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ABSTRACT We are witnessing a notable rise in the translational use of information technology and
control systems engineering tools in clinical practice. This paper empowers the computer based drug dosing
optimization of general anesthesia management by means of multiple variables for patient state stabilization.
The patient simulator platform is designed through an interdisciplinary combination of medical, clinical
practice and systems engineering expertise gathered in the last decades by our team. The result is an
open source patient simulator in Matlab/Simulink from Mathworks(R). Simulator features include complex
synergic and antagonistic interaction aspects between general anesthesia and hemodynamic stabilization
variables. The anesthetic system includes the hypnosis, analgesia and neuromuscular blockade states, while
the hemodynamic system includes the cardiac output and mean arterial pressure. Nociceptor stimulation
is also described and acts as a disturbance together with predefined surgery profiles from a translation
into signal form of most commonly encountered events in clinical practice. A broad population set of
pharmacokinetic and pharmacodynamic (PKPD) variables are available for the user to describe both
intra- and inter-patient variability. This simulator has some unique features, such as: i) additional bolus
administration from anesthesiologist, ii) variable time-delays introduced by data window averaging when
poor signal quality is detected, iii) drug trapping from heterogeneous tissue diffusion in high body mass
index patients. We successfully reproduced the clinical expected effects of various drugs interacting among
the anesthetic and hemodynamic states. Our work is uniquely defined in current state of the art and first of
its kind for this application of dose management problem in anesthesia. This simulator provides the research
community with accessible tools to allow a systematic design, evaluation and comparison of various control
algorithms for multi-drug dosing optimization objectives in anesthesia.

INDEX TERMS Computer based drugmanagement, optimal drug dosing, depth of anesthesia, hemodynamic
stabilization, nociceptor stimulation, dose effect response, surface models, inter-patient variability, drug
synergy, drug trapping, variable delay, anomalous diffusion, predictive control, adaptive control.

I. INTRODUCTION
Progress in medical science, healthcare and clinical practice
is often paired with information technology tools and con-
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trol expertise of computer based monitoring. It allows data
monitoring and management, offers decision-making support
and provides patient stabilization during surgical procedures,
intensive care and recovery/rehabilitation periods. Results in
both simulation and clinical trial testing provide evidence
that computer based control of anesthesia outperforms to
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FIGURE 1. Conceptual representation of the sedation and hemodynamic systems involved in the balancing act of optimizing general anesthesia.

manual dosing techniques [1]–[6]. Based on these incentives,
the systems and control engineering community steps for-
ward towards optimizing co-administration of drug cocktails
to stabilize patient variables in a synergic context of interact-
ing vital sign profiles [7]. Ensuring clinical relevant progress
is a challenging task which requires a systematic comparison
of algorithms, thereby demanding availability of adequate
simulation tools before transferring results to clinical practice
for testing.

Notable closed loop simulations and closed loop clinical
data for regulating depth of anesthesia using computer control
algorithms have been published recently [8]–[10]. We are at
the very beginning of what we call - a new era of personalized
medicine - enabled by advances in computer technology and
powerful information technology processing tools, in which
artificial intelligence tools are prevalent [11]–[14]. In an
effort to provide the cross-disciplinary community with suit-
able and accessible tools for systematic analysis of pros- and
cons- of various control algorithms, a patient simulator has
been programmed in Matlab/Simulink from MathWorks(R)
software platform. This is an open source patient simulator,
where the community can set, add andmodify its components
as know-how and insight become available.

This paper describes the various components of the patient
simulator in general anesthesia. It gives an overview of the
embedded features to closely mimic the clinical and phys-
iological responses to various drug dosing schemes. The
authors have used their 15 years experience in the topic

combined with survey of literature reports to distill, transfer
and program in an understandable and accessible manner the
afferent complex patient dynamics. Where available, clinical
data has been curated and used in the simulator parameters to
better mimic clinical practice. Two main dynamic interactive
systems are described: i) depth of anesthesia and ii) hemo-
dynamic system. The patient simulator is an open source file
archive in which the user can change models, conditions, set
values and add control algorithms for the final aim tomaintain
a balance of all variables within clinically safe intervals.

Our objective is to encourage the community to work in
a systematic and fair-to-compare context while developing
computer based control of multi-drug anesthesia regulatory
problems. The novelty is the provision of the patient simu-
lator as to date no such tools has been previously reported
in literature for the systems and control community. The
originality of the approach is the inclusion of synergy effects,
antagonist effects, patient variability, clinical value intervals,
nociceptor stimulation disturbance, drug trapping models
and co-simulation of anesthestic and hemodynamic states
along with their complex interactions. The conceptual rep-
resentation of the various synergic and antagonistic interac-
tions between sedation and hemodynamic systems is given
in Fig. 1.

The paper is organized as follows. The second section starts
with providing the reader with a generic representation of
compartmental models for PKPD patient model. Following
sub-sections specify the PKPD models for anesthesia and
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FIGURE 2. Compartmental scheme of the pharmacokinetic model for one drug.

hemodynamic systems along with their complex dynamic
interactions (synergic and antagonistic) and patient database
values. The second sections ends with the disturbance signal
translated from clinical events during surgery and its noci-
ceptor stimulation dynamic model, including possibility to
add bolus profiles. The third section provides an overview
of simulator features embedded in this initial version. The
fourth section presents the open loop results depicting the
synergic and antagonist reactions caused by various drug
dosing profiles within the simulator and gives an overview
on the interval variability in patient’s dynamic response. The
fifth section provides a discussion into the opportunities and
the potential research challenges enabled by this simulation
tool and provides some perspectives for the simulator use.
A conclusion section summarizes the main outcome of the
work and poses some research questions.

