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ABSTRACT In the noisy environment, fault characteristics of the composite faults of the wind power
gearbox are coupled with each other, which makes the extraction features more difficult. In order to extract
the characteristics of composite faults, a new fault diagnosis method for wind power gearbox is proposed
in this paper, namely the modified Savitzky Golay Laplacian of Gaussian filter (MSGloG). The method can
not only solve the defects that the scale parameters of the Modified Laplacian of Gaussian filter (MloG)
filter are not adaptive, but also overcome the problems that the smoothing effect is too much affected by
noise. Firstly, determining the Laplace model of Gaussian filter, and using the least square convolution
smoothing process to improve the signal-to-noise ratio of the vibration signal. Secondly, a new marginal
envelope spectrum entropy index is proposed to measure the complex fault characteristics. Finally, a new
chaotic grey wolf optimization algorithm is proposed, which uses the marginal envelope spectral entropy as
the fitness function, and the purpose is to make the MSGloG noise reduction adaptive. The method extracted
the faults of the bearing outer ring and rolling elements successfully.

INDEX TERMS Wind power gearbox, fault diagnosis, modified Savitzky Golay Laplacian of Gaussian
filter, marginal envelope spectral entropy.

I. INTRODUCTION
The extraction of fault features in gearboxes in a strong noise
environment has always been a difficult point in fault diag-
nosis research [1]–[4]. The international research on wind
turbine gearbox fault feature extraction has been carried out
in many aspects. The fault feature identification of wind
turbine gearbox mainly includes fault classification and fault
feature extraction [5]–[8]. For the fault feature extraction,
due to the harsh working environment of the wind turbine
gearbox, various wind loads will cause different degrees of
damage to the wind turbine gearbox bearings. The charac-
teristic signal of fault mainly exists in the form of periodic
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impact, and the impact signal usually contains a lot of noise,
which poses a certain challenge to the feature extraction of
early fault. Therefore, it is especially important to research a
high-efficiency and high-precision fault diagnosis method for
wind turbine gearboxes.

Traditional noise reduction methods include linear filter-
ing techniques and nonlinear filtering techniques [7]. Linear
filtering has always played an important role in the filtering
field because of its perfect theoretical foundation, simple
mathematical processing, easy to adopt FFT and hardware
implementation. It has a good smoothing effect on Gaussian
noise, but it has a poor suppression effect on pulse signals
and other forms of high-frequency components, which is
prone to distortion. Nonlinear filtering is based on a nonlinear
mapping relationship of the input signal sequence. It can often
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map a specific noise to zero and preserve the important char-
acteristics of the signal, which can overcome the deficiency
of the linear filter to some extent.

In recent years, many new denoising methods have
emerged, such as Laplacian score [9], fuzzy theory [10],
morphology filtering [11], deconvolution algorithm filter-
ing [12], [13] and decomposition method [14]–[17]. Wiggins
[18] first applied MED to the fault diagnosis of rotating
machinery, because its filter size needs to be manually
set, the algorithm has certain limitations. On this basis,
Cheng et al. [19] optimize the particle swarm optimization
of parameters in MED to make it adaptive and a combi-
nation of deconvolution method and modal decomposition
method was developed to extract the composite fault features.
Cheng et al. [20] combined the ensemble empirical modal
decomposition (EEMD) andMED to extract the fault features
effectively, but the MED can only extract a single pulse.
McDonald et al. [21] propose the MOMEDA to extract the
fault features. MOMEDA can obtain the optimal filter with-
out iteration, eliminates the error generated by iteration, and
can effectively extract the periodic pulse. Wang et al. [22]
optimize the filter length of MOMEDA through the grid
search algorithm to make it adaptive and effectively extracts
the characteristics of single bearing faults in the gear-
box. Gaussian noise is a kind of common noise, and the
corresponding Gaussian filtering overcomes the traditional
filtering phase shift and complex design defects, as a zero-
phase-shift filtering method with the smallest time-frequency
window area [23], autoregressive filter (AR) [24] has received
extensive attention in the field of signal processing, it has
good performance in time series analysis, signal modelling,
etc. At present, the Gaussian filtering method is mainly
applied to the edge processing of images [25], and little
research has been done on the fault diagnosis of rotating
machinery. For its excellent filtering performance, this paper
uses its fault diagnosis for wind turbine gearbox. However,
the traditional Gaussian filter is not adaptive due to the
parameter determination problem, and it is easy to smooth
out the mutation information when performing fault diag-
nosis of the wind power gearbox under different working
conditions.

