
a source at a test location (or in a test direction for beam-
forming). An ambiguity surface is constructed by evaluating
Bj over a region of test locations. When the partitioning is
favorable, the energy from a discrete source will correspond
approximately to one of the x̂j, and there will be a peak in Bj
at the location of the source. Summing over j, we obtain the
Bartlett processor,

B =
N∑
j=1

Bj = û∗Kû. (4)
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FIGURE 3. Results for example B (red = eigenvector 1,
green = eigenvector 2, blue = eigenvector 3, orange = eigenvector 4).
Subarray correlations for the eigenvectors corresponding to the four
largest eigenvalues (top). For two of the eigenvectors, the subarrays are
not correlated near locations where there are small differences between
the first and third SNR curves in Fig. 2. The breakdowns in correlation are
eliminated when X̂3 and X̂4 are used in place of x̂3 and x̂4 (bottom).

We consider a problem involving white noise and several
discrete point sources that may radiate at different levels, with

K = σ I +
∑
j

p̄jp̄∗j , (5)

where σ is the white noise level and the ith entry of the signal
vector p̄j is the complex pressure due to the jth source at
the ith receiver in the array. By definition, the signal-to-noise
ratio (SNR) of the jth source on the array is

SNRj = 10log10

Tr
(
p̄jp̄∗j

)
Nσ

 . (6)

If some of the point sources are regarded as noise, the defini-
tion of SNRj may be modified to include the traces of those
contributions in the denominator of Eq. (6). If the p̄j are mutu-
ally orthogonal, they correspond to eigenvectors of K , and
the partitioning is exact. Signal processing approaches are
based on the fact that the p̄j corresponding to two randomly
chosen source locations are likely to be weakly correlated,

FIGURE 4. Results for example B (red = source 1, green = source 2,
blue = source 3, orange = source 4). Correlations between vertical
subarrays of the first (top) and second (bottom) eigenvectors and replica
fields that correspond to the correct source locations. The correlations are
degraded near the point where the second and fourth sources cross in
bearing in Fig. 2.

in which case the partitioning may be favorable. The parti-
tioning breaks down when two of the p̄j are correlated, but
the MVB processor may be effective for moving sources if
the partitioning is favorable at a sufficient number of points
along the paths of the sources. The approach may also break
down when there is only a small difference between two
of the eigenvalues, which may occur when there is a small
difference between two of the SNRj.

III. APPLICATION TO RECTANGULAR ARRAYS
The MVB processor is not limited to a particular array geom-
etry. It may be applied to a rectangular array in the same way
it is applied to a one-dimensional array, but the extra dimen-
sion makes it possible to obtain some information without
(or before) generating replica fields. The first step (which
is not possible with a vertical line array) is to determine if
the partitioning is favorable by comparing vertical subarrays.
This approach is based on the following expression for the
acoustic pressure due to a single source:

p (r, z, θ) = p0 (r, z, θ) exp (ik0r) , (7)
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FIGURE 5. Results for example B (red = source 1, green = source 2,
blue = source 3, orange = source 4). Correlations between vertical
subarrays of the third (top) and fourth (bottom) eigenvectors and replica
fields that correspond to the correct source locations. The correlations
break down near locations where there are small differences between
the first and third SNR curves in Fig. 2. For the third eigenvector, the
correlation is degraded near the point where the first and fourth sources
cross in bearing in Fig. 2.

where the source is located at r = 0, k0 is a representative
wave number, and p0 varies gradually in the horizontal direc-
tions. We define the normalized vector x̂i,j, which contains
the entries of x̂j that correspond to the ith vertical subarray,
and the correlation between vertical subarrays,

γj =
1

m− 1

∣∣∣∣∣
m−1∑
i=1

x̂∗i,jx̂i+1,j

∣∣∣∣∣ . (8)

It follows from Eq. (7) and the assumption on p0 that γj ∼= 1
when the partitioning is favorable.