II. MATERIALS AND METHODS
A. COMPARTMENTAL MODEL FORMS
Compartmental models are often used to predict/suggest the
optimal dosage of drugs and they are at the backbone of
target controlled infusion management systems in clinical
practice [15]. Generically, a three-compartment pharmacoki-
netic model describes the fast acting compartment (blood)
with two additional compartments representing slower acting
tissue volumes (muscle and fat), as in Fig. 2 and represented
by the set of differential equations:

ẋ1(t) = −(k10 + k12 + k13)x1(t)+ k21x2(t)+ k31x3(t)

ẋ2(t) = k12x1(t)− k21x2(t)

ẋ3(t) = k13x1(t)− k31x3(t) (1)

where x1 (mg/ml) is the concentration in the fast compart-
ment, while x2 (mg/ml) and x3 (mg/ml) denote the concentra-
tions of drug in slow compartments. The constants kij (i, j =
1, 2, 3, i 6= j) represent the drug amount transfer rate from
the i-th compartment to the j-th compartment. A hypothetical
compartment representing the transport/mixing dynamics of
drug to the effect location is added and denoting the effect
site concentration xe:

ẋe(t) = −ke0xe(t)+ k1ex1(t) (2)

where the constant ke0 represents the drug metabolic rate.
Intravenous drug dosing will be added in the first compart-
ment (blood, x1) as an extra variable, usually denoted as a
manipulated input by u(t)/V1 and has the meaning of drug
infusion rate (mg/ml/min). In matrix form this can be written
as:
ẋ1
ẋ2
ẋ3
ẋe

 =

−(k10 + k12 + k13) k21 k31 0

k12 −k21 0 0
k13 0 −k31 0
k1e 0 0 −ke0



x1
x2
x3
xe



+


1
0
0
0

 u(t) (3)

which delivers the states xi denoting the concentration in
volume compartments and the manipulated variable u(t)
denoting input drug infusion rate. The drug metabolic rate
is calculated in function of lean body mass (LBM) as:

LBM = 1.1 ∗ weight − 128 ∗ (weight/height)2 (4)

for male patients and calculated as:

LBM = 1.07 ∗ weight − 148 ∗ (weight/height)2 (5)
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for female patients. The units for height and weight are cm
and respectively kg.

The equivalent 4th-order linear transfer function model is
obtained using the formula G(s) = C(sI − A)−1B+ D, with
the following matrices:

A =


−(k10 + k12 + k13) k21 k31 0

k12 −k21 0 0
k13 0 −k31 0
k1e 0 0 −ke0



B =


1
0
0
0


C =

[
0 0 0 1

]
D = 0 (6)

The dose-effect response in the PD model is represented
by a nonlinear Hill equation, which relates values of the drug
concentration profiles with values of its effect. When single
drugs are modeled, the relationship is given by the generic
formula:

E = E0 −
Emax · x

γ
e

Cγ50 + x
γ
e

(7)

where E [%] denotes the (predicted) effect of the drug,
xe is the effect site concentration of the drug at time t ,
C50 is the concentration needed to obtain 50% of the
maximum effect Emax[%] and γ [-] the Hill-coefficient of
sigmoidicity [16], [17].

B. DEPTH OF ANESTHESIA SYSTEM
General anesthesia is a broad term encompassing the use of
drugs to induce and maintain three states during surgery:
hypnosis (depth of unconsciousness), analgesia (absence of
pain) and areflexia (neuromuscular blockade). Measuring the
level of hypnosis is achieved bymonitoring electroencephalo-
gram (EEG) signals to determine the depth of anesthesia, usu-
ally via processed variables such as Bispectral Index (BIS).
Other measurable clinical variables have been summarized
in [18]–[21] for both hypnosis and analgesia.

The intensity of a surgical stimulation during surgery,
hemodynamic effects of the drugs, under-dosing due to equip-
ment failure and overdosing due to inappropriate titration of
the hypnotic components, among other factors, often result
in imbalances between the amount of anesthetic required and
the amount of anesthetic delivered. Inappropriate anesthetic
delivery can have severe consequences. If not enough anes-
thetic is delivered, the patient can remain conscious (but para-
lyzed) during surgery which causes both trauma and anxiety.
Too much anesthetic may have detrimental long term effects
on the patient and prolongued recovery times in critical care
unit.

In this simulator we use Propofol, Remifentanil and
Atracurium as manipulated variables for control to induce

hypnosis, analgesia and neuromuscular blockade respec-
tively. Their effect are monitored/controlled variables of BIS
(Bispectral Index), RASS (Ramsay Agitation Score) and
EMG (electromyogram) values, respectively. These drugs
have been acclaimed numerous times in both clinical and
biomedical engineering literature for being suitable in a com-
puterized closed loop control paradigm for their fast onset and
recovery times [18], [22].

The PKPD model for Propofol absorption and effect is
used here [23], [24]. This is a three-compartmental model
in form of (1) denoting fast acting (blood) and slow acting
(muscle and fat) volumes of drug distribution areas followed
by a transport first order compartment with nonlinear sigmoid
relationship for dose-effect response. The same PKPDmodel
structure is used for the Remifentanil drug characterization.

