IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 23, 2020, accepted January 4, 2021, date of publication January 8, 2021, date of current version January 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3049837

Lightweight Fault Detection Strategy for Wireless
Sensor Networks Based on Trend Correlation

XIUWEN FU"“''2, (Member, IEEE), YE WANG', WENFENG LI2, (Senior Member, IEEE),
YONGSHENG YANG', AND OCTAVIAN POSTOLACHE?, (Senior Member, IEEE)

Unstitute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
2School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
3ISCTE-Lisbon University Institute, 1070 Lisbon, Portugal

Corresponding author: Xiuwen Fu (xwfu@shmtu.edu.cn)

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 61902238.

ABSTRACT In this work, we propose a fault detection strategy for wireless sensor networks (WSNs)
called Trend Correlation based Fault Detection strategy (TCFD). This strategy can detect the faulty sensor
nodes through analyzing the trend correlation and the median value of neighboring nodes. On this basis,
aiming to avoid the excessive routing overhead caused by over-frequent fault detection, a fault detection
self-starting mechanism is designed based on the cubic exponential smoothing method. Since the detection
results in TCFD are determined by historical data at consecutive times and do not rely on the comparison
of instantaneous sensed values at a single moment, it can significantly reduce the impact of fault detection
time on detection accuracy. The simulation results have indicated that compared with referenced strategies,
the proposed TCFD can obtain better fault detection accuracy for four common fault types of sensor nodes; in
the case where the real fault rate of the network reaches 0.5, at least 70% of the faulty nodes can be detected
by TCFD and the false alarm rate can still be kept below 30%; with the help of fault detection self-starting
mechanism, the response time of sensor nodes to faults can be significantly shortened.

INDEX TERMS Wireless sensor networks, fault detection, trend correlation, self-starting mechanism, fault

type, exponential smoothing method.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of a large number
of sensor nodes. Each of these individual sensor nodes in a
WSN has sensing and processing capability. Sensor nodes
are low power devices with limited computational power,
memory, battery and storage [1]-[4]. Since sensor nodes are
usually deployed in hostile and harsh environments, they are
susceptible to frequent and unexpected faults. The occurrence
of faults during normal operation may results in severer con-
sequences [5]-[7]. For example, in fire-alarming WSNs, if a
sensor node gives incorrect readings, it might result in false
alarming or loss of lives due to the absence of warning. There-
fore, fault detection strategies have always been a hot spot
in the research field of WSNs, and some gratifying progress
has been made. According to the differences in detection
executors, existing fault detection strategies for WSNs can
be divided into two categories: centralized strategies and
distributed strategies [8]-[10]. In centralized fault detection
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strategies, the sink node is responsible for fault detection.
In most actual WSNSs, as the fusion center, the sink node has
powerful computational resources and storage resources, so it
supports the fault detection strategies with high algorithmic
complexity. However, the centralized strategies need to rely
on the sensor nodes in the network to send all the raw data to it
to complete the fault detection, which will generate excessive
routing overhead. In distributed fault detection strategies,
the sensor nodes can complete the fault detection by means of
neighboring cooperation, and do not need to forward data to
the sink node, so it can quickly respond to the fault and signif-
icantly reduce the routing overhead. However, compared with
the sink node, the computing resources and storage resources
owned by sensor nodes are quite limited, which makes them
unable to support detection strategies with high algorithmic
complexity. Therefore, distributed fault detection strategies
are usually lightweight from the perspective of algorithmic
complexity.

In the actual WSNs, we generally assumed that readings
of sensor nodes belonging to nearby regions at a given point
in time or readings by a sensor node within a time window
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are correlated and these correlations in measured data are
called spatial and temporal correlations respectively. Based
on this assumption, most distributed fault detection strategies
in WSNss use whether the sensing data of neighboring sensor
nodes are similar at the same time as the detection basis. If the
difference between the sensing data of neighboring nodes is
smaller than the similarity threshold, the two nodes are con-
sidered “‘similar”. In the case where a node is similar to the
majority of its neighboring nodes, this node can be regarded
as anormal node. This type of fault detection strategy uses the
instantaneous value difference between neighboring nodes as
the basis for fault detection, making the detection results very
sensitive to the detection time. That is to say, for the same
faulty node, at different times, the fault detection strategy may
obtain different detection results.

Due to this reason, in this work, we propose a Trend
Correlation based Fault Detection strategy (TCFD). Since
the trend between neighboring nodes is jointly determined
by historical data at consecutive times and does not rely on
the comparison of instantaneous values at a single moment,
the proposed TCFD can effectively reduce the impact of fault
detection time on detection accuracy. The major contributions
of this work are summarized as follows:

o To reduce the impact of fault detection time on detection
accuracy, a distributed fault detection strategy TCFD
based on the trend correlation and the median value of
neighboring nodes is proposed;

« In order to improve the response speed of network to
node faults, a fault detection self-starting mechanism
is developed based on the cubic exponential smoothing
method;

o The detection accuracy of the proposed detection strat-
egy for four common fault types is verified. The simula-
tion results have indicated that the proposed TCFD can
obtain better fault detection accuracy than the referenced
strategies.