In recent years, intelligent algorithms have flourished and
have been widely used in parameter optimization. Among
them, the grey wolf optimization algorithm (GWO) [26] is a
new meta-heuristic algorithm based on grey wolf predation
behavior, and it has been proved to be a high-level explo-
ration and development algorithm. But there are problems
with development and exploration imbalances so that their
performance is not ideal [27]. In order to make the deter-
mined Gaussian filter parameters more reasonable, a chaotic
grey wolf algorithm (CGWO) with marginal envelope spec-
tral entropy as the fitness function is proposed for itera-
tive selection. The principle is to introduce chaos theory
into GWO, to balance the exploration and development of
GWO, increase individual diversity, increase the probability

of jumping out of local optimal solution and explore the
solution space in depth.

The main contributions of this work are as follows:1) An
adaptive Gaussian filtering method is proposed and applied
to the fault feature extraction of wind turbine gearbox for
the first time; 2) In this work, this paper studies the filter-
ing characteristics of MSGLoG and analyzes the influencing
factors of its noise reduction characteristics. It optimizes
the parameters through the chaotic grey wolf algorithm and
highlights the advantages of extracting multiple fault features
simultaneously. 3) Through the analysis of simulation signals
and experimental signals, the effectiveness of the proposed
fault diagnosis method is proved.And through the comparison
with MED, MOMEDA and autoregressive filtering method
AR, the advantages of the proposed method are further
highlighted.

II. MODIFIED SAVITZKY GOLAY LAPLACIAN OF
GAUSSIAN FILTER
Marr and Hildreth [28] proposed a Laplacian Gaussian filter
to detect the abrupt change of the vibration signal by smooth-
ing the background noise. The coefficient of the LoG filter
can be obtained by determining the second derivative of the
Gaussian filter. Eq. (1) is a first-order Gaussian filter.
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1
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)
(1)

where the first parameter n is the mean of the random variable
and the second parameter σ 2 is the variance of the random
variable. Derived from Eq. (1) to get Eq. (2).
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Deriving Eq. (2) to obtain an LoG filter, as shown
in Eq. (3).
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Normalize the LoG filter as shown in Eq. (4).
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LoG filter can be considered as a noise reduction technol-
ogy for vibration signals, it is a kind of FIR filter. For FIR
filters, when the sum of the filter coefficients tends to zero,
it is a high-pass filter. And the high-pass FIR filter will not
respond in the low frequency and zero frequency situations,
which can effectively enhance the detailed information of the
vibration signal. Therefore, this paper improves the formula
of the LoG filter to make it a high-pass filter, as shown in
Eq. (5).

In this paper, the final formula of the LoG filter is called
the Modified Savitzky Golay Laplacian of Gaussian filter
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(MSGloG).
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In Eq. (5), C denotes the filter order of the MSGloG filter.
MSGloG filter is used for filtering processing of vibration
signal. Every M sampling point near x in the original data
are taken and x is set as the origin. Constructs an array of
windows containing 2M+1 sample points centred on x, and
constructs an i-order polynomial to fit the array:

p(n) =
i∑

k=0

ak · nk (6)

among them −M ≤ n ≤ M , i ≤ 2M + 1;
The fitted residual is:

ε =

M∑
n=−M

(p(n)− x(n))2=
M∑

n=−M

(
i∑

k=0

ak · nk−x(n))2 (7)

To obtain the minimum value of ε, the partial derivative of
each parameter is 0.

∂ε

∂ai
=

M∑
n=−M

2ni(
N∑
k=0

ak · nk − x[n])2 (8)

Obtain:
N∑
k=0

(
M∑

n=−M

ni+k )ak =
M∑

n=−M

nix[n] (9)

Move the filter of this window until you get all the fit points
of the original data.

Gaussian filters have been widely used in many image
processing fields, such as the field of edge detection [29]. The
algorithm is sensitive to image abrupt changes; it can easily
detect image edges. Because of its good filtering performance
in image processing, this paper analyzes its performance in
the fault diagnosis of wind turbine gearboxes, and it smoothed
the filtered signal to enhance the weak vibration signal and
improve the accuracy of fault diagnosis.

This paper proposes a new Gaussian Laplacian transform
filtering method for gearbox fault diagnosis. The algorithm
smoothest the background noise so that it is greatly reduced
by the influence of noise. When the acquired vibration signal
is processed using the MSGloG filter, the scale parameter σ
and the filter order k have a large influence on the filtering
performance. Firstly, when the scale parameter σ is too large,
the fault information is easily misdiagnosed, and the fault
information cannot be effectively identified, which reduces
the accuracy and efficiency of fault diagnosis. Secondly,
When σ is small, the diagnostic accuracy of fault features is
low, the weak fault feature cannot be effectively extracted.