Propofol pharmacokinetic model parameters are calculated
using the set of equations [25]:

k10 =
Cl1
V1

[1/min]; k12 =
Cl2
V1

[1/min];

k13 =
Cl3
V1

[1/min]; k21 =
Cl2
V2

[1/min];

k31 =
Cl3
V3

[1/min]; ke0 = k1e = 0.456 [1/min]

V1 = 4.27[l];V3 = 238[l]

V2 = 18.9− 0.391(age− 53); [l]

Cl1 = 1.89+ 0.0456(weight − 77)− 0.0681(lbm− 59)

+ 0.0264(height − 177) [l/min]

Cl2 = 1.29− 0.024(age− 53) [l/min];

Cl3 = 0.836 [l/min] (8)

where the constants Vi (i = 1, 2, 3) denote the volume of
the i-th compartment, and their clearance rates Cli respec-
tively. In model form (1) the extra input in the first com-
partment is denoted as uP(t)/V1 for Propofol infusion rates
(mg /ml/min). Equivalent transfer function models have been
proposed in [26].

In a similar pharmacokinetic model representation as (1),
the Remifentanil model parameters are calculated using the
set of equations [27]:

k10 =
Cl1
V1

[1/min] k12 =
Cl2
V1

[1/min]

k13 =
Cl3
V1

[1/min] k21 =
Cl2
V2

[1/min]

k31 =
Cl3
V3

[1/min] ke0 = 0.595− 0.007(age− 40) [1/min]

V1 = 5.1− 0.0201(age− 40)+ 0.072(lbm− 55) [l];

V2 = 9.82− 0.0811(age− 40)+ 0.108(lbm− 55) [l]

V3 = 5.42 [l]

Cl1 = 2.6+ 0.0162(age− 40)+0.0191(lbm− 55) [l/min];

Cl2 = 2.05− 0.0301(age− 40) [l/min]

Cl3 = 0.076− 0.00113(age− 40) [l/min] (9)
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In model form (1) the extra input in the first compart-
ment is denoted as uR(t)/V1 for Remifentanil infusion rates
(µ g /ml/min), where the constants Vi (i = 1, 2, 3) denote the
volume of the i-th compartment, and their clearance rates Cli
respectively.

Given our past expertise and studies in cooperation with
Ghent University Hospital Belgium and University Medical
Center Groningen The Netherlands, a database of patient
profiles has been artificially created to mimic as close as
possible reality. The details for the pharmacokinetic models
are given in Table 1 [8], [28], with PD model values for
Propofol listed in Table 1, and generic PD model values for
Remifentanil to BIS given as C50=11.4 [ng/ml] and γ=2.5 as
from [27].

TABLE 1. Representative Patient Database for Propofol-to-BIS with
pharmacokinetic Model Biometric Values and PD Model Sensitivity Values.

Fig. 3 depicts relation (7) for several patients selected from
Table 1, i.e. for significant variations in the values of γ and
C50. One may observe the difference in response for the
same input of drug bolus. Hence, this figure gives an insight
on the amount of inter-patient variability one may expect in
practice. Patients a (respectively patient 9 from table 1) and c
(respectively patient 3 from table 1) need a high effect site
concentration before they start to react, i.e. effect starts to
decrease. Patient a has a strong sensitivity to the drug after
thisminimum concentration of xe, and it decreases very fast to
0. Patient c has a less sensitivity to the drug so it reacts slower.
Finally patient b (respectively patient 6 from table 1) requires
less amount of drug infusion before it reacts, but the effect is
extremely slow. Hence, each patient’s sensitivity to the drug
is strongly influenced by the γ and C50 parameters. Analysis
has been provided in [29], [30].

If the Hill curve is normalized with values between 0%
(full drug effect) and 100% (no drug effect), one obtains for

FIGURE 3. Dose-to-effect (Hill) curve for several patients illustrating the
great inter-patient variability among their hypnosis response effect.

a given γ value and for a given xe concentration a line for
the PD model of the patient. However, the sensitivity of the
patient to the drug is also changing during treatment, i.e. the
intra-patient variability concept, hence the slope of the line
might vary. The patient sensitivity has been extensively anal-
ysed from the view point of control feasibility and reported
in [31]. The study indicated a gain variation of up to 15-fold
values and concluded that adaptation of controller parameters
is necessary to ensure converge to steady state in closed loop
dosing context. Adaptation of the PD model values from real
time data during anesthesia has been proposed in a computa-
tionally efficient recursive method in [32].

There is a synergic effect when using Remifentanil in com-
bination with Propofol, reducing the Propofol concentration
for loss of consciousness by 25% and hence minimising the
risk of over-dosages [33]. The combined effect of two drugs
is then a 3D nonlinear surface. When surface models are
used to characterize synergic effects among drugs, the effect
drug concentrations xe are normalized to their potency, i.e.
to their corresponding half effect concentration C50. Gen-
erally, the combined effect E of two drugs UA and UB is
considered as a new drug, and expressed as a Hill curve
dose-response relationship 3D surface:

E =
Iγ

1+ Iγ
(10)

with I denoting the interaction term

I = ŪA + ŪB + σ ŪA · ŪB (11)

with ŪA =
UA
C50A

and ŪB =
UB
C50B

the normalized drug
effect concentrations and C50 the concentrations at half
effect (50%). The term σ denotes the slope sigmoidicity of the
Hill surface, which indicates a patient drug responsiveness or
drug resistance. The term σ denotes the amount of synergy
present between the drugs. In the limits, when either one
drug is used, the isobole response has values 0 to 1. If (10)
is preceded by a maximum effect coefficient Emax , usually
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from 0% to 100% efficacy, then the effect is expressed in
percent. An example of such surface response for Propofol
and Remifentanil is given in Fig. 4, with values for σ = 0.2,
γ = 10, C50 = 3.5 [mg/ml] for Propofol and C50 = 4.5
[µ g/ml]for Remifentanil.