We consider 100 Hz examples in an 800 m deep ocean in
which the sound speed is 1500m/s. In the sediment, the sound
speed is 1700m/s, the density is 1.5 times the density ofwater,
and the attenuation is 0.5 dB per wavelength. The array has a
receiver spacing of 7.5m (half wavelength) in both directions.
In a coordinate system that is associated with the array, the
receivers are located in the plane y = 0, the array is centered
at x = 0, the ocean surface is at z = 0, and the top row of
receivers is at z = 50 m. The bearing is defined such that its

FIGURE 6. Results for example B. Correlation of the vertical subarrays of
X̂3 as a function of the coefficient of x̂3 in Eq. (9) over the unit disk of the
complex plane. Red corresponds to high correlation, blue corresponds to
low correlation, and the origin is at the center.

tangent is y/x and 90 deg is broadside to the array; due to
the inherent ambiguity on a planar array, results appearing in
the figures are displayed in terms of the absolute value of the
bearing.

The purpose of example A is to illustrate the difference
between favorable and unfavorable partitioning for a problem
involving a 20×40 array. Three point sources that transmit at
the same level are located at the following (x, y, z) positions
(in km): (5, 15, 0.16), (16,−12.5, 0.11), and (−18, 6, 0.5).
Appearing in Fig. 1 are the correlations between adjacent
vertical subarrays for two cases. When only one source is
turned on, the subarrays are highly correlated as would be
expected from Eq. (7). When all three sources are turned on,
the acoustic field on the array consists of energy propagating
from three different directions, Eq. (7) is not valid, and the
subarrays are not correlated; this example is representative of
the signature of unfavorable partitioning.

The purpose of example B is to illustrate some of
the capabilities and limitations of the MVB processor.
This example involves a 10 × 40 array and four moving
sources that transmit at different levels. The sources are
initially located at the following positions: (5, 15, 0.16),
(16,−12.5, 0.11), (−18, 6, 0.5) and (1,−5, 0.15); they
move at constant speed along linear paths to the following
final positions: (5, 15, 0.36), (8,−8.5, 0.11), (−10,−2, 0.5)
and (4.5,−0.8, 0.15). Note that the first source moves verti-
cally. In terms of the coefficient of the source term in the wave
equation, the relative transmission levels are 0.6, 1.0, 0.5, and
0.75. Appearing in Fig. 2 are the bearing and SNR for each
of the sources as they move along their tracks. Appearing
in the top part of Fig. 3 are the subarray correlations in
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FIGURE 7. Results for example B (red = source 1, green = source 2,
blue = source 3, orange = source 4). Similar to the results in Fig. 5 but
with X̂3 and X̂4 used in place of x̂3 and x̂4. Correlations between vertical
subarrays of the third (top) and fourth (bottom) eigenvectors and replica
fields that correspond to the correct source locations. There is high
correlation along much of the tracks, and the breakdowns near the SNR
crossing points have been eliminated.

Eq. (8) for the eigenvectors that correspond to the four largest
eigenvalues. The subarrays are highly correlated along most
of the tracks for the first two eigenvectors, but they break
down at some points for the other two eigenvectors.

After obtaining the eigenvectors on the full array, it may
be possible to performmatched-field processing with a single
vertical subarray; we obtain replica correlations by comput-
ing the correlation between a vertical subarray of an eigen-
vector and the replica fields that correspond to the correct
source locations; ambiguity surfaces would be constructed
in practice, but the objective here is to determine how accu-
rately the sources are isolated. Appearing in Fig. 4 are the
replica correlations for the first and second eigenvectors. The
high correlation along most of the tracks is an indication of
favorable partitioning in which the signals from the second
and fourth sources are successfully isolated. The degradations
near the middle of the tracks in Fig. 4 correspond to a location
at which the sources cross in bearing; near that point, the
advantages of the horizontal aperture of the array are reduced
for that pair of sources. Appearing in Fig. 5 are the replica cor-
relations for the third and fourth eigenvectors. The correlation
is high at some points, it breaks down at several locations, and
there are cross-over points; the third eigenvector initially cor-