The reminder of the paper is organized as follows:
Section 2 reviews the related work; Section 3 elaborates
the detection strategy TCFD in detail; Section 4 presents
the self-starting mechanism in TCFD; Section 5 gives the
experiment results. Finally, the paper is concluded.

Il. RELATED WORK

In recent years, with the rapid development of WSN tech-
nologies, gratifying research progress has been made in the
field of fault detection. Existing fault detection strategies
for WSNss can roughly divided into two categories: central-
ized and distributed. The centralized strategies use the sink
node to monitor the status of the entire network [11]-[18].
The centralized strategies increase the routing overhead in
the network, which leads to the emergence of the distributed
solutions. In the distributed strategies, monitoring tasks are
distributed among each sensor nodes in the network. Since
in this work, our focus is on distributed fault detection
strategies, we will only review the research progress in
this field.
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Distributed detection strategies use the spatial-temporal
correlation between sensor nodes to detect faults in sensor
reading. To achieve this, most of them use a “majority is
right” mechanism. In this mechanism, the node to be detected
compares its state value with the majority of state values
of its neighboring nodes. If the comparison result is within
the allowable error range, the node is deemed to be in a
normal status. In [19], Yarinezhad et al. proposed a faulty
node detection method for WSNs based on cellular learning
automata. In this method, the cellular learning automata at
each node determines the status of the node based on its
hardware condition. In [20], Chen et al. proposed a localized
fault detection algorithm for WSNs based on median value.
In this algorithm, if the sensed data of a sensor node devi-
ates significantly from the median value of the sensed data
from neighboring nodes, they will consider this node to be
a faulty node. In [21], Jiang er al. proposed a Distributed
Fault Detection strategy (DFD). This strategy includes two
rounds. The first round is to find the possible faulty nodes
by self-diagnose, and the second round is to determine the
final fault status by analyzing the fault information from the
neighboring nodes. In [22], Saihi et al. proposed a Distributed
Fault Detection strategy based on Error Functions (DFDEF).
In this strategy, two error functions were developed using
Gaussian distribution and reduced centered normal distri-
bution, respectively. In [23], Feng er al. proposed a dis-
tributed fault detection algorithm based on weighted distance.
In this algorithm, the weighted sensed value of a node is
compared to original sensed value to judge faulty nodes.
In [24], Panda et al. proposed a Distributed Fault Detection
Strategy (DFDS). In this algorithm, the mean of neighboring
nodes is computed to check whether faulty sensor node is
present or not. In [25], Yuan et al. proposed a distributed
Bayesian algorithm to detect node faults. The fault probabil-
ity of sensor nodes is calculated using Bayesian networks and
is improved by exploiting the border nodes to increase the
fault detection accuracy. In [26], Mo et al. proposed a fault
detection strategy based on time domain features of sensed
data. This strategy used one-dimensional Gabor transform to
analyze features of the sensed data and determine the fault
status by comparing the feature values of neighboring nodes.
In [27], Gharamaleki et al. proposed a probabilistic fault
detection strategy for WSNs. In this strategy, the probabilis-
tic and deterministic status of sensor nodes is determined
by analyzing the differences between sensed data of neigh-
boring nodes. For ease of understanding, Table 1 compares
the the above-mentioned distributed fault detection strategies
from four aspects (i.e., approach, topology dependent, trigger
mechanism and double check).

According to the literature review, the existing distributed
fault detection strategies determine the fault state of sensor
nodes by comparing the spatial eigenvalues of adjacent nodes,
but these eigenvalues are extracted from the instantaneous
sensor readings obtained in a single time period, which
makes the detection accuracy very sensitive to the detection
time. In addition, the existing strategies rarely involve fault
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TABLE 1. Comparison of distributed fault detection strategies in WSNs.

Strategies Approach Topology dependent Threshold based Trigger mechanism  Double check
Yarinezhad et al. [19] Cellular learning automata Yes No Not mentioned No
Chen et al. [20] Median value Yes Yes Not mentioned No
Jiang et al. [21] Neighboring voting Yes Yes Not mentioned Yes
Saihi et al. [22] Error function No No Timer Yes
Feng et al. [23] Weighted voting Yes Yes Not mentioned No
Panda et al. [24] Mean value Yes Yes Not mentioned Yes
Yuan et al. [25] Bayesian judgement No No Timer No
Mo et al. [26] Gabor transform No Yes Not mentioned No
Gharamaleki et al. [27] Probabilistic comparison No Yes Timer No

detection trigger mechanism, which makes sensor nodes
unable to respond to fault events in the first time. Therefore,
in the design of fault detection strategy, it is necessary to make
the following two improvements: 1) the spatial-temporal cor-
relation features extracted from continuous times should be
used in fault detection, so as to reduce the impact of detec-
tion time on detection accuracy; 2) the self-starting detection
mechanism should be applied to improve the response speed
of sensor nodes to fault events.