FIGURE 4. BIS interaction surface Propofol and Remifentanil. The ‘‘X’’
marks the population averaged C50 values with full effect (1), and the
blue line crosses the surface at half -effect response (0.5).

In Fig. 4 one may observe that the half-effect crossing the
surface is a line, hence the nonlinearity in the Hill surface
is no longer present during maintenance of the anesthetic
state. As the setpoint for BIS lies typically between (40,60),
the surface is relatively linear and adaptation of the curve
through identification to patient response is much simplified
in this case. A discussion along with clinical values has been
provided in [30], [31].

The independent relation of Remifentanil on the Ramsay
Agitation and Sedation Score (RASS) is modelled as:

RASS =
1

k1 · xe + k0
·
−2
s+ 2

(12)

with k1 = k0 = 0.81 [34].
The Atracurium PKPD model developed by

Weatherley et al. [35] can be treated as a two-compartmental
pharmacokinetic model and a PD model including a
second-order function and nonlinear Hill equation in series.
The Atracurium pharmacokinetic model is given by:

ẋ1 = −λ1x1(t)+ a1u(t)

ẋ2 = −λ2x2(t)+ a2u(t)

Cp = x1(t)+ x2(t) (13)

where xi (i = 1, 2) denotes the state variables and a1,
a2 [kg/ml], k1, k2 [kg/min] are the patient-dependent param-
eters. The drug infusion rate u(t) [µg/kg/min] is the input
of this pharmacokinetic model, and the plasma concentration
Cp(t) [µg/ml] is the output of this pharmacokinetic model.
The Atracurium PD model is described as a cascade of a
second-order function and a nonlinear term, and it is formu-
lated as:

Ċ = −λC(t)+ Cp(t)

ẋe = −
1
τ
xe(t)+

1
τ
C(t)

r(t) =
100 · Cγ50
Cλ50 + x

λ
e (t)

(14)

where xe(t) is the drug concentration of the effect com-
partment, C(t) is an intermediate variable, and r(t) [%]
is the reflection of NMB level. The variables λ, τ [min],
C50 [µg/ml] and c [-] are patient-independent parameters.
Finally, in the entire Atracurium PKPDmodel, the parameters
ai (i = 1, 2), λi (i = 1, 2), λ, τ , C50 are the patient-response
specific parameters.

From [36], the parameters k1, k2, k3 andC50 are assumed to
be known. Only α and γ remain to be identified, and Table 2
contains the initial values that represent the mean values for
the population. The model is described by:

NMB =
k1 · k2 · k3 · α3

(s+ k1 · α)(s+ k2 · α)(s+ k3 · α)

E = Emax ·
Cγ50

NMBγ + Cγ50
(15)

TABLE 2. Parameters of the PKPD model for neuromuscular blockade
controlled with Atracurium.

In some clinical studies, the EMG has been measured in
patients and considered an index for determining the level of
neuromuscular blockade. The effect of Remifentanil on the
EMG values has been provided in [37], [38]:

EMG =
100 · xe

3.4 · xe + 0.0063
(16)

where xe is the effect site Remifentanil concentration.

C. HEMODYNAMIC SYSTEM
For all patients (but essentially in cardiac patients), the mean
arterial pressure (MAP) and the cardiac output (CO) are
critical variables [39]. These are maintained in the desired
range by administration of Sodium Nitroprusside (SNP) and
Dopamine (DP). In clinical practice, Dobutamine (DB) is also
used for patients under general anesthesia due to its inotropic
actions. The pharmacokinetic of DB following intravenuous
administration is described by a one-compartment model
with a first order plus dead time elimination rate [18], [40].
This model is analogous to the DP pharmacokinetic model
and implemented in the simulator. Since its discovery in 1975,
DB has been used off-label for treatment of hemodynamic
insufficiency in newborn and children [41], [42]. In this paper
we used the DP model, but both DP and DB pharmacoki-
netic models are available in the simulator. Computer based
control of hemodynamic variables was established in the
early 90s [11], [43], [44] and found to significantly depend
on the anesthesia levels, leading to combined hemodynamic
and anesthetic optimization studies [9], [45], [46].
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There is evidence to support the claim that sedative and
hypnotic drugs affects negatively MAP values [47]. The
effect of Remifentanil on MAP is described by:

MAP =
−1

k1 · xe + k0

E = Emax ·
MAPγ

MAPγ + Cγ50
(17)

The antagonistic effects of Dopamine and Sodium Nitroprus-
side on the Cardiac Output and Mean Arterial Pressure are
modelled as a 2×2 multivariable system with first order plus
dead time approximated transfer function models:

[
CO
MAP

]
=


K11.e−T11s

1+ τ11s
K21.e−T21s

1+ τ21s
K12.e−T12s

1+ τ12s
K22.e−T22s

1+ τ22s

[ DPSNP

]
(18)

The parameter intervals for the model (17) are given in
table 3 as from [48].