Finally, in order to specify the influence of the scale parame-
ter σ on the performance of theMloGfilter, a set of simulation
models is constructed to analyze the fault information. The
main form of the fault information is a cyclical shock signal,
so the simulated signal constructed is as follows:

x1(t) = Am1 × exp(−
g
Tm1

) sin(2π fat)

x2(t) = Am2 × exp(−
g
Tm2

) sin(2π fat)

x3 (t) = x1(t)+ x2(t)+ noise (10)

Among them, x(t) is a periodic impact signal. Am1 and
Am2 represent the amplitude of the pulse, g is the damping
coefficient, Tm1 and Tm2 are the periods of the impact, and fa
is the natural frequency of the axis. The parameter is set to:
g = 0.1,Tm1 = 1/23,Tm2 = 1/30, fa = 320Hz.

The simulation diagram constructed is shown in Figure 1.
In this Figure, Figure1(a) is the waveform diagram of the first
bearing fault, Figure 1(b) is the second fault characteristic
information, and Figure 1(c) is the composite waveform of
two faults and noise.

FIGURE 1. Multi-impact simulation signal diagram.

In order to explain the influence of the scale parameter
σ on the MloG filter, three filters with σ of 0.7, 0.9 and
1.5 are respectively constructed to filter the simulationmodel.
When analyzing the influence of the scale parameter σ on the
performance of the MloG filter, this paper adopts the control
variable method, select the length m of the sliding window
to be a fixed value. It can be seen from Figure 2 that only
the 30 Hz fault can be effectively extracted in the envelope
spectrum obtained by filtering at σ = 0.7, and the fault with
the fault frequency of 23 Hz is not effectively extracted, in the
Figure, Figure2(a) is a composite image of multiple faults and
noise, Figure 2(b) is a result map of filtering fault information
by MloG, and Figure 2(c) is an envelope spectrum analysis
diagram of the vibration signal after MloG filtering. It can
be seen from Figure 3 that when σ = 0.9, the 23 Hz fault
feature and the 30 Hz fault feature are effectively extracted,
Figure 3(a) is a multi-fault and noise composite image, and
Figure 3(b) is a result graph after filtering the fault informa-
tion by MloG, Figure 3(c) is The envelope spectrum analysis
diagram of the MloG filtered vibration signal is performed.
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FIGURE 2. MloG extraction diagram of simulated signal at σ =0.7.

It can be seen from Figure 4 that when σ = 1.5, both
fault information is effectively extracted, but in the envelope
spectrum analysis result, it can be intuitively found that the
frequency doubling information has a certain reduction com-
pared with σ = 0.9, Figure 4(a) is a composite image with
multiple faults and noise, Figure 4(b) is the resulting map
after filtering the fault information by MloG, and Figure 4(c)
is an envelope spectrum analysis graph of the vibration signal
after MloG filtering. In summary, when the value of σ is too
small, the multi-fault feature is not effectively extracted, and
even a fault feature information may be extracted to cause
missed diagnosis. Therefore, a reasonable scale parameter σ
is especially important for the performance of theMloGfilter.

When the vibration information is collected for the wind
turbine gearbox since the working conditions contain a large
amount of noise, the smoothing effect of the signal plays
an important role in the accurate extraction of the fault
information. The signal smoothing method MSGloG filter
is newly constructed. The newly constructed MSGloG filter
is essentially a least-square convolution smoothing, which
is comprehensively considered according to the polynomial
fitting order and the number of smoothing times.

In this paper, the advantages and disadvantages of smooth-
ness performance are compared by constructing two groups
of signals with different noise intensity. The constructed sig-
nal is shown in Eq. (11).

x1(t) = Am1 × exp(−
g
Tm1

) sin(2π fat)

x2 (t) = x1(t)+ noise (11)

Among them, x(t) is a periodic impact signal. Am1 repre-
sent the amplitude of the pulse, g is the damping coefficient,

FIGURE 3. MloG extraction diagram of simulated signal at σ =0.9.

FIGURE 4. MloG extract diagram of simulated signal at σ =1.5.

Tm1 is the periods of the impact, and fa is the natural fre-
quency of the axis. The parameter is set to: g = 0.1,Tm1 =
1/20, fa = 260Hz.
Figure 5 is a comparison of the smoothing performance of

MloG and MSGloG at a signal-to-noise ratio of −10.1 dB.
Figure 5 (a) is a fault signal composed of a shock signal and
noise; Figure 5(b) shows the vibration signal after smoothing
by MloG. The signal after smoothing by MloG has an intu-
itive reduction in amplitude; Figure 5(c) shows the vibration
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FIGURE 5. The time-domain comparison between MloG and MSGloG
under −10.1dB SNR.

