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ABSTRACT By offloading computationally intensive tasks of smart end devices to edge servers deployed at
the edge of the network, mobile edge computing (MEC) has become a promising technology to provide com-
puting services for Internet of Things (IoT) devices. In order to further improve the access capability of MEC
and increase the spectrum utilization efficiency, in this article, Non-Orthogonal Multiple Access (NOMA)
technology is introduced into MEC systems and we study the computing offloading problem of multi-user,
multi-task and multi-server through joint optimization of task offloading and resource allocation, we intend
to maximize the system’s processing capability as an optimization goal. To solve the proposed mixed integer
nonlinear programming (MINLP) problem, the objective optimization problem is firstly decoupled into
two sub-problems of resource allocation and task allocation. Secondly the resource allocation problem is
further decomposed into computation resource optimization and communication resource allocation. For the
communication resource allocation, it first fixed power allocation, then the sub-channel allocation problem
is regarded as a many-to-one matching problem between sub-channels and users. In addition, we propose
a low-complexity sub-optimal matching algorithm for sub-channel allocation to maximize the offloading
efficiency. Based on our proposed sub-channel allocation scheme, the transmission power allocation is
regarded as a convex optimization problem, which is tackled by Lagrangian multiplier method. Finally,
under the condition of resource allocation, the tasks of all end devices (EDs) are allocated. Experimental
numerical results show that the proposed scheme can effectively decrease latency and energy consumption
of networks, improve system processing capability, and further improve MEC system performance.

INDEX TERMS Mobile edge computing, multi-task multi-server, non-orthogonal multiple access,
processing capability, resource allocation, task offloading.

I. INTRODUCTION
The process of social industrialization puts forward high-
quality requirements for fast and effective data services and
the application of 5G network provides a basic platform
for this demand. However, with the popularity of mobile
terminals (MTs) such as smart-phones, wearable devices
and etc., the increase of massive data and the emergence
of diversified services, the development of wireless commu-
nication has been affected a lot. Meanwhile the explosive
growth of mobile Internet services has generated various
emerging mobile applications with huge amount of compu-
tation, such as virtual reality (VR), human-computer inter-
action and big data analysis, which often demand stringent
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delay and processing requirements. This will bring chal-
lenges to MTs with limited battery capacity and computing
resources [1]–[3]. Although the cloud center is rich in com-
puting and storage resources, the main problem is resource
centralization and the distance between MTs and the cloud
is longer, which will lead to the large network delay, high
energy consumption and task execution overhead, while sen-
sitive applications (such as electronic medicine) require low
delay and small energy consumption [4]. To confront such
a real-time challenge, as a distributed computing paradigm,
MEC was proposed to solve the above problems by bring-
ing computation and storage close to edge network [5].
MEC can reduce the delay and energy consumption of com-
puting tasks and improve the resource utilization through
properly offloading computation-intensive tasks to nearby
MEC servers. With its advantages, MEC has been applied
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in many fields, such as IoT, Internet of Vehicles (IoV) and
ultra-dense network et al. [6], [7]. In addition, in order to
further improve the efficiency and flexibility of computing
offloading by MEC, a new multi-access MEC paradigm is
proposed, in which MTs can use different wireless access
networks to offload computing tasks to multiple edge servers
simultaneously [8]–[10]. However, due to data transmis-
sion through wireless link, the performance of MEC system
mainly depends on the allocation of wireless resources for
data transmission and calculation task allocation, which has
aroused many scholars’ research.

With the rapid development of the IoT, orthogonalMultiple
Access (OMA) technology has become difficult to meet the
demand of mass MTs for simultaneous access, so how to
implement a time-frequency resource block (RB) to carry
more MTs has become a new research direction. And NOMA
technology [11], [12] comes into being. NOMA allows mul-
tiple MTs to use the same RB simultaneously and further
apply the successive interference cancellation (SIC) tech-
nology to alleviate the MTs’ co-channel interference, which
can effectively improve resource utilization. A lot of studies
have confirmed the potential advantages of NOMA, such
as improved system throughput, increased energy spectrum
efficiency and reduced latency [13]–[15].