TABLE 3. Interval parameters for the hemodynamic model.

D. DISTURBANCE AND NOCICEPTION STIMULATION
Literature presents a disturbance signal mimicking surgical
stimulation profile [49], as depicted in Fig. 5. Each segment
corresponds in order, with the following events: intubation;
surgical incision followed by a period of no surgical stimu-
lation (i.e. waiting for pathology result); an abrupt stimulus
after a period of low level stimulation; onset of a continuous
normal surgical stimulation; short-lasting, larger stimulation
within the surgical period; and withdrawal of stimulation
during the closing period. For the controller-based regulation
protocol, the disturbance signal is not known in advance, and
thus enters the system through the feedback loop information
flow.

When surgical stimulation is present in the overall sys-
tem, a nociceptor stimulation occurs. A recently developed
method, device and model has been presented in [50], based
on a physiological model of pain using fractional order tools
reviewed in [51]. A simplified model of the nociceptor path-
way is described by the following transfer function model:

K ·
(s2 + z1s+ z2)(s2 + z3s+ z4)(s2 + z5s+ z6)
(s2 + p1s+ p2)(s2 + p3s+ p4)(s2 + p5s+ p6)

(19)

TABLE 4. Parameter values of the nociceptor pathway model.

FIGURE 5. The filtered nociceptor stimulation profile and additional
signal used for bolus infusion as anticipatory action of the
anesthesiologist to incoming disturbance profile. To obtain the clinical
effect, these disturbance signal has to be added to the simulated BIS
values and the bolus profile has to be added in the fast acting
compartment (blood) in (1) with values from (8).

The surgical stimulation profile is then filtered through this
model and it is a disturbance at the output of the hypnotic
state, i.e. added to the BIS value given by the Hill equation of
the PD model of hypnosis.

When the protocol is enhanced with the manual interven-
tion of the anaesthesiologist, an additional input signal is
delivered to the system. This additional input signal in form of
a bolus is also depicted in Fig. 5 along with the disturbance
signal, where one may recognize the anticipatory action of
the anaesthesiologist to compensate in part the expected dis-
turbance profile.

III. FEATURES OVERVIEW
There are 5 possible manipulated variables (drug dosing
rates) and 5 direct controlled variables (outputs), along with
numerous interaction effects.

The direct cause-effect models include:
• Propofol drug rate to hypnotic state evaluated with
BIS variable;

• Remifentanil drug rate to analgesic state evaluated with
RASS variable;

• Rocuronium/Atracurium drug rate to neuromuscular
blockade state evaluated with NMB variable;

• Dopamine(DP)/Dobutamine(DB) drug rate to cardiac
output state evaluated with CO variable;

• SodiumNitroprusside drug rate tomean arterial pressure
state evaluated with MAP variable.

The interaction models include:
• Propofol and Remifentanil synergic effects on BIS vari-
able (surface model);

• Remifentanil effect lowering MAP and increasing CO;
• Increasing CO will increase clearance rates of Propofol,
thereby increasing BIS values;
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• Antagonistic effects betweenDP(B)/SNP andCO/MAP;
Specific features enabled by the authors as original contri-

bution to the body of knowledge of this work are summarized
hereafter.

The anesthesiologist in the loop effect is the additional
bolus value given prior to surgical stimulation and has been
discussed in [52]. Disturbance and bolus profiles are given
as time based signals which can be added or not in the
simulation.

Another feature contributed by the authors is the surgi-
cal stimulation nociceptor effect model, as experimentally
identified and reported in [50]. The signal is added as a
disturbance to the output of the PKPD model of Propofol and
Remifentanil. In clinical practice, the incoming disturbance
is anticipated by the anesthesiologist, possibly involving set-
point change for depth of anesthesia variables and additional
bolus infusion. For the purpose of optimal control, these
actions need to be included as part of the control strategy,
otherwise they may lead to sub-optimal control results as
they are considered unknown disturbances acting in the sys-
tem/patient [52].

For long term anesthesia, such as that in coma induced
patients, bariatric surgery, organ transplant surgery and
recently, in Covid-1ç patients on life support system, there
is an enhanced risk for drug accumulation/trapping in slow
acting tissue volumes (i.e. fat). To incorporate this feature in
the simulator, a model such as described in [53] is provided
to the user. This gives the possibility to choose between
the classic pharmacokinetic model or a pharmacokinetic
model with memory term to mimic drug trapping effects.
Classical compartmental modelling theory assumes a homo-
geneous drug distribution as a result of nominal diffusion
pattern in the tissue. However, this is not necessarily the
case [51], [54]. It has been shown that slow acting compart-
ments are more likely to have unbalanced clearance rates,
therefore introducing a memory effect in the amount of drug
acting on site [55]–[57], conceptually illustrated in Fig. 6.

FIGURE 6. Concept of the unbalanced input u(t) to clearance rate k10 in a
heterogeneous tissue compartment with fractional kinetic factor α.

An important challenge for control design is the presence
of time delay in the BIS output and in the model of hemo-
dynamic system. This delay may vary in time. For instance,
in the BIS signal, a poor signal quality may be detected in
the EEG used for epoch calculation and average over time
based window sample interval [58]. This artefact corrupted
signal is detected through monitoring a signal quality index.
If the value is below a threshold limit, then the current EEG
window interval is discarded, and the BIS value from the pre-
vious valid window evaluation is provided as hypnotic level
output. This introduces a time delay which may vary between

10-240 seconds [58]. The user can choose to have a delay-free
BIS signal, or a constant delay value of 30 seconds, or a
variable time delay within the given interval.