Ill. FAULT DETECTION STRATEGY

In this section, we first introduce the common fault types
of WSNs from a data-centric perspective, then define the
trend correlation and the median value of sensed data, finally
present the fault detection strategy TCFD.

A. FAULT TYPES

From a data-centric perspective, faults in WSNs can be
divided into four categories: offset fault, gain fault, stuck-at
fault and outlier fault.

o Outlier fault refers to the fault in which a few discrete
data points in a series of sensed data deviate significantly
from the expected data. Sensors subject to short-term
vibration and electromagnetic interference are the main
causes of outlier faults. An outlier fault can be modeled
asx' = w+x.

o Gain fault refers to the fault if the rate of change of
sensed data fails to match with expectation over an
extended period of time. In gain fault, a constant value
gets multiplied to the non-fault sensed data. The gain
fault might occur due to the excessive signal noise inside
the sensor module. A gain fault can be modeled as
x' = Bx + n, where B is the gain coefficient that gets
multiplied to the normal reading x;

o Stuck-at fault refers to the fault that the sensed data is
constant and cannot respond to environmental changes.
The stuck-at fault might occur when the power supply
of the sensor module is interrupted. A stuck-at fault can
be modeled as x’ = w;

o Offset fault refers to the addition of deterministic bias
from the original measurement. This might occur due
to improper calibration of the sensor or the reading
drifts away from original calibration formulas. There-
fore, in many literatures [11], [28], offset fault is
also called drift fault. An offset fault can be modeled
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as x’ = w+x + 1, where x’ is the faulty reading, x is the
normal reading,  is a constant value, 7 is the permitted
measurement error. It should be noted that in this fault
type, @ is much greater than 7;
To facilitate the understanding of the above-mentioned four
types of faults in WSNs, Fig.1 shows the comparison between
normal sensed data and the four types of faulty sensed data.
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FIGURE 1. Comparison between normal sensed data and faulty sensed
data.

B. NETWORK ASSUMPTIONS

In this work, we generally assume that a WSN is deployed
on a target area to monitor specific physical phenomena and
all sensed data is forwarded from the general sensor nodes to
the sink node. All sensor nodes are fixed and can keep their
clock synchronized. The batteries of sensor nodes cannot
be charged. The wireless links between sensor nodes are
symmetric and fault-free. We recognize that local processing
can be done to reduce overall communication costs. More-
over, we assume that all sensor nodes are homogeneous in
terms of energy, communication, and processing capabilities.
To facilitate the understanding of TCFD, Table 2 summarizes
all the parameters in the strategy.

C. TREND CORRELATION OF SENSED DATA

In this part, we propose a metric to measure the trend corre-
lation of sensed data. We first give three definitions related to
the trend correlation of sensed data.
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TABLE 2. Parameters in TCFD.

Items Descriptions

z;(t) sensed data obtained by sensor node ¢ at time ¢
m length of time window for fault detection

X;(t) data series obtained by sensor node ¢ within the

time window [t—m, t]
variance of data series X; (t)
X;(t) mean of data series X; ()

cov(t, J) covariance between X; (t) and X (t)

Xi,;(t) trend correlation coefficient between X;(t) and
X;(t)

Q(4) set formed by neighboring nodes of node 7

M; (t) sensed data of neighboring nodes of node i at
time ¢

N;(t) sorted set of M (t) in descending order of sensed
values

yi(t) kth element in set N; (¢)

n; number of neighboring nodes of node 7

med,;(t) median value of node ¢ at time ¢

maximum normal reading and minimum normal
reading of sensor nodes, respectively

Tmax,Tmin

0 trend correlation threshold

P; number of neighboring nodes that have correlated
trend with node ¢

Si(t) preliminary detection status of node 4 at time ¢

smoothing coefficient

median threshold

detection trigger threshold
b, c weighted coefficients for cubic exponential s-
moothing prediction
predicted sensed value of node ¢ at time ¢+t

22 >0

x; (t + tl)
S, () e 2) 5(3) single, quadratic and cubic exponential smooth-

ing values

Definition 1: Suppose x;(t) is the sensed data obtained by
sensor node i at time ¢, then we can define the data series
Xi(t) = [xi(t —m), xi(t —m+1), ..., x;(t)] within the sliding
time window [t — m, t].