MEC can reduce task execution costs, but MEC server has
finite computation capacity relative to cloud center, combined
with the advantages of MEC and NOMA, the paper considers
aNOMAenabledmulti-nodeMEC system,where EDs utilize
NOMA to offload their computing tasks to different edge
servers simultaneously. By reasonably allocating computing
tasks of EDs and wireless resources in system, the offloading
efficiency can be enhanced and the MEC network perfor-
mance will be further improved. The main contributions of
this article are summarized as follows:

(1)We investigate a network scenario with multiple mobile
edge server nodes (MSNs) and multiple EDs which have
computation-intensive tasks to process, in which eachMSN is
equippedwithMEC server to providewireless and computing
resources, and each ED’s task can be divided into parts of any
size for local and remote computing.

(2) To improve resource utilization andMEC performance,
NOMA technology is adopted for data transmission during
task offloading. We consider the constraints of communica-
tion resources and wireless resources, the joint optimization
problem of task offloading and resource allocation is for-
mulated to maximize the task processing capability of the
system.

(3) To cope with the formulated MINLP problem, accord-
ing to the characteristic of the objective function, we firstly
break down original problem into two sub-problems, namely
resource allocation (RA) problem and task allocation (TA)
problem. Then we can further decompose the RA problem
into computation resource and communication resource allo-
cation.

(4) For communication resource allocation, the power allo-
cation among sub-channels is first supposed to be equal, and

then the sub-channel allocation problem is regarded as a two-
sided matching process between sub-channels and MTs. And
we put forward a low complexity sub-optimal matching algo-
rithm for sub-channel allocation. Based on the subchannel
allocation result, the transmission power allocation is consid-
ered as a convex optimization problem and is solved by using
Lagrange multiplier method. Finally, on the basis of resource
allocation, the task allocation algorithm is used to solve the
TA problem. The computer simulation results indicate that
the proposed task offloading and resource allocation scheme
improves the MEC system performance.

The remainder of the paper is organized as follows.
We introduce the related works in section II and the
NOMA-MEC network model in section III. In section IV,
we show the formulated optimization problem and decom-
pose the problem. Section V describes the solution for the
proposed problem and we show the simulation results in
section VI. Finally, the conclusion is given for the paper in
section VII.

II. RELATED WORKS
Recently, since MEC has made great breakthroughs in
improving quality of experience (QoE), which has aroused
many scholars’ research in task offloading and resource allo-
cation. In most of the research, they regard delay, energy
consumption and system overhead as the important criteria
with the constraints of quality of service (QoS) and resources.
In a single MEC server scenario, some works focused on
decreasing the energy consumption with the constraints of
computation resources and delay, the tasks of multiple users
are offloaded to an edge server, and the joint optimiza-
tion problem of offloading decision and resource allocation
was studied in binary offloading case [16]–[18]. In [19],
the joint sub-channel and power allocation problem in the
MEC system based onOrthogonal FrequencyDivisionMulti-
ple Access (OFDMA) was investigated to minimize the delay
of each mobile device. Chen et al. [20] studied the multi-user
offloading problem in a multi-channel wireless environment
and regarded the distributed offloading decision problem as a
multi-user potential game, and proved the existence of Nash
equilibrium. In [21], the authors designed a MEC offload-
ing mechanism to save energy and concurrently meet low
latency for a mobile user. Although the mentioned above
research about single server has made some achievements
in improving the performance of MEC, due to the limited
computing capacity of the MEC server, when a large number
of terminals request computing offloading, it will cause net-
work congestion and large delay. In order to further improve
the offloading efficiency, some researchers have studied the
cooperative multi-node resource allocation. Literature [22]
proposed an offloading scheme that MTs’ additional tasks
could be further offloaded to other MEC servers connected
to it through the collaboration of multiple MEC servers,
to enhance the computing offloading service and improve the
revenue of the terminal. Yang et al. [23] presented a two-layer
architecture consisting of micro base station and macro base
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station, in which users offload their computing tasks to micro
base station (MBS) or MBS relayed them to macro base sta-
tion to complete task execution, effectively reducing system
energy consumption. In [24], K. Cheng et al. proposed a
computation offloading framework to enable multiple users
to offload their computing tasks to multiple MEC servers by
jointly optimizing the offloading strategy and radio resource
allocation, which assumed the computing resources allocated
to each user are fixed. Yang et al. [25] proposed a novel
offloading framework for the multi-server MEC network
assisting mobile users in executing computation-intensive
jobs via uplink OFDMA offloading system. A multi-task
learning based feedforward neural network (MTFNN) model
is designed to resolve theMINLP problem by jointly optimiz-
ing offloading decision and computational resource alloca-
tion. The simulation results show that the uploading scheme
based on the MTFNN model has better performance. It is
worth learning from when solving such problems.