To summarize, Table 5 provides the reader with the
overview of interactions enabled in the patient simulator. One
arrow indicates a low interaction while two arrows indicates a
higher interaction and the horizontal line indicated that there
is no influence between the input drug and the measured
output.

TABLE 5. Interactions between the inputs and outputs of the
anesthesia-hemodynamic system.

IV. RESULTS
The Matlab-Simulink scheme of the simulator is given
in Fig. 7.

Figs. 8-11 denote the results in open loop. The simula-
tions have been performed for the artificial patient database
presented in Table 1. These results indicate the interaction
between the anesthesia parameters and the hemodynamic
parameters. Simulations were performed by changing one
input and evaluate the influence on its direct output but also
on the other outputs of the system. In Fig. 8 the influence
of Propofol on BIS but also on the hemodynamic variables
is shown. Notice that a decrease of the Cardiac Output (CO)
andMean Arterial Pressure (MAP) is occurring. In Figs. 9-10
the influence of Dopamine and respectively SNP has been
investigated and we have observed that they only have an
effect on the hemodynamic variables and not on the anesthetic
parameters. The influence of Remifentanil on BIS and other
parameters is depicted in Fig. 11. It can be observed that
Remifentanil has a small influence on the NMB as well as on
the CO and MAP. Regarding the hemodynamic parameters
there is a higher influence on MAP.

The addition of the hemodynamic sub-process poses high
challenges on the control objective, with its delay-dominant
dynamics and large interaction degree. As the cardiac output
tends to increase, the hypnotic state tends to increase towards
consciousness values, as the drug is cleared at faster rates
from the organisms. This antagonistic situation is difficult
to maintain in clinical onset. Sedation tends to lower Mean
Arterial Pressure (MAP) and Cardiac Output (CO), while
these need to be maintained at a safe interval value for the
patient to remain in stable vital conditions.

V. DISCUSSION
The trilogy of healthcare is defined by key M-s: measure,
model andmanage.With today’s computer based data records
and information technology assets entering clinical practice,
we witness an exponential growth of PKPD modelling for
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FIGURE 7. The integral structure of anesthesia-hemodynamic simulator developed in Matlab–Simulink. The simulator consists of
two main subsytems: Anesthesia and Hemodynamics.

FIGURE 8. The influence of Propofol on the anesthetic and hemodynamic
parameters.

FIGURE 9. The influence of Dopamine on the hemodynamic parameters.

various anesthetic and sedation drugs as comprehensively
reviewed in [7]. Developments are covering both intravenous
and aerosol management of depth of anesthesia [59], [60].

FIGURE 10. The influence of Sodium Nitroprusside on the hemodynamic
parameters.

FIGURE 11. The influence of Remifentanil on the anesthetic and
hemodynamic parameters.

Influence of Propofol and Remifentanil on the hemodynamic
and hypnotic states is further assessed in recent studies [61].
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Recently, a novel PKPD model for Propofol has been pro-
posed in [62], yet to be seen if applicable for optimizing
closed loop control objectives. Furthermore, new evidence
that brain activity modulates differently to noxious stimuli
than to hypnotic states [63], enable artificial intelligence tools
to predict sedation state of patients [64], [65].

The management of anesthesia moves from single drug
to multi-drug co-administration, making small but essen-
tial steps forward towards a fully computerized regulatory
paradigm of personalised patient services. Co-administration
of Propofol and Remifentanil for anesthesia regulation has
been very recently re-assessed in simulation studies [66] and
in clinical trials [67].

An anesthesia patient simulator in Matlab–Simulink soft-
ware platform has been proposed in [68]. This does not
include the hemodynamic interaction states, nor nociceptor
stimulation, and has more an educational/training purpose
as they already feature closed loop control strategies. Here,
in our version of the simulator, we have a series of control
relevant features, which are essential to the systems and con-
trol community in order to develop computer based solutions
for multi-drug management of anesthetic and hemodynamic
states in presence of realistic nociceptor stimulation.

We discuss here the original contribution of our simulator
through the set of features relevant for closed loop control
objectives design and optimization.

BIS-controlled systems rely on epoch based estimations
of EEG states as moving windows. This introduces a typical
time delay of 10-30 seconds in the BIS variable. In presence
of artefacts, the signal quality index decreases and epoch
are discarded, the BIS value being delivered to a monitor
affected by a yet longer delay interval. A study on clinical
data revealed variations between 10-240 seconds [58]. This
simulator includes a random assignment of values in the given
interval to a variable delay block in Simulink.

Next, the Hill curves are patient-dependent and initially,
when control is designed, averaged values can be used
to startup simulation. There is always a model mis-match
between the actual patient and the model received by the
advanced model based control algorithm. It is possible the
patient PD model values are to be adapted during simula-
tion with real-time identification/estimation procedures. Two
methods have been compared in [32]. However, it should be
observed that during the maintenance phase, the nonlinear
Hill curve sigmoidicity reduces to linear parameter depen-
dence, as identified in [30]. The simulator has a set of PD val-
ues for each part of the multi-models included, but the model
based control design could use generic values or partially
modified values to introduce uncertainty in the parameters for
a more realistic approach. For instance, averaged values for
C50 and γ could be used from Table 1 while the simulator
could mimic the real patient with the explicit/individualised
value from the table.