signal after smoothing byMSGloG, by calculating the signal-
to-noise ratio of the signal in Figure 5(c) is -4.46dB, which is
less than the original signal’s SNR of -10.1dB. Figure 7 is a
frequency domain result after smoothing MloG andMSGloG
at a signal-to-noise ratio of -10.1 dB. Figure 7(a) is the
signal envelope map after MloG smoothing and Figure 7(b)
is the signal envelope map after MSGloG smoothing. The
multiplier information can be clearly seen in both Figures,
and the smoothing processing ofMloG andMSGloG is effec-
tive under the signal-to-noise ratio of -10.1dB. Figure.6 is a
time-domain diagram of the smoothing effect of MloG and
MSGloGwith a signal-to-noise ratio of−15.4dB. Figure 6(a)
is the original vibration signal diagram constructed; Fig-
ure 6(b) shows the smoothed signal diagram after MloG
processing for the signal with −15.4dB SNR; Figure 6(c)
shows the smoothed signal diagram afterMSGloG processing
for the signal with −15.4dB SNR. Figure 8 is the result
of envelope spectrum analysis of the signal with a signal-
to-noise ratio of −15.4dB. Figure 8(a) is the signal envelope
map after MloG smoothing processing. In this Figure, only
the first peek of the fault characteristic frequency of 20Hz can
be extracted, and there is no effectivemultiplier, which cannot
be used as the basis for fault feature extraction. Figure 8(b)
is the signal envelope map after MSGloG smoothing. In this
Figure, the fault frequency of 20 Hz and its multiplication
information can be clearly seen, and the fault feature infor-
mation can be effectively extracted.

III. THE PROPOSED ADAPTIVE GAUSSIAN FILTER
In this paper, the adaptive MSGloG filtering method based
on CGWO is proposed for the first time and applied to the

FIGURE 6. The time-domain comparison between MloG and MSGloG
under −15.4dB SNR.

FIGURE 7. The frequency-domain comparison between MloG and
MSGloG under −10.1dB SNR.

extraction process of fault characteristics of wind turbine
gearbox. In order to make the selected parameters optimal,
the selection of the objective function and the application
of the optimization algorithm are particularly important. The
accurate objective function can select parameters with high
efficiency and high precision.

A. PROPOSAL OF A NEW TYPE OF INDICATOR (MBLS)
Aiming at the defect that the selection of scale parameter σ
and order k of MSGlog filter is not adaptive, a chaotic Gray
Wolf algorithm is proposed to optimizeMSGlog in this paper.
Because the proposed method is mainly used in the fault
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FIGURE 8. The frequency-domain comparison between MloG and
MSGloG under −15.4dB SNR.

diagnosis of wind turbine gearbox under strong noise con-
ditions, and the vibration signal is mainly represented by
periodic pulse signal, therefore, in the process of MSGloG
adaptive optimization, the proposed fitness function should
have the ability to characterize its noise reduction perfor-
mance and highlight periodic pulses. Therefore, the marginal
envelope spectral entropy (MBLS) is proposed to evaluate the
noise reduction performance of the adaptive MSGloG filter.

The marginal envelope spectral entropy is shown in
Eq. (12).

MBLS =
xp(

1
N

∑N
i=1
√
|xi|
)2
·

1
lnN

N∑
i=1

pi · ln pi

(12)

The envelope spectrum entropy and marginal index are
included in this formula, where Eq. (13) is the calculation
formula of the envelope spectral entropy and Eq. (14) is the
calculation formula of the marginal index.

He = −
1

lnN

N∑
i=1

pi · ln pi (13)

where Pi denotes the proportion of the spectral value of
the i-th point of the envelope spectral entropy in the whole
spectrum, and i = 1, 2, . . . , n, n is the number of envelope
spectral points.

MI =
xp(

1
N

∑N
i=1
√
|xi|
)2 (14)

where, xp = E[max{x(n)}], N is the length of the signal.
Envelope spectral entropy is an indicator that can evaluate

the periodicity of shock signals. Its basic idea is: firstly,
the envelope of the original time-domain signal of the rolling
bearing is extracted by Hilbert transform; secondly, the enve-
lope signal is fast Fourier transformed to obtain the envelope
spectrum; finally, the entropy spectrum is measured by the
envelope spectrum.

The calculation process of envelope spectrum entropy is as
follows:
1). The Hilbert transform h (t) = H (x (t)) of the signal

x (t) is defined as:

h (t) =
1
π

∫
∞

−∞

x (τ )
t − τ

dτ (15)

x (t) and h (t) can form a new complex signal:

z (t) = x (t)+ jh (t) (16)

The envelope signal is defined as:

E (t) = |z (t)| =
√
x2 (t)+ h2 (t) (17)

2). Solve the envelope spectrum. Through the envelope
demodulation analysis, the envelope signal can be obtained,
and then the obtained envelope signal is FFT transformed to
obtain the envelope spectrum. The envelope spectrum anal-
ysis can effectively extract the fault frequency component in
the rolling bearing vibration signal.
3). Calculate the envelope spectral entropy.