The aforementioned research aboutMEChave had obvious
effects in reducing time delay and energy consumption, but
the studies of single server and multi-server are all based
on OMA-MEC system, the spectrum utilization efficiency is
lower, and the user experience cannot be well satisfiedwhile a
large number of terminals accessed to request task offloading.

Therefore, facing the deficiencies of previous MEC
research, with the advantages of NOMA, many works
focused on NOMA-MEC systems to achieve better resource
allocation and improve the quality of user experience.
M. Zeng et al. [26] introduced wireless power transfer
(WPT) technology into NOMA-MEC system for energy-
efficient computation, and studied task offloading problem to
maximize the sum of computing rates of all users. To better
improve the ability to access of MEC systems and reduce
users’ computation overhead, in [27], Zhou et al. introduced
NOMA into MEC system and investigated a multi-user com-
putation offloading problem, then by fixing the offloading
decision iteratively updating the resource allocation and effi-
ciently solve it. In [9] and [10], the authors considered a
NOMA-based multi-access MEC IoT system.

The emergence of 5G network brings a huge breakthrough
on transmission rate, MEC-enable IoT was proved as a
promising solution to reduce the delay of task and save the
energy of UEs in some IoT scenarios, such as unmanned
aerial vehicle (UAV), autonomous vehicle and Industry
IoT et al. [28]–[31]. In [29], an edge learning-assisted
offloading framework for autonomous driving is proposed
to improve the inference accuracy while meeting the latency
constraint for autonomous driving. In [30], due to the high
inference accuracy and strict delay requirements in the tar-
get tracking scenario, and the limited computing resources
and energy budget of the UAV, a novel hierarchical deep
learning (DL) tasks distribution framework was proposed,
where the type of DL task is offloaded to the MEC server,
and further improve the accuracy of reasoning. In [31],
Z. Zhao et al. investigated a communication and computation
problem for industrial IoT networks. To enhance the system

FIGURE 1. Network model of the system.

performance, a three-hierarchical optimization framework is
proposed to reduce the latency and energy consumption by
jointly optimizing bandwidth allocation, offloading, and relay
selection.

By summarizing the research of NOMA in MEC, we can
conclude that the combination of NOMA andMEC has made
progress in meeting user requirements and improving user
experience. Different from some studies, we are committed to
propose an extensive computation offloading solution for the
multi-user multi-task and multiple servers NOMA enabled
MEC system by jointly optimizing the task allocation and
resources allocation.

III. SYSTEM MODEL
A. NETWORZK MODEL
In this article, we consider a heterogeneous NOMA-MEC
network shown as Fig. 1, which consists a number of MSNs
with different storage and computing capabilities to pro-
vide offloading services for multiple EDs. These nodes are
mainly composed of base stations, wireless access points,
wireless routers, etc., and each node equipped with a MEC
server. To increase spectrum utilization, all MSNs share spec-
trum resources, the system spectrum equally divides into a
set of sub-channels denoted as SC = {1, . . . ,K } and denote
k ∈ SC as sub-channel k . To facilitate analysis, we assume
a quasi-static network, this assumption has been widely used
in [27], [36]. Table 1 shows the main notations to be used in
the paper.

We denote the set of MSNs byM = {1,. . . ,M} and denote
m ∈ M as MSN m, the set of EDs by N = {1, . . . ,N }
and n ∈ N as ED n, each ED n has a task CTn, which
can be expressed by < Dn, f ln ,Bn >, where Dn denotes
the size of the input data, f ln denotes the local computing
capacity of ED n, and Bn denotes the number of CPU cycles
required for computing one bit of task of ED n. We assume
the input task can be into sections of any size to execute
paralleled at the EDs and MEC servers [32]. We supposed
all EDs have J tasks offloaded to MSNs for computation, and
denote the set of offloading tasks as J = {1, 2, . . . J} , J ≤
N × M , we denote Dnm ∈ J as ED n offloads the tasks
to MSN m.
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TABLE 1. Notations.