Despite induction phase control strategies developed in
simulation studies [8], [28], [38], [66], we reckon that
this could be just as well manually managed by the

anesthesiologist, for having excellent performance compared
to computerized optimization. This is due to the fact that
essentially linear control has been used for what is termed
as the only nonlinearity present in the models: the induction
phase and induction knee in the Hill curve response. Once
passed this knee point, the response remains in a linear slope
representation, while intra-patient variability may change the
degree of the slope in time [30], [31]. The intra-patient vari-
ability is prevalent in long term surgery (e.g. bariatric, heart
and lung transplant, extracorporeal membrane oxygenation,
co-joint separation surgery, bionic implants/reconstruction,
organ-on-a-chip surgery) or outlier patients.

On a long term perspective, there is evidence to support
the claim that assumption on homogeneous distribution and
uptake kinetics of drug may be too optimistic [55], [56].
As a result, drug molecules may be trapped for longer res-
idence times than initially though [53], with recirculatory
effects from liver latency processing at macromolecular and
metabolic rate dynamic variability [69]. By their analogy of
kinetic compartmental models to transfer function models as
proposed in [26], [70], the fractal kinetics are approximated
by fractional order transfer functionmodels as those proposed
in [50], [51], [71]. Their advantage is that memory effects
of drug latency can be more accurately modelled, providing
better models for optimal regulation of drug dosing profiles
to better avoid over- and under-dosing risks. The simulator
includes a pharmacokinetic model description to allow such
heterogeneous diffusion effects and the user may choose
freely among the classical or anomalous pharmacokinetic
kinetics. This will have a visible effect on the optimisation
solutions for the drug dosing profiles among advanced control
strategies, if the user performs long term anesthesia simula-
tions.

There are two limitations in the features included in this
version of the simulator. Namely, the patient variability for
the hemodynamic states and the PD model for the direct
output of Remifentanil drug dosing rates. A PD model for
analgesia as a separate output variable to be controlled is
currently missing. Presently, enabled by recent commercial
devices availability for objective pain level assessment, ongo-
ing efforts in clinical trial testing [72], [73] are expected to
provide the necessary data for estimating the PD model. The
hemodynamic system is described as a first order plus dead
time approximation of the PKPD effects. To include patient
variability in this multivariable model, one may introduce
variations in the model parameters: gain, time constant and
dead time, as given in Table 3.

From the point of view of control, a multi-objective opti-
mization is a reasonable assumption in the control design.
However, this is a complex problem if searched for the
global optimal solution at all times. It might be interesting
to consider a prioritized version, in which objectives are
given different levels of priority as a function of the cur-
rent patient state. Such multi-objective prioritized method-
ology has been proposed in [74], with initial results for the
anesthetic-hemodynamic system.
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VI. LIMITATIONS
In the overview depicted by Fig. 1, the inputs and outputs
corresponding to the anesthesia-hemodynamic system are
presented. It can be noticed that there is no direct output for
pain assessment and this is still a missing, yet much needed
piece of the puzzle. This is a major limitation of the simulator,
as data from commercial pain devices identified as PDmodels
are unavailable yet.

Nowadays, pain is evaluated by heuristic based indexes in
both awake patients (e.g. NRS) as well as in unconscious,
sedated patients (e.g. RASS). Hence, there is no pharmaco-
dynamic model for Remifentanil. In this regard, the authors
developed a methodology for detecting nociceptor simula-
tion which has been successfully validated in healthy vol-
unteers [50] but also in post-operative ICU patients [73].
Ongoing clinical studies in unconscious patients at Ghent
University Hospital will provide updates for future versions
of the simulator.

VII. CONCLUSION
This open source simulator is a modest yet essential
first step towards uniform design and evaluation of the
drug-dosing problem in anesthesia and hemodynamic regu-
latory paradigm. The version provided by this paper includes
the essential elements to develop suitable closed loop mul-
tivariable optimal control strategies. Despite limitations,
we believe this pioneering work will create awareness in the
community and enable a systematic design and evaluation of
adequate solutions translatable to clinical practice. Next steps
in further improving the benchmark includes the implementa-
tion of the PD model for opioid to analgesic effect identified
from data in ongoing clinical studies.

APPENDIX A
MODEL PREDICTIVE CONTROL (MPC) USED TO
ILLUSTRATE FEASIBILITY OF THE CLOSED LOOP
The predictive control has been shown to be closest to mim-
icking anesthesiologist actions during surgery [52]. We have
a long-standing tradition of applying predictive control to
various dynamic states in the anesthetic, which has been
also used in clinical practice [75], and hemodynamic reg-
ulation problem. The used predictive control methodology
has been tailored from the generic EPSAC (Extended Pre-
dictive Self-Adaptive Control) algorithm given in [28] for
SISO systems, adaptive in [76] and multi-objective priori-
tized optimization in [74]. In this section only the essential
steps in obtaining the closed loop control results given in this
paper are presented. Their role is to show to the reader that a
closed loop control objective is achievable with the complex
simulator.

A. ESSENTIALS OF QUASI-INFINITE HORIZON MPC
(QIH-MPC)
The basic principle of MPC is shown in Fig. 12, as fully
described in [77]. At time t , the future states x̄ until t +
Tp are predicted using the dynamic model of the system.