He = −
N∑
i=1

pi · ln pi

pi = HX (i)

/
N∑
j=1

HX (j)

N∑
i=1

pi = 1


(18)

where Pi represents the proportion of the spectral value of
the i-th point of the envelope spectral entropy in the whole
spectrum, and i = 1, 2, . . . , n, n is the number of envelope
spectral points. HX (i) is the envelope spectrum of the vibra-
tion signal {xi} , i = 1, 2, · · · ,N , and He is the envelope
spectrum entropy. The normalized envelope spectral entropy
is given by Eq. (13).

Figure 9 shows the change curve of BLS and MI with the
increase of pulse number of periodic impulse signal. It can
be seen that as the number of pulses increases, the value of
BLS is reduced and has a good ability to characterize the
periodicity of the signal; The variation ofMIwith the increase
of the number of pulses is small, indicating that the sensitivity
of BLS to the number of pulses is better than MI, so BLS
is used as an index to describe the number of signal pulses.
Figure 10 shows the variation of MI and BLS as the noise
intensity increases. It can be seen from the Figure that the MI
change rate is larger than BLS as the noise intensity changes.
Therefore, MI is selected as the index for evaluating the noise
intensity. In order to effectively evaluate the signal periodicity
and noise intensity at the same time, this paper constructs a
new index MBLS to evaluate the signal.

Figure 11 is a graph showing the variation of MBLS with
the number of pulses. It can be seen that the amplitude
of MBLS is decreasing as the number of pulses increases.
Figure 12 shows the variation of MBLS with increasing noise
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FIGURE 9. Variation curves of BLS and MI with the increase of pulse
number.

FIGURE 10. Variation curve of BLS and MI when noise intensity increases.

FIGURE 11. Effect of pulse number change on MBLS changes.

FIGURE 12. Effect of noise intensity change on MBLS.

intensity. It can be seen that as the noise increases, its ampli-
tude first increases and then stabilizes. It can be seen from
the Figure that MBLS has a good ability to characterize the
number of pulses and the change of noise intensity. Therefore,
this paper evaluates the advantages and disadvantages of
MSGloG filter parameters by using MBLS as the evaluation
index.

B. CHAOTIC GREY WOLF OPTIMIZATION (CGWO)
GWO is a new intelligent algorithm proposed by Seyedali
Mirjalili in 2014. This algorithm simulates the characteristics
and hierarchy of wolves in the hunting process. By constantly
searching and updating the location of prey, eventually, find
the prey and initiate a siege on the prey [30]. In the opti-
mization of the combination problem, the performance of the
grey wolf algorithm is better than the existing common par-
ticle swarm algorithm, gravity search algorithm, differential

evolution and other methods. However, the grey Wolf algo-
rithm also has defects. In the process of continuous iteration,
the problem of local optimal solution often occurs due to
insufficient population diversity. Therefore, the original grey
wolf algorithm is improved by introducing a chaotic mapping
theory.

In the grey wolf algorithm, the wolves are classified into α
wolves, β wolves, δ wolves and remaining wolves ω accord-
ing to the level, and the position of the prey corresponds to the
global optimal solution. α wolf is the head wolf, responsible
for leading and managing the entire wolf group and maintain-
ing wolf group discipline, making decisions about whether to
prey during the hunting process and controlling the hunting
process and working hours. The β wolf is a candidate for the
head wolf, and the feedBack information of other wolves is
transmitted to the wolf. The δ wolf is responsible for ruling
the ω wolves and protecting the safety and integrity of the
wolves. The individual ω wolf is responsible for receiving
the α wolf search for prey commands and searching for prey.
When thewolves search for the prey, theωwolf is responsi-

ble for searching and feeding back information to the β wolf.
The β wolf gets the information to the α wolf. The α wolf gets
the information and orders the wolf to move toward the prey.
After moving to the ω wolf position, judge whether the prey
is found. If it is not found, repeat the steps after the ω wolf
performs the prey search until the prey is found. In the hunting
process, the distances of α wolf, β wolf, and δ wolf from ω

wolf are Dα, Dβ, and Dδ. The distance can be calculated by
Eq. (19), and the prey position can be calculated by Eq. (20).