B. COMMUNICATION MODEL
We first introduce the wireless transmission model in this
system. In the uplink, each ED sends the signals that are
superimposed together by NOMA respectively. we assume
SIC receiver is implemented at the MSNs for receiving end.
On each channel, according to the order of EDs’ channel
gains, while the MSN with small channel gain is decoded,
the higher channel gain is regarded as interference [33].
Specifically, through continuous decoding and reshaping,
the signal with poor channel quality is first demodulated, and
we subtract it from the entire superimposed signal interfering
signal, and then decode signal with the second poor channel
quality, and so on, until all the signals are separated. So the
signal with the best channel quality is not interfered by others
in the same NOMA cluster, but the MSN with the worst

channel quality is interfered by all other MSNs in the cluster.
Without loss of generality, sknm is denoted as channel alloca-
tion variable, if ED n offloads its tasks to MSN m through
subchannel k , sknm = 1, otherwise, sknm = 0. We assume that
a subchannel can be occupied by multiple offloading tasks,
and each task occupies at most one sub-channel, so there are
the following constraints

N∑
n=1

M∑
m=1

sknm ≤ Jmax, ∀k (1)

K∑
k=1

sknm ≤ 1, ∀n,m (2)

where Jmax represents the maximum number of offloading
tasks that can be assign to each sub-channel.

The transmission power and channel power gain from ED
n to MSN m on channel k are respectively denoted by pknm
and gknm, Generally, we assume the channel gains of ED n on
channel k are ordered as∣∣∣gkn1∣∣∣ ≤ ∣∣∣gkn2∣∣∣ ≤ . . . ≤ ∣∣∣gknm∣∣∣ ≤ . . . ≤ ∣∣∣gknM ∣∣∣ ,

∀n ∈ N , m ∈M (3)

After the SIC technology, the received signal at MSN m from
ED n on subchannel k is

yknm = gknm

√
pknmx

k
nm + g

k
nm

M∑
l=m+1

√
pknlx

k
nl

+

M∑
m=1

N∑
l′=1,l′ 6=n

gkl′m

√
pkl′mx

k
l′m + σ

2 (4)

where xknm denotes the modulated symbol of MSN m on sub-
channel k . The first term in (4) is the received signal transmit-
ted from ED n to MSNm. The second term represents the co-
interference when ED n offloads tasks to other MSNs on the
same sub-channel. The third term represents the interference
that other EDs offload tasks to MSN m through the same
channel. The fourth term is white Gaussian noise (AWGN).

The data rate from ED n to MSN m on sub-channel k is

rknm = W log2
(
1+ γ knm

)
(5)

In Eq. (5)

γ knm =
pknm

∣∣gknm∣∣2∣∣gknm∣∣2 M∑
l=m+1

pknl +
M∑
m=1

N∑
l′=1,l′ 6=n

pkl′m
∣∣gkl′m∣∣2 + σ 2

where W is the bandwidth of the sub-channel. σ 2 denotes
the power of the additive white Gaussian noise (AWGN). Let

I knm =
∣∣gknm∣∣2 M∑

l=m+1
pknl +

M∑
m=1

N∑
l′=1,l′ 6=n

pkl′m
∣∣gkl′m∣∣2.

Therefore, the total sum rate from ED n to MSN m is

rnm =
∑

k∈K
sknmr

k
nm (6)
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C. COMPUTION MODEL
In the paper, EDs’ tasks are divided according to the
proportion, θnn and θnm are represented the proportion of
local computing and offloading tasks to MSN m of ED n
respectively.

When requested task θnnDn of ED n is computed locally,
the required computing time T lnn can be expressed as

T lnn =
θnnDnBn

f ln
(7)

The system generates additional delay when the tasks are
executed at the MSNs. For each ED, the latency consists of
uplink transmission time, the processing time at the MSNs,
and the downloading time of computation results. In this
article, it is assumed that the results downloading time are
ignored, since the task results are usually much smaller than
the size of input data, as in [27], [36].