Definition 2: Suppose sensor node i obtains the data series
Xi(t) within the time window [ — m, t], then we can define
the variance of X;(t) as

m+-1

S [ut —k+1) - X))
var(i) = *=1 , (1)
m
+
xi(t —k + 1)
- 3 Sk, 8

where X;(7) refers to the mean of X;(¢).

Definition 3: Suppose X;(¢) and X;(¢) are the data series
obtained by node i and node j within the time window
[t — m, t], then we can define the covariance between X;(t)
and X;(t) as

m+1 . -
Yo [t —k 4+ 1) =XiOllxj(t — k + 1) =X;(1)]

cov(i, j) ==

m

3

Based on Pearson’s correlation coefficient [29], we define
the trend correlation coefficient x; ;j(¢) between X;(¢) and X;(z)
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at time ¢t as

Xi j(?)
cov(i, )

var(@)var(j)

m+1 -
D it =k + 1) = Xi@)llx(t — k + 1) — X;(0)]
k=1

m+1 m+1 2
Y [rie—k+1)— X(t)] > [xi—k+1)=X;(0)

k=1 k=1
“)

The trend correlation coefficient y; j(¢) is between [—1, 1].
The larger the absolute value of x; ;(¢), the higher the cor-
relation between X;(¢) and X;(¢). For example, if the sensed
data series X;(#) and X;(z) obtained by neighboring nodes i
andj attime r are [1,1.1,1.2,1.1] and [1.2,1.3,1.4,1.3], we can
conclude that the trend of these two nodes are perfectly
correlated, and the difference in their readings is due to their
different positions. In this case, we can get x; j(f) = 1 accord-
ing to (4), which perfectly characterizes the trend correlation
between X;(7) and X;(z).

D. MEDIAN VALUE OF SENSED DATA
According to Section III-A, for stuck-at faults and offset
faults, because the data trend in the continuous time segment
has been destroyed, these two types of faults can be easily
detected with the help of trend correlation. However, for gain
faults and outlier faults, because the data sensed by nodes
can still respond to changes in the surrounding environment,
if only the trend correlation is used as the basis for fault
detection, there is a high probability that such faults will not
be detected. In order to avoid this problem, the median value
of the sensed data from neighboring nodes is introduced into
the fault detection process to ensure that the proposed TCFD
has good detection accuracy for all these four fault types.

Definition 4: Suppose Qi) = {j, ..., h} is the set formed
by neighboring nodes of node i, we can get the sensed
data of neighboring nodes of node i at time ¢ as M;(t) =
{xj(?), ..., xu(1)}. We sort the set M;(¢) in descending order
of sensed values, and get the sorted set N;(¢). We use yi(f) to
represent the kth element in set N;().

The median value of node i at time ¢ can be defined as

Yout+1)/2 n; is odd
medi(t) =\ yu. 2 + Y422 ; )
— n; is even,

where #n; is the number of neighboring nodes of node i. Unlike
many fault detection strategies that select the average sensed
value of neighbor nodes [24], [28], the proposed TCFD uses
the median value to support fault detection. Although both
the median and mean can be used to represent the center
of the neighboring node’s sensed data, their tolerance for
faulty nodes has a significant difference. For the mean of
the neighborhood, if there are a few faulty nodes in the
neighborhood, the error data of these faulty nodes will lead
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to a certain degree of deviation between the mean value of
the neighborhood and the expected normal value. For the
median of the neighborhood, as long as the number of faulty
nodes does not exceed half of the total number of neighboring
nodes, the median value of the neighborhood will not deviate
from the expected normal value.

E. FAULT DETECTION PROCESS OF TCFD

The basic idea of TCFD is: if the trend of the node to be
tested is consistent with most of its neighboring nodes, and its
sensed data is close to the median center of the neighborhood,
then the node is considered as a normal node, otherwise it
is determined as a faulty node. The fault detection steps of
TCFD are as follows:

Step 1: For node i, if the fault detection mechanism inside
itis triggered, it will send a request message to its neighboring
nodes. Then, each neighboring node j € (i) will send back
the data encapsulated with X;(z) after receiving the request
message;

Step 2: Node i sequentially calculates the trend correlation
coefficient x;;(t) between itself and its neighboring nodes
according to (4), and turns on the counter P;. The initial
value of the counter P; is 0. If x; ;(t) > 6, the counter P;
increases by 1, otherwise the P; remains unchanged. 0 is
the trend correlation threshold. In this work, When y; ;(¢) is
greater than 6, we assume that node i and node j have sim-
ilar trends. Therefore, after completing the trend correlation
calculation of all neighboring nodes, the value of P; is the
number of neighboring nodes that have correlated trend with
node i;

Step 3: Node i calculates the neighboring median value
med;(t) according to the received data series from all neigh-
boring nodes;