FIGURE 8. Results for example B (red = source 1, green = source 2,
blue = source 3, orange = source 4). Similar to the results in Fig. 7 but
with the MVB processor applied to a vertical subarray. There is high
correlation along much of the tracks in Fig. 7, but there are only a few
isolated points of high correlation for the one-dimensional array.

responds to the first source, but it eventually crosses over to
the third source; the fourth eigenvector initially corresponds
to the third source, but it eventually crosses over to the first
source. The breakdowns occur near crossing points of the
SNR curves for the first and third sources in Fig. 2; at those
points, the corresponding eigenvalues are nearly equal. In the
top part of Fig. 5, there is a degradation near the point where
the first and fourth sources cross in bearing in the top part of
Fig. 2.

When the partitioning into separate eigenvectors breaks
down at a point where two of the SNR curves are nearly
equal, it may still be possible to isolate the signal vectors that
correspond to those curves by applying an additional step.
For this case, the signal vectors may partition into orthogonal
linear combinations of eigenvectors (that correspond to a pair
of nearly equal eigenvalues) of the form,

X̂i = αeiφ x̂i +
√
1− α2x̂i+1, (9)

X̂i+1 = −
√
1− α2eiφ x̂i + αx̂i+1, (10)

where
∣∣αeiφ∣∣ 6 1 and the coefficients of the second terms

are forced to be real (with no loss of generality). If the signal
vectors are nearly orthogonal, they may be isolated by max-
imizing the correlation between the vertical subarrays of X̂i.
For example B, the correlation between the vertical subarrays

8994 VOLUME 9, 2021



M. D. Collins, J. F. Lingevitch: Multi-Valued Eigen-Processing for Isolating Multiple Sources With a Rectangular Array

FIGURE 9. Results for example C (red = source 1, green = source 2,
blue = source 3, orange = source 4, purple = source 5). Bearings (top)
and SNR (bottom) for the sources.

of X̂3 appears in Fig. 6 as a function of the coefficient of x̂3
in Eq. (9) at the relative time 0.625, where there is a small
difference between two of the SNR curves in Fig. 2. Since the
locations of the maxima in Fig. 6 are related according to the
coefficients of x̂i in Eqs. (9) and (10), it is necessary to locate
only one of the maxima. Two sources of nearly equal SNR
may be isolated by applying this approach on a rectangular
array but not on a vertical line array. Applying this approach
to example B, we determined X̂3 and X̂4 at each point along
the tracks, used them in place of x̂3 and x̂4 in computing
the subarray and replica correlations, and obtained the results
appearing in the bottom part of Fig. 3 and both parts of Fig. 7;
the SNR related breakdowns in the top part of Fig. 3 and both
parts of Fig. 5 have been eliminated. Appearing in Fig. 8 are
the replica correlations for the same case as in Fig. 7 but with
all of the processing (including obtaining the eigenvectors)
restricted to one of the vertical subarrays; the fact that the
correlation is high only at a small number of isolated points
is indicative of the advantages of the horizontal aperture of
the rectangular array.

The purpose of example C is to illustrate the capability of
determining the bearings of multiple sources for cases that
cannot be handled with a horizontal line array. This example
involves a 20 × 20 array and a source that moves along a
track that passes behind four sources that are fixed at locations
near broadside to the array. The fixed sources are located at

FIGURE 10. Results for example C (red = eigenvector 1,
green = eigenvector 2, blue = eigenvector 3, orange = eigenvector 4,
purple = eigenvector 5). Estimates of the bearings of the sources
obtained with the MVB processor for a rectangular array (top) and with a
horizontal subarray (bottom). The tracks of all of the sources are
recovered fairly well with the rectangular array. The tracking breaks down
with a horizontal subarray.