When computation task θnmDn of ED n is offloaded to
MSN m executed remotely, the transmission time can be
computed as

T offnm =
θnmDn
rnm

(8)

The delay of remote calculation on MSN m is

T exenm =
θnmDnBn
f emn

(9)

where f emn is the computing resources allocated by the MSN
m to ED n.

The total delay caused by executing task θnmDn of ED n at
the MEC server m can be represented as

T cnm = T offnm + T
exe
nm (10)

For the convenience of processing, the total delay of task
execution for ED n is expressed as

Tnm =


θnnDnBn

f ln
, n = m

θnmDn
rnm

+
θnmDnBn
f emn

, n 6= m
(11)

Since the tasks of ED n are sliced into multiple parts for
local computation and remote computation respectively, tasks
are transmitted and processed in parallel. Therefore, the time
of ED n completing the computation task is the maximum
of local and edge computation time, which is presented as
follows

Tn = maxTnm (12)

In addition, the task processing capacity of ED n is defined
as [34]

Cn =
Dn
Tn

(13)

Finally, this article defines C as the overall task processing
capability of the whole system.

C =
N∑
n=1

Cn (14)

IV. PROBLEM FORMULATION
When the task processing capability of the whole system is
higher, namely the C is so higher that the system obtains
better the system processing capability. Therefore, our goal
is to maximize the task processing capability of the system
by jointly optimizing the ratio of tasks θ , sub-channel assign-
ment s, transmit power p, and computing resources allocation
f, our optimization problem P1 is described as

max
{P,θ,f ,S}

C (15)

s.t. c1 : sknm ∈ {0, 1} , ∀n,m, k (15a)

c2 :
N∑
n=1

M∑
m

sknm ≤ Jmax, ∀k (15b)

c3 :
K∑
k=1

sknm ≤ 1, ∀n,m (15c)

c4 :
M∑
m=1

∑
k∈K

sknmp
k
nm ≤ P

max
n , ∀n (15d)

c5 : pknm ≥ 0, ∀n,m, k (15e)
c6 : rknm ≥ rmin, ∀n,m, k (15f)
c7 : f emn ≥ 0, ∀n,m (15g)

c8 :
N∑
n=1

f emn ≤ Fm, ∀m (15h)

c9 : θnn, θnm ∈ [0, 1] , ∀n,m (15i)

c10 : θnn +
M∑
m=1

θnm = 1, ∀n (15j)

where Pmax
n is the maximum transmit power of ED n, Fm is

the maximum computing capacity of MSN m.
Constraint c1 states that subchannel allocation sknm is a

binary variable; c2 means that at most one channel serves a
task of one ED; c3 implies that each offloading task occu-
pies at most one sub-channel; c4 and c5 represent power
constraints; c6 represents the QoS constraint, and the basic
communication must guarantee the network data rate; c7 and
c8 indicate the computing resources limitation for each ED;
c9 and c10 ensure all tasks of each ED are executed both local
and on MSNs remotely.

Obviously, since channel decision variable is 0-1, the pro-
posed problem P1 is a MINLP problem and it is difficult
to obtain the optimal solution. To make it more tractable,
problem P1 can be written as

max {C} = max

{
N∑
n=1

Cn

}
= max

{
N∑
n=1

min
{
Dn
Tnm

}}
(16)

We assume that the input data Dn of each mobile device is
fixed, the task processing capability of each ED is only related
to its delay, and the delay among each ED does not affect each
other. So the optimal solution of P1 can be solved when the
minimum Tnm is obtained [34]. Therefore, the P1 problem
can be transformed into

P2: min
∀n

maxTnm

s.t. c1− c10 (17)
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Tnm is mainly a function of task allocation, transmission
power and computation resource. Therefore, task allocation
and resource allocation are crucial in offloading. And we
decomposed the P2 problem into two sub-problems for solu-
tion: resource allocation problem (P2′) and task offloading
problem (P2′′). Where P2′ determines how much transmit-
ting power and computing capacity allocated on MSNs for
offloading tasks, and P2′′ determines how many tasks will be
assigned to local EDs and MSNs to compute. The specific
description is as follows.