Step 4: If node i satisfies the conditions: P; > n; / 2 and

% < §, then the preliminary detection status of
node i is possibly normal (PN), otherwise the status of node i
is possibly faulty (PF). § is the median threshold. x,,,, and
Xmin are the maximum normal reading and the minimum
normal reading, respectively;

Step 5: All nodes in the neighboring set (i) of node i
perform steps 1 to 4. Then each node j in (i) can obtain
the preliminary detection status S;(¢), and return this status to
node i;

Step 6: Node i counts the number of possible normal nodes
Gpy and the number of possible faulty nodes Gpr in the
neighboring nodes. If Gpy > GprF, the possible status of
node i is confirmed. For the node i whose possible status
is PN, its status will become normal (NR). For the node
whose possible state is PF, its status will become faulty (FT).
If Gpy < Gpr, we will invert the possible status of node i. For
the node i whose possible status is PN, its status will become
FT. For the node whose possible status is PF, its status will
become NR;

Step 7: If the final fault status of node i is confirmed as FT,
it will send an alarm message to the sink node. The sink node
will report this message to the user.
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Through the above description, it is not difficult to find
that TCFD includes two rounds. The first round is to obtain
the possible fault status of the node by analyzing the trend
correlation and the median value, and the second round is
to conduct a second confirmation of the possible fault status
by comparing the possible fault status of neighboring nodes.
In the actual WSNs, there may be a situation that when the
number of neighboring nodes of a normal node i is small and
the faulty nodes are the majority in its neighboring nodes,
it is possible to misjudge node i as a faulty node only through
the first round of detection. Therefore, we need to double
confirm the possible fault status of node i through checking
possible fault status of its neighboring nodes. In this way,
we can effectively reduce the false alarm rate.

To facilitate the understanding, the flow chart of the detec-
tion process of TCFD is shown in Fig.2.

IV. SELF-STARTING MECHANISM OF TCFD

Existing fault detection strategies for WSNs mostly set up
timers inside the sensor nodes, and use timed wake-up mech-
anism to trigger the fault detection process. However, in the
actual fault detection process, this mechanism has some
obvious limitations. If the detection time interval Tp set by
the timer is too short, the fault detection mechanism in the
network will be activated frequently, which intensifies the
network communication load and generates a lot of extra
energy consumption; on the contrary, if the detection time
interval Tp is set too long, it will cause the network’s response
speed to node faults to decrease. Therefore, in TCFD, aim-
ing to avoid the above limitations, we design a fault detec-
tion self-starting mechanism based on the cubic exponential
smoothing prediction method.

As a lightweight data forecasting method, exponential
smoothing has the advantages of high computational effi-
ciency and low algorithmic complexity compared with time
series autoregressive methods and artificial neural networks
[30], [31]. In most actual WSNs, sensor nodes are only
equipped with limited computing resources, it is quite chal-
lenging for their own processors to perform a large number
of complex calculations in a short period of time. The expo-
nential smoothing method can achieve rapid and accurate data
predication with only a small amount of computing resources.
The basic idea of the exponential smoothing method is to
use the time series correlation characteristics of the data to
obtain the predicted value by weighting the historical data.
The exponential smoothing method can be further subdivided
into: single exponential weighting, quadratic exponential
weighting and cubic exponential weighting. The high-order
exponential weighting is obtained by repeating the smoothing
weighting operation on the basis of the low-order exponen-
tial weighting. Both the primary and secondary exponential
smoothing methods are only suitable for the prediction of
linear data series, while the cubic exponential smoothing
method can be used for the prediction of nonlinear data series.
For sensor nodes, although the fluctuation of sensed data is
usually not dramatic in a fixed time window, the time-series
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data they collect usually demonstrates some nonlinear char-
acteristics due to the interference of fault and noise [32]-[34].
Therefore, we use the cubic exponential smoothing method to
predict the sensed data of sensor nodes at the next moment.

Suppose X;(¢) is the data series obtained by node i within
the time window [t — m, t], then the the cubic exponential
smoothing prediction model is defined as

X}t +11) = a+bT +cT?, (6)

where x7(t +11) is the predicted sensed value of node i at time
t +t1; a, b and c are the weighted coefficients, which can be
calculated by

a=35"-35% 4 5@ )
b= —" [(6—5a)s§1>—2(5—4a)sf2)+(4—3a)s§3)] ,
2(1—a)
(8)
_ X () he@ B
= (S, 25? 4 5 ) )

« is the smoothing coefficient. St(l), St(z) and S,(3) are the
single, quadratic and cubic exponential smoothing values,
which can be calculated by

SV = axit) + (1 —a)s,, (10)
$P = as + (1 —s?,, (11)
S = as® + (1 —a)s?,. (12)