Dα = |C1 · Xα − X |

Dβ =
∣∣C2 · Xβ − X

∣∣
Dδ = |C3 · Xδ − X | (19)

X1 = Xα − A1 · Dα
X2 = Xβ − A2 · Dβ
X3 = Xδ − A3 · Dδ (20)

among them:

A = 2ar1 − a (21)

C = 2r2 (22)

The update location is:

X (l + 1) = (X1 + X2 + X3)/3 (23)

C1, C2 and C3 are all calculated by Eq. (22) and are con-
stant variables. The purpose is to set the degree of difficulty
of α wolf, β wolf and δ wolf in hunting prey respectively.
X is the location of ω wolf; X1, X2, X3 are the location of α
wolf, β wolf and δ wolf; A1, A2, A3 are calculated by Eq. (21)
and are constant variables; a is the convergence factor, which
decreases linearly from 2 to 0 in the iteration process; r1 and
r2 are random variables of [0, 1], so that grey wolf can search
for prey in any direction; X(l+1) is the predicted location for
the next generation of prey.
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FIGURE 13. Fault diagnosis flow chart of the new MLoG filter.

By adjusting the values of A and C , wolves can reach any
position in their area. After each iteration, the location of the
next prey is updated. As the convergence factor decreases,
the location of the grey wolf approximates the range of
prey activity. Through continuous updating and searching,
the prey is finally finding the prey and get the global optimal
solution. When the GWO algorithm initializes the popula-
tion, the diversity of the population has a great influence
on the iterative optimization of the subsequent generations.
Improvement of initialization of grey wolf population using
chaotic sequence Logistic map, enriches the diversity of the
grey wolf population and speeds up the optimization speed
of the grey wolf algorithm. Chaotic maps have a positive
impact on the convergence speed of the GWO algorithm
because these maps cause chaos in the feasible domain of
independent variables. Chaotic can be predicted only in a very
short initial time, but is random in a long time. The logistic
model expression is:

xn = (mn − ln)yn + ln (24)

where ln and mn are the minimum and maximum values of
the independent variable xn;
yn is a chaotic variable. The initial population after chaos is

more uniform than the initial population distribution without
chaos, which increases the diversity of the population. In the
process of algorithm optimization, the evenly distributed pop-
ulation is easier to find the optimal solution in the global
search.

C. PROCESS OF THE PROPOSED METHOD
In this paper, a new fault diagnosis method is proposed. The
flowchart of the proposed fault diagnosis method is shown
in Figure 13. The marginal envelope spectral entropy index
is used as the objective function of the MSGloG method.
The method has parameter adaptability. The parameters are
optimized by CGWO algorithm. The specific steps are as
follows:

(1). Enter the collected mechanical vibration signal. Select
the range of MSGloG parameters to be optimized, and
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initialize the CGWO parameters, including the maximum
number of iterations L and the grey wolf population size N .
(2). Using MSGloG to filter the acquired vibration signal

and calculate its fitness. Save the minimum fitness of each
iteration of MSGloG.

(3). Determine whether the termination condition is
reached. If it is reached, end the iteration. Otherwise, continue
the iteration.

(4). Get and record the optimal parameters and minimum
fitness.

(5). The original signal is smoothed by the MSGloG
method with optimized parameters.

(6). The faulty feature extraction of the processed signal is
further performed by the envelope spectrum

IV. SIMULATION VERIFICATION
Due to the harsh working environment, failures of bearing
components in wind turbine gearboxes often occur. The fault
occurs in the form of periodic shock pulses during signal
acquisition. In order to verify the effectiveness and superi-
ority of the proposed method in composite fault detection,
a simulationmodel with two shock signals is constructed. The
construction of specific signals is shown in Eq. (25).

x1(t) = Am1 × exp(−
g
Tm1

) sin(2π fat)

x2(t) = Am2 × exp(−
g
Tm2

) sin(2π fat)

x3 (t) = x1(t)+ x2(t)+ noise (25)

Among them, x(t) is a periodic impact signal. Am1 and
Am2 represent the amplitude of the pulse, g is the damping
coefficient, Tm1 and Tm2 are the periods of the impact, and fa
is the natural frequency of the axis. The parameter is set to:
g = 0.1,Tm1 = 1/14,Tm2 = 1/100, fa = 260Hz.
Figure14 is a simulationmodel diagram, Figure 14(a) is the

impact signal x1(t), Figure 14(b) is the impact signal x2(t),
and Figure 14(c) the waveform diagram of the impact signal
contaminated by noise.

In this paper, the chaotic grey wolf algorithm is used to
search the marginal envelope spectrum entropy minimum to
determine the scale parameter and the sample length of the

FIGURE 14. Simulation signal time-domain diagram.

FIGURE 15. Iterative diagram of the chaotic grey wolf algorithm.

FIGURE 16. Time-domain and frequency-domain diagrams of MED
complex signal extraction.

sliding window. The iteration number of the algorithm is 50,
and the population is 30. The iterative result of the chaotic
grey wolf algorithm is shown in Figure 15. It can be seen
from the iteration diagram that the marginal envelope entropy
chaotic grey Wolf algorithm proposed in this paper has good
convergence. Finally, the scale parameter σ = 0.8 and the
filtering order k = 3 are determined by using the method
proposed in this paper.