Due to consider the transmission rate and computing
capacity, the maximum effective offloading rate R is obtained
from resource allocation is

P2′ : max
S,P,f

R = max
N∑
n=1

M∑
m=1

Rnm

s.t. c1− c8 (18)

where Rnm =


f ln
Bn
, n = m

rnmf emn
Bnrnm + f emn

, n 6= m

Through task assignment, the minimum effective delay of
task processing is

P2’’:

minmax
θ

Tnm = min max
{
θnnBnDn

f ln
,
θnmDn
Rnm

}
, ∀n,m

s.t. c9, c10 (19)

V. PROPOSED ALGORITHM
A. PROBLEM DECOMPOSITION
For the problem (P2’), the effective offloading rate R of the
system in (18) is equivalent to

R =
N∑
n=1

M∑
m=1

K∑
k=1

sknmr
k
nmf

e
mn

Bn
K∑
k=1

sknmrknm + f emn

(20)

By using the idea of divide-and-conquer strategy, the
offloading rate of ED n to MSN m for computing tasks was
firstly optimized

max
S,P,f

Rnm =

K∑
k=1

sknmr
k
nmf

e
mn

Bn
K∑
k=1

sknmrknm + f emn

, ∀m, n

s.t. c1− c8 (21)

Therefore problem (20) is equivalent to

min
S,P,f

1
Rnm
=

Bn
K∑
k=1

sknmr
k
nm + f

e
mn

K∑
k=1

sknmrknmf emn

, ∀m, n

=
Bn
f emn
+

1
K∑
k=1

sknmrknm

, ∀m, n

s.t. c1− c8 (22)

It can be seen from (22) that computational resource allo-
cation f emn and communication allocation sknm and pknm are
decoupled in the objective function and constraints. By using
this nature, we can decompose problem (22) into two inde-
pendent problems, namely communication resource alloca-
tion and computational resource allocation, and solve them
respectively, as shown in the following sections.

1) COMPUTATION RESOURCES ALLOCATION
Through (22), we describe the computational resource
allocation problem as follow

min
f

Bn
f emn
, ∀m, n

s.t. c7, c8 (23)

It noted that the constraints c7 and c8 are convex, and we
denote the objective function of (23) as 3(f ), by obtain-
ing the second derivative of 3(f ) with respect to f emn,
we have

∂23(f )
∂f e2mn

=
2Bn(
f emn
)3 > 0, ∀m, n (24)

Therefore, (22) is a convex optimization problem and can
be solved byKKT conditions.Wefirst express the Lagrangian
function of (23) as

L (3 (f ) , v) =
Bn
f emn
+

M∑
m=1

vm

(
N∑
n=1

f emn − Fm

)
(25)

where v = [v1, v2, . . . , vM] is the Lagrange multiplier vector.
And take the first derivative of a Lagrange function

∂L (3 (f ) , v)
∂f emn

= −
Bn(
f emn
)2 + vm, ∀n,m (26)

Let ∂L (3 (f ) , v) /∂f emn = 0, the optimal resource
allocation of problem (21) can be obtained as follows

(
f emn
)∗
=

√
Bn
v∗m
, ∀n,m (27)

When v∗m > 0, meet the following constraints

N∑
n=1

(
f emn
)∗
= Fm, ∀m (28)

Substitute (25) into (26), the Lagrange multiplier is

v∗m =

(
1
Fm

N∑
n=1

√
Bn

)2

, ∀m (29)

Substituting (29) into (27), we can obtain the optimal
solution of computation resource as(

f emn
)∗
=

Fm
√
Bn

N∑
n=1

√
Bn

, ∀m (30)
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2) COMMUNICATION RESOURCES ALLOCATION
Through (22), we describe the communication resource
allocation of all subchannels problem as follows

min
S,P

1
N∑
n=1

M∑
m=1

K∑
k=1

sknmrknm

s.t. c1− c6 (31)

Similarly, we equate (31) as

max
S,P

ξ =

N∑
n=1

M∑
m=1

K∑
k=1

sknmr
k
nm

s.t. c1− c6 (32)

Since subchannel allocation is a 0-1 decision problem,
problem (32) is still a MINLP problem. Moreover, it can be
seen that the subchannel allocation and power allocation are
coupled of on all subchannels, and it is quite complicated
to obtain the global optimal solution, so we firstly decouple
the subchannel allocation and power allocation to obtain the
solution. It assumes that the transmission power is equal
on each subchannel, and we propose a greedy subchannel
matching algorithm for channel assignment.