The key to the prediction accuracy of the cubic exponential
smoothing method is the selection of smoothing coefficient c.
The larger the smoothing coefficient «, the more obvious the
forecast data x'(t + t1) is affected by recent data change.
In practical applications, the value of « can be determined
according to the fluctuation feature of the data series. If the
data series fluctuates relatively smoothly, the value of «
should be kept in a small range; if the data series fluctuates
sharply, the value of o should be a relatively large value.
Considering the correlation characteristics of the data series
obtained by sensor nodes in most cases, we set o to 0.45.
We use the average value of the first three data in the data
series X;(¢) as the initial smoothing value, which is

3
> [xit —m+k — 1)]
s = 5@ =5 = &= . .a3)
According to the above steps, node i can obtain the pre-
dicted value x;(¢ + 1) and the actual sensed value x;(t + 1) at
time 7 + 1. Here we use the detection trigger threshold y to
determine whether the predicted value meets the expectation.
If % < 1y, we can assume that the actual
sampled value x;(r + 1) meets expectations, and there is no
need to trigger the fault detection process, otherwise the fault
detection process will be triggered at time # +2. With the help
of the fault detection self-starting mechanism, sensor nodes
can complete the fault pre-detection in each sampling period,
so as to ensure that they can respond to faulty events in the
first time.
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V. PERFORMANCE EVALUATION

A. SIMULATION SETUP

The experiments are based on NS-2. The original dataset used
in this study is based on an existing dataset published by
researchers at the University of North Carolina in 2010 [35].
Using TelosB motes, the researchers collected data from sim-
ple multi-hop WSNs. This dataset include humidity and tem-
perature measurements measured every five seconds for six
hours. The researchers introduced an environmental change
event into the network to increase the variability of the
data. They used hot water steam to increase humidity and
temperature. In this study, we only used the temperature
data in this original dataset. With different real fault rates
(10%, 20%, 30%, 40% and 50%) and different fault types
(i.e., outlier, gain, stuck-at and offset), we prepared our exper-
imental dataset according to the method presented in [11].
In the original method, the experimental dataset composed
of a set of measurement vectors and each vector contains
measurement values at 3 consecutive moments (fy, f1, 12).
In our experiments, we set the measurement vector as the
measurement values at 10 consecutive moments, which can
help the proposed TCFD strategy to better perceive the trend
change of sensing data. In addition, in the experimental set-
ting of [11], different values of 8 (2, 4, 6, 8, 10) are used to
test the accuracy of the fault detection strategy in the face of
gain faults. 8 is the gain coefficient. The higher the § value,
the more obvious the deviation between the faulty data and
the actual data. In our experiments, in order to better test the
performance of TCFD, we set the value of 8 as a random
value between 1 and 2. Compared with the setting of Sin[11],
the dataset used in our experiment is more challenging. More
details of the methods for simulating the four fault types are
shown in Table 3.

TABLE 3. Methods to simulate the four fault types.

Fault types Simulation method

Outlier faults Randomly extract 10% discrete data samples from the
normal data set, and replace them with random numbers
between 15 and 30

Randomly extract 300 continuous data samples from the
normal data set, and replace them according to the gain
formula x’=Bx+n (3 is a random value between 1 and
2, n is a random value between 0 and 2)

Randomly extract 300 continuous data samples from the
normal data set, and replace them with the real reading
collected just before the fault occurs

Randomly extract 400 continuous data samples from the
normal data set, and replace them according to the offset
formula z’=w-+z+n (w is a random value between 5
and 10, 7 is a random value between 0 and 2)

Gain faults

Stuck-at faults

Offset faults

We use two metrics to evaluate the performance of the
proposed scheme: 1) the fault detection rate (FDR): the ratio
of the number of correctly detected faulty nodes to the total
number of faulty nodes; 2) the false alarm rate (FAR) refers
to the ratio of normal nodes that are misjudged as faulty
nodes to all normal nodes. In the experiments, we observe
the fault detection accuracy under different real fault rate
(i.e., proportion of real faulty nodes in the network).
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B. SIMULATION RESULTS

1) KEY PARAMETERS IN TCFD

In this experiment, the impact of key parameters on the per-
formance of TCFD is explored. For each group of parameter
settings, a total of 20 tests are performed, and the proportions
of the four fault types in the tests are the same.

From Fig.3, we can easily observe that as a threshold to
judge whether the trends of two nodes are similar, 6 has
an important impact on the detection accuracy of the TCFD
strategy. When the value of 6 is small, the FDR is low. At the
same time, the FAR is also at a relatively low level. With
the increase of 6, both the FDR and the FAR will increase.
It is not difficult to understand that when 6 is a small value,
the conditions for judging that the trends of two nodes are
similar are quite loose. In this case, there is a high probability
that a faulty node will not be detected because its data trend is
judged to be similar to the normal nodes, and the probability
of a normal node being misjudged as a faulty node due
to different location will also be reduced. As 6 increases,
the sensitivity of the nodes to the trend correlation gradually
increases, and the probability that the faulty node is deter-
mined to be similar in trend to the normal node also decreases,
which promotes the increase of the FDR. The increase of 6
will also reduce the probability of the data trend difference
between normal nodes being tolerated, which will lead to an
increase in the FAR. Considering the overall performance of
TCFD in a balanced way, we set 6 to 0.7 in the following
experiments.