FIGURE 12. Basic Model Predictive Control Concept.

Consequently, the optimal open-loop inputs ū are calculated
until t+Tc. These optimal inputs are found by iterativelymin-
imizing a user-defined cost function. After these calculations,
the open-loop input is implemented until t + δ, with δ being
the sampling time. By measuring the states at t + δ, a new
‘initial’ state is obtained. It is at this point that the scheme is
shifted from t to t+δ and the whole iteration starts again, i.e.
the receding horizon principle [77].

In basic MPC, the predicted states are required to be equal
to the equilibrium point after the prediction horizon (termi-
nal state equality constraint). Quasi-infinite Horizon MPC
(QIHMPC) softens this constraint by demanding only that
the states are within an invariant terminal region around the
equilibrium point after the prediction horizon. As the terminal
region is invariant, a local linear state feedback controller can
be applied until the equilibrium point is reached exactly after
an ‘infinite’ amount of time. The distance to the equilibrium
point is penalized by a terminal penalty matrix included in
the objective function, which is separate from the state and
input weighting matrices also used in the objective function.
It is important to note that the inputs are only calculated for
a finite time (Tc), as the infinite ‘tail’ with the state feedback
controller is never used in practice [77].

B. STABILITY, FEASIBILITY AND ROBUSTNESS OF
QIH-MPC
The terminal penalty matrix, the local linear feedback con-
troller and terminal region are calculated and included in
the objective function because their existence and inclusion
allows for a Lyapunov-argument to prove the stability of
the QIH-MPC scheme. The reader can find more details on
this in [77]. The following procedure for calculating these
variables has been adapted from [77] and used in our initial
proof of control study:

1) Calculate the Jacobian linearization (A,B) of the sys-
tem at the equilibrium point

2) Check the stabilizability of the Jacobian linearization
(for instance, with the Hautus-test for stabilizability).
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The rest of the procedure is not applicable if the lin-
earization is not stabilizable.

3) Find a linear state feedback matrix K such that AK is
Hurwitz:

u = Kx ∈ U ,∀x ∈ X

AK := A+ BK (20)

4) Solve the following Lyapunov equation to obtain the
terminal penalty matrix P (with n being the number of
states).

Q∗ = Q+ KTRK ∈ <nχn

k < −δmax(Ak ), k ∈ [0,∞)

(Ak + kI )TP+ P(Ak + kI ) = −Q∗ (21)

5) Use the state feedback matrixK to find the largest α1 ∈
(0,∞) such that

� := {χ ∈ <n|χTPχ ≤ α1}

Kχ ∈ U ,∀χ ∈ �alpha1 (22)

6) Find the largest α ∈ (0, α1] such that

ẋ = f (χ,Kχ )

φ(x) := f (χ,Kχ )− Akχ

Lφ := sup
{
‖φ(χ )‖
‖χ‖

∣∣∣∣χ ∈ �α, χ 6= 0
}

Lφ ≤
kλmin(P)
‖P‖

(23)

with �α being an invariant terminal region, sup(·) the
supremum and ‖ · ‖ the Frobenius norm.

Once this procedure has successfully been completed and
the results included in the controller, the stability of the QIH-
MPC scheme is guaranteed if a feasible solution can be found
at t = 0, i.e. at each sampling period that the procedure is
iterated. Feasibility requires that at each time step, a solution
can be found such that the states are within �α after the
prediction horizon (Tp). This also means robust stability is
guaranteed, as long as the disturbances are small enough such
that the states remain within the feasible region.

C. PRELIMINARY RESULTS
The control performance of the designed QIH-MPC con-
troller is generally as desired, even when considering inter-
and intra-patient variability as well as nociceptor stimulation
and interventions by the anesthesiologist. Moreover, an adap-
tive control strategy [76] has been also designed and tested
and the obtained results for both control strategies are shown
in Fig. 13-15. Although not globally optimal, these prelimi-
nary results of the closed loop indicate that the simulator is
operational and equilibrium in the anesthetic - hemodynamic
states interplay can be achieved.

The results of the implemented control strategies are given
in Fig. 13-15. From Fig. 13 it can be observed that when the
surgical stimulus is applied (disturbance profile in this case)
and the intervention of the anesthesiologist is included in the

FIGURE 13. Simulated patient response for set-point tracking and
disturbance rejection.

FIGURE 14. Simulated patient response for mean arterial pressure
control.

FIGURE 15. Simulated patient response for cardiac output control.

model, the controller performs satisfactory. A study on the
inter-patient variability indicated that after administration of
a bolus by the anesthesiologist, the BIS level as a result of
patient sensitivity is varying significantly. This means that
if the same surgical stimulus is then applied to all patients,
patients with a lower sensitivity to drug effect will gener-
ally have a higher resulting BIS levels. Fig. 14 and Fig. 15
reveal that the initial control strategy proposed for the entire
anesthetic-hemodynamic system is promising also in term of
hemodynamic variables control.

However, an in-depth analysis in terms of control perfor-
mance, control limitations, etc. is not the scope of this paper.
A brief description of the start control theory used to design
the control strategy has been given in the AppendixVII.
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D. SOFTWARE
The software files are available inMatlab File Exchange plat-
form https://nl.mathworks.com/matlabcentral/fileexchange/
85208-open-source-patient-simulator
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