In this paper, the same composite fault simulation
model is constructed and the commonly used deconvolu-
tion algorithm MED, MOMEDA and autoregressive filter-
ing method (AR) are compared with the proposed method.
Figure 16 (a), Figure 17 (a), Figure 18 (a), Figure 19 (a) and
Figure 20 (a) are all time-domain waveforms of the original
signal. Figure16 shows the extraction result of MED on the
simulation model. According to [31], the filter length of
MED is L=15. Figure16(b) is the filtering result of MED
on the simulation model after optimizing the filter length.
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FIGURE 17. Time-domain and frequency-domain diagrams of MOMEDA
complex signal extraction.

FIGURE 18. Time-domain and frequency-domain diagrams of AR complex
signal extraction.

Figure16(c) is the frequency domain result of the envelope
spectrum extraction of MED filtering results. It can be seen
from the Figure that the MED has a good extraction ability
for the high-frequency signal in the composite signal, but
the extraction effect on the low-frequency signal is not good.
Figure17 is a diagram showing the extraction results of the
simulated signal by MOMEDA. According to [19], the filter
length is selected as L=50. Figure17(b) is the filtering result

FIGURE 19. Time-domain and frequency-domain diagrams of MloG
complex signal extraction.

FIGURE 20. Time-domain and frequency-domain diagrams of MSGloG
complex signal extraction.

of the composite fault simulation model by the MOMEDA
method; Figure17(c) is an envelope spectrum analysis wave-
form for filtering the time domain results of the MOMEDA
filter. It can be seen from the Figure that MOMEDA has
limitations on the diagnostic analysis results of the com-
posite signals. It can effectively identify the fault frequency
of 100Hz, but does not extract the fault frequency Figure18
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FIGURE 21. Wind power gearbox test bench.

FIGURE 22. Wind turbine gearbox bearing inner ring and rolling element fault diagram.

of 14Hz. is an extracted waveform diagram of the AR
simulation model, Figure18(b) is a waveform diagram after
AR filtering; Figure 18(c) is an envelope spectrum anal-
ysis waveform of the composite signal after AR filtering.
It can effectively extract the fault frequency of 100Hz, but it
has some limitations in the identification of low-frequency
faults. Figure19 is a waveform diagram of the simula-
tion model of the composite fault in the original MloG
method. Figure19(b) shows the waveform diagram of the
original composite signal processed by MloG smoothing and
Figure19(c) is a waveform diagram of frequency domain
analysis of the MloG filtered signal. The frequency domain
analysis of the waveform shows that the two and three times
of 14Hz are extracted, but the pulse information of 14Hz
cannot be obviously observed.The fault characteristic infor-
mation of 100Hz is extracted effectively. Figure 20 is a
waveform diagram of the composite fault diagnosis of the
simulated signal by the method MSGloG proposed in this
paper, Figure 20(b) shows the time domain waveform after
smoothing filtering. Figure 20(c) is a frequency spectrum of
the signal processed by the MSGloG method, in which both
fault frequencies are effectively extracted, and the extracted
fault feature frequency is more significant. The proposed
method of MSGloG is better than the commonly used fault
extraction deconvolution method MED, MOMEDA, MloG
and autoregressive filtering method AR in the extraction of
multi-fault simulation models.

V. EXPERIMENTAL VERIFICATION
In order to verify the feasibility of the proposed method in
engineering application, the proposed method is applied to
the composite fault diagnosis of wind turbine gearbox. In
Figure 21, the structure of a wind turbine gearbox test bench
is shown. The main components of the test bench include
motors, wind turbines, acceleration sensors, data acquisition
analyzers, gearboxes, etc. At the same time, the output shaft
has a frequency of 30.24 Hz, the intermediate shaft has a
frequency of 8.19 Hz, the low- speed axis has a frequency
of 1.8 Hz, and the data sampling frequency is 5000 Hz.
The frequency of failures can be obtained by calcula-
tion. The specific failure information is listed in Table 1.
Figure 22 shows the failure diagram of the wind turbine gear-
box bearing and rolling elements. The fault type of gearbox
in this experiment is a composite fault. Figure 22 (a) is the
bearing inner ring peeling failure, Figure 22 (b) is the pitting
failure of the bearing rolling element.

Figure 23 is a waveform diagram of the collected mea-
sured fault signal and an envelope spectrum waveform of
the signal. It can be seen from the figure that the dou-
ble frequency, triple frequency and quadruple frequency
of the inner ring fault frequency are effectively extracted,
but the fault characteristic information of the rolling ele-
ment is not extracted effectively. Therefore, it is particu-
larly important to enhance the fault characteristics of the
signal.
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TABLE 1. Fault frequency.