100% 40%

90% 30%

2 o
o 80% < 20%
w —0-9=05
70% | *0=06 10%
-8-0=0.7
—=—¢=0.8
60% 0
10% 20% 30% 40% 50% 10% 20% 30% 40%  50%

Real Fault Rate Real Fault Rate

(a) fault detection rate (b) false alarm rate

FIGURE 3. Detection accuracy of TCFD varying the trend correlation
threshold ¢ (§ = y = 0.2).

Fig.4 depicts the relationship between the median thresh-
old § and the detection accuracy of the proposed strategy.
As can be seen, the value of § has an important impact on
the detection accuracy of the TCFD strategy. When the value
of § is small, both the FDR and the FAR are at a relatively
high level. As the value of § increases, the FDR and FAR
gradually decrease. This is because the smaller the value of §,
the lower the probability that the node to be detected satisfies
the judgment condition about the median threshold of the
neighborhood. Considering the overall performance of TCFD
in a balanced way, we set § to 0.2 in this work.

Fig.5 shows the change of FDR and trigger times of fault
detection varying y. We can easily observe that as the value
of y increases, the FDR and detection trigger times decrease
significantly. It is not difficult to understand that for any node
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FIGURE 4. Detection accuracy of TCFD varying the median threshold §
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FIGURE 6. Detection accuracy of different strategies for outlier faults.

in the network, when there is a small deviation between the
actual sensed data and the predicted value, the smaller the
value of y, the higher the possibility of triggering the fault
detection mechanism, which can reduce the probability of
missing faulty nodes. However, the increase in FDR is at the
cost of an increase in the number of detections. Too frequent
detections will increase the network routing overhead. There-
fore, considering the tradeoff between detection accuracy and
network routing overhead, this study takes y = 0.2.

2) DETECTION ACCURACY

Fig.6 depicts the detection accuracy of different strategies
when only outlier faults occur in the network. The three
detection strategies all have high FDR for outlier faults, but
with the increase in the real fault rate of the network, the FAR
of the DFDS strategy decreases significantly. In contrast,
the FDR of the TCFD strategy and the DFDEF strategy
has not decreased significantly. This is because in these
two strategies, in order to avoid misjudgments caused by
the excessively high proportion of faulty neighboring nodes,
the possible status of neighboring nodes is estimated. If more
than half of the neighboring nodes are considered to be likely
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to be faulty, the original detection result will be corrected to
reduce the risk of misjudgment.

Fig.7 shows the difference in detection performance of
each strategy when only gain faults occur. Compared with
outlier faults, the detection accuracy of the three strategies for
gain faults has declined to a certain extent. This is because in
the gain faults, the degree of damage to the data trend in the
continuous time segment is not obvious, and the difference
in the sensed values of neighboring nodes is small, making
the fault detection relatively difficult. Nevertheless, due to
the introduction of the neighborhood median as the fault
judgment condition, the detection performance of the TCFD
strategy for offset faults is still better than the other two
strategies.
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FIGURE 7. Detection accuracy of different strategies for gain faults.

Fig.8 shows the performance of the three detection strate-
gies when only stuck-at faults occur. When the real fault
rate is 0.1, the FDR of the TCFD strategy is 97%, which is
slightly better than the other two strategies. In the case where
the real fault rate rises to 50%, the performance advantage
of the TCFD strategy becomes more prominent. In this case,
the FDR of the TCFD strategy is 81%. In contrast, the FDR of
the DFDEEF strategy and the DFDS strategy are only 73% and
67%, respectively. Although the FAR of the three strategies
have increased significantly with the increase in the real fault
rate, the increase of FAR in the TCFD strategy is still much
lower than the other two strategies.
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FIGURE 8. Detection accuracy of different strategies for stuck-at faults.

Fig.9 shows the performance of different detection strate-
gies when only offset faults occur. The detection accuracy
of the TCFD strategy is much better than the other two
strategies. Even if the real faulty rate in the network reaches
0.5, the FDR of the TCFD strategy is still higher than 75%,
and the FAR is lower than 30%.
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FIGURE 9. Detection accuracy of different strategies for offset faults.
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FIGURE 10. Fault response time before and after using the fault detection
self-starting mechanism.