the following positions: (−0.75, 8, 0.16), (−0.25, 8, 0.11),
(0.25, 8, 0.5), and (0.75, 8, 0.15); the fifth source moves
from (−1.2, 12, 0.22) to (1.2, 12, 0.22) at constant speed
along a linear path. The transmission amplitudes are 0.6, 1.0,
0.4, 0.75, and 0.5. Appearing in Fig. 9 are the bearing and
SNR of each of the five sources. The bearings appearing in
the top part of Fig. 10 were obtained by first obtaining the
eigenvectors for the full array and then applying plane-wave
beamforming to one of the horizontal subarrays for each of
the eigenvectors that correspond to the five largest eigenval-
ues; all five of the tracks are recovered. The bearings appear-
ing in the bottom part of Fig. 10 were obtained by restricting
all of the processing (including obtaining the eigenvectors)
to one of the horizontal subarrays; none of the source tracks
are recovered as this case is beyond the capabilities of a
horizontal line array. With matched-field processing, it is
possible to locate multiple sources that are located along the
same bearing, but the results in Fig. 10 were obtained without
generating any replica fields.

IV. DISCUSSION
The MVB processor is a multi-valued eigen-processor for
localizing multiple sources. Ambiguity surfaces are formed
by beamforming on a subset of the eigenvectors of the covari-
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ance matrix that correspond to the largest eigenvalues. The
main peak in each ambiguity surface provides an estimate
for the location of one of the sources; there is no need to
subjectively assess local maxima, which are not relevant. The
MVB processor is based on the fact that energy from different
point sources tends to partition into different eigenvectors.
The approach may fail when the partitioning is not favorable
for certain combinations of source locations, but it may be
possible to determine the tracks of the sources if the parti-
tioning is favorable at a sufficient number of points.

For the application of the MVB processor on a rectangular
array, it is possible to determine when the partitioning is
favorable; this step, which does not require the computation
of any replica fields, is not possible on a vertical line array.
With this capability, it is possible to rapidly search through
a data set and determine when sources have been isolated.
After this step has been completed, the eigenvector may be
used as high SNR input into conventional beamforming and
matched-field processing techniques for estimating bearing,
range, and depth. An example involving a source moving
behind four sources was used to illustrate the advantages of
the vertical aperture of the array for estimating the bearings of
sources; this example illustrates that improved performance
(relative to the one-dimensional case) can be achieved with-
out generating any replica fields.

An example involving four moving sources was used to
illustrate some of the capabilities and limitations of the MVB
processor on a rectangular array. With the extra dimension
of the array, points at which the partitioning is not favorable
occur less frequently than for the application of this approach
on a vertical line array; if two sources are located along
different bearings, the partitioning is likely to be favorable;
if they are located along the same bearing, it is likely that
the partitioning will be favorable at many points along its
track. Theremay be degradations in theMVB processor when
two sources cross in bearing. At such points, the benefits of
the horizontal aperture of the array are reduced. At crossing
points of the SNR curves, two eigenvalues may be nearly
equal and the signals from two sources may correspond to
linear combinations of the corresponding eigenvectors; in
this case, the signals may be isolated by determining linear
combinations of the eigenvectors that optimize the correlation
of adjacent vertical subarrays.

Previous applications of eigen-processing techniques are
based on the eigenvectors that correspond to a subset of the
largest eigenvalues. However, it is conceivable that a weak
source could be isolated in an eigenvector that ranks below
(in terms of the magnitudes of the eigenvalues) some of the
eigenvectors that represent distributed noise. With a vertical
line array, it is likely that such an eigenvector would be
overlooked. With a rectangular array, such an eigenvector
could be discovered (by checking for correlation between
the vertical subarrays) and then potentially used to localize
the source. White noise was used for the examples presented
here. There is a need for further testing using correlated
noise, and the approach ultimately needs to be tested on data.

In the original implementation and testing for the case of a
vertical line array [6], the MVB processor was found to be
effective for problems involving surface-generated ambient
noise [7], a common type of correlated noise in the ocean
that corresponds to sources that are distributed in azimuth.
For the case of a rectangular array, the performance should be
even better for such noise, which would be weakly correlated
with the signal due to a discrete source that arrives from a
particular direction.
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