FIGURE 23. Vibration signal diagram of wind power gearbox measured.

Figure 24 is the result of fault information extraction in the
experimental signal by MOMEDA algorithm. Figure 24(a)
is the collected original signal. Figure 24(b) shows the fault
information obtained by the deconvolution of the original
signal by the MOMEDA algorithm. In the Figure, it can
be seen that the impact information is highlighted; Fig-
ure 24(c) is the frequency domain diagram of the envelope
spectrum extraction of the experimental signal processed by
MOMEDA, which can be visually seen from the Figure,
the fault information of the inner ring of the bearing is
effectively extracted, but the fault information of the rolling
element is still submerged by the noise and is not effectively
extracted.

Figure 25 is the result of fault information extraction in
the experimental signal by AR algorithm. Figure 25(a) is
a waveform diagram of the original vibration signal of the
collected wind power gearbox; Figure 25(b) is a time-domain
waveform diagram obtained by performing AR filtering on
the collected vibration signal; Figure 25(c) is the envelope
signal diagram of the vibration signal of the wind power
gearbox after filtering by the AR algorithm. In the Figure,
the fault information of the inner ring of the bearing is still
effectively extracted, and the effect of extracting the fault
information of the rolling element is not obvious.

Figure 26 is the result of fault information extraction in the
experimental signal by MED algorithm. The MED algorithm
can enhance the amplitude of the shock information while
filtering the vibration signal. Figure 26(a) is the vibration sig-
nal of the collected wind turbine gearbox; Figure 26(b) is the
time-domain diagram of the fault information after filtering
the acquired signal by MED algorithm; Figure 26(c) is the
envelope spectrum analysis of the vibration signal after MED

FIGURE 24. MOMEDA processing results of measured signals.

processing. It can be seen intuitively from the Figure that the
extraction effect of the bearing inner ring fault is obvious and
the rolling element fault feature information is not effectively
extracted.

Figure 27 is the result of fault information extraction in the
experimental signal by MloG algorithm. Using the method
proposed in this paper, the scale parameter of the experimen-
tal signal is determined to be σ = 1.2. Figure 27(a) is the
vibration information of the wind turbine gearbox collected
in the experiment; Figure 27(b) is a waveform diagram of the
smoothed filtering of the acquired vibration signal waveform
by the MloG algorithm. It is clear that the noise information
contained in the vibration signal is attenuated; Figure 27(c)
is a waveform diagram of the envelope spectrum processing
of the vibration information after smooth filtering by MloG.
It can be seen that there are two frequencies related to the fail-
ure of the rolling element, while there is only one frequency
related to the failure of the bearing inner ring. Such a fault
extraction result is not very satisfactory.

Figure 28 is the result of fault information extraction in the
experimental signal byMSGlog algorithm. Using the method
proposed in this paper, the scale parameter of the experimen-
tal signal is determined to be σ = 1.2 and the filter order
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FIGURE 25. AR processing results of measured signals.

FIGURE 26. MED processing results of measured signals.

k = 3. Figure 28(a) is the vibration information of the wind
turbine gearbox collected in the experiment; Figure 28(b) is a
waveform diagram of the smoothed filtering of the acquired
vibration signal waveform by the MSGloG algorithm. Figure
28(c) is a waveform diagram of the envelope spectrum pro-
cessing of the vibration information after smooth filtering by
MSGloG. It can be seen that the fault frequency of the rolling
element is effectively extracted, the frequency multiplication
of the fault is clearly displayed, and the fault characteristic
information of the inner ring fault of the bearing is effectively

FIGURE 27. MloG processing results of measured signals.

FIGURE 28. MSGloG processing results of measured signals.

extracted, the purpose of extracting multiple fault features of
wind power gearbox is achieved.

VI. CONCLUSION
The improved Gaussian filtering method has certain advan-
tages compared with the existing deconvolution method and
the autoregressive filtering algorithm, but the filter order and
scale parameters have a great influence on the effect of the
method. This paper proposes a new indicator for evaluating
the MSGloG effect, the marginal envelope spectral entropy,
this index can simultaneously evaluate the periodicity of the
signal and the noise reduction performance of the Gaussian
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filtering method. By discriminating the index, the two param-
eters that affect the filtering effect can be reasonable. Through
simulation verification, the proposedmarginal envelope spec-
tral entropy index can well evaluate the effect of MSGloG.

This paper proposes an adaptive MSGloG fault diagnosis
method based onmarginal envelope spectral entropy, which is
successfully applied to the composite fault diagnosis of wind
turbine gearbox. Through simulation and experimental anal-
ysis, the proposed method is superior to the current common
methods in the extraction of composite faults for wind turbine
gearboxes.
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