In summary, we can easily conclude that for outlier faults
and gain faults, the difference in detection accuracy of the
three strategies is not so significant. This is because out-
lier faults and gain faults do not change the general trend
of sensed data, which makes these two types of faults can
only be detected by comparing with the instantaneous sensed
value of neighboring nodes. For stuck-at faults and offset
faults, the data trend in the continuous time segment has been
destroyed. With the help of the trend correlation judgment,
TCFD can obtain better detection accuracy than the other two
strategies.

3) RESPONSE TIME FOR FAULT DETECTION

In this experiment, the fault response time of the TCFD
strategy before and after using the fault detection self-starting
mechanism is tested. The fault response time is the time
interval from when a fault occurs to when it is successfully
detected. Before the fault detection self-starting mechanism is
used, the node still uses the traditional timing trigger method
to start the fault detection process. Considering the influence
of the fault detection frequency on the detection performance
of the strategy, the detection time interval Tp set by the timer
is set to 1 min.

As shown in Fig.10, using the fault detection self-starting
mechanism can significantly shorten the fault response time
of the TCFD algorithm. For outlier faults and offset faults,
the fault response time is less than 10s. It is not difficult to
understand that these two types of faults will cause a serious
deviation between the actual value and the expected value
at the next moment, so the fault detection mechanism can
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be easily triggered. For gain faults and fixed value faults,
the difference between the actual value and the expected value
is relatively small, which makes it more difficult for the fault
detection self-starting mechanism to be triggered. This will
lead to a longer fault response time.

C. COMPLEXITY ANALYSIS

In this part, the time and message complexity of TCFD are
analyzed. The time complexity and message complexity refer
to the maximum time and maximum number of messages
required to detect a faulty node, respectively.

1) MESSAGE COMPLEXITY

The proposed fault detection strategy TCFD runs in two
stages: preliminary detection and final detection. Without loss
of generality, we assume that node i is the node to be detected.
During the stage of preliminary detection, node i broadcasts
a request message to its neighboring nodes and obtains their
sensor readings. The total number of messages generated in
this stage depends upon the number of neighbors that node i
has, and thus this stage has the message complexity of O(l).
[ is the number of neighbors owned by node i. In the stage of
final detection, the neighboring nodes of node i broadcasts a
request message to their neighboring nodes for double-check.
The number of messages generated in this stage depends upon
the number of neighbors that the neighbors of node i have,
and thus this stage has the message complexity of O(lk). k
is the average number of neighbors owned by the neighbors
of node i. Considering the time complexity required for these
two stages, we can easily get the overall message complexity
of TCFD is O(lk).

2) TIME COMPLEXITY

The time required to complete a fault detection equals to the
sum of times spent on neighbor discovery, nodes ranking,
status message exchange and data processing. The neighbor
discovery can be negligible in fault detection since this step
can be done in the network initialization phase. Since TCFD
does not need complicated computing in nodes ranking and
processing, the times for these two steps can also be neg-
ligible. Therefore, the main time is mainly spent on data
transmission. The data transmission of TCFD includes four
stages. We still assume that node i is the node to be detected.
The first stage is the data transmission between node i and its
neighboring nodes for preliminary detection, and we use the
time Tpg to represent the time spent in this stage. The second
stage is the data transmission between neighbors of node i and
their neighbors, and we use the time Ty to represent the time
spent in this stage. The final stage is the data transmission
from the neighbors of node i to node i for double-check, and
we use the time Tpc to represent the time spent in this stage.
As aresult, the time complexity of TCFD is Tpr+Tny +Tpc-

VI. CONCLUSION AND FUTURE WORK
In this work, we propose a distributed fault detection strat-
egy TCFD based on trend correlation. By introducing trend
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correlation judgment and neighborhood median judgment in
the strategy, the impact of the trigger time of fault detection on
the detection accuracy can be alleviated. Based on the cubic
exponential smoothing method, a fault detection self-starting
mechanism is designed to reduce the response time of nodes
to faults. Experimental results have shown that compared
with existing strategies DSFD and DFDEF, the proposed
TCFD can obtain better fault detection accuracy for four
common fault types of sensor nodes; in the case where the
real fault rate of the network reaches 0.5, at least 70% of the
faulty nodes can be detected by TCFD and the false alarm rate
can still be kept below 30%; with the help of fault detection
self-starting mechanism, the response time of sensor nodes
to faults can be significantly shortened. Since the proposed
TCFD does not require complex calculations and can have
good detection accuracy through the comparison of sensed
values in the neighborhood, it can be regarded as a efficient
lightweight fault detection solution for WSNs.

In the next step of our work, we plan to improve the TCFD
strategy so that it can be used in clustered WSNs. Because
the election of cluster heads is dynamic in clustering WSNss,
how to reduce the impact of dynamic clustering on detection
accuracy will be the key problem we need to solve.
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