3) SUB-CHANNEL ASSIGNMENT
In order to describe the dynamic matching between EDs
and sub-channels, sub-channel allocation is regarded as a
two-sided matching process between the set of offloading
tasks J and sub-channel set SC. If ED n uses channel k to
offload the task to MSN m in the process of offloading tasks,
we deem that sub-channel SCk and offloaded task Dnm are
matched each other. According to channel state information,
the preference lists of offloading tasks and subchannels can
be expressed as
PF_ED = [PF_ED (D11) , · · · ,PF_ED (Dnm) , · · · ,

PF_ED (DNM )]T

PF_SC = [PF_SC (1) ,· · ·,PF_SC (k) ,· · ·,PF_SC (K )]T

where PF_ED (Dnm) and PF_SC (k) are the preference lists
of Dnm and SCk , respectively.
We use a notation � to represent the preference relation-

ship, if ED n offloads task Dnm to MSN m has higher channel
gain on SCi than that on SCj, we say Dnm prefers SCi to SCj.
It can be noted as

SCi (Dnm) � SCj (Dnm) (33)

If the offloading tasks in set q can provide higher ξ than in
set q′ on SCk , we say SCk prefers offloading task set q to task
set q′, and we describe the case as

ξ (q) > ξ
(
q′
)
, q, q′ ⊂ J (34)

According to the preference list of EDs’ offloading tasks
and sub-channels, the sub-channel allocation problem is
expressed as a two-sided matching problem as [15] and [33].
First, two definitions are considered.
Definition 1: Given offloading task of EDs and subchan-

nels as two disjoint sets J and SC. A many-to-one, two-sided

matching A is a mapping from all the subsets of J into SC
for Dnm ∈ J and SCk ∈ SC, and satisfies follow conditions

1) A (Dnm) ∈ SC.
2) A−1 (SCk) ⊆ J .
3) |A (Dnm)| = 1,

∣∣A−1 (SCk)∣∣ ≤ Jmax.
4) SCk ∈ A (Dnm)⇔ Dnm ∈ A−1 (SCk).

The above conditions are explained as follows: 1) shows that
each offloading task if and only if matches one subchannel;
2) implies each subchannel can be matched with a subset
of tasks; 3) represents that the number of tasks of EDs can
be allocated on the same subchannel is limited to Jmax; and
4) expresses offloading task Dnm and subchannel SCk are
matched with each other.
Definition 2: Given a matching A, we suppose Dnm /∈

A−1 (SCk) ,SCk /∈ A (Dnm), if there is ξ (Snew) >

ξ
(
A−1 (SCk)

)
, Snew becomes the preferred tasks set for sub-

channel SCk and (Dnm,SCk) is a preferred matched pair.
Where Snew ⊆ {Dnm} ∪ S, S = A−1 (SCk),and where S is
the task set has been assigned to SCk .
On basis of the above analysis, we will depict the matching

process between the offloading tasks of EDs and the subchan-
nels.When EDs offload tasks, if each ED has to select the best
subchannel to transfer tasks. Meanwhile, each subchannel
has to assign the best subset of tasks. This will lead to high
complexity, especially while there are more EDs. Since the
optimal solution case is to search all possible matches to
maximize overall transmission rate. Therefore, in order to
reduce the complexity, a suboptimal subchannel allocation
algorithm (SSAA) is proposed. The main idea of the sub-
optimal matching algorithm is that each ED sends matching
request through its offloading tasks’ preference list to its
preferred channel, but this preferred channel has the right
to reject or accept the task based on the offload efficiency
provided by all offloading tasks. The algorithm 1 describes
as follows.

B. COMPLEXITY ANALYSIS
The optimal subchannel assignment scheme can be obtained
by exhaustive searching over all possible combinations of
EDs and subchannel and selecting one that maximizes the
system offloading efficiency. If we have J offloading tasks of
EDs and K subchannels, we suppose there are two offloading
tasks that can reuse the same subchannel. The time complex-
ity of exhaustive searching isO

(
(2K )!/2K

)
. To compare with

the complexity of our proposed algorithms, we take natural
logarithm of the complexity. The exhaustive searching log-
arithm complexity is O (ln ((2K )!)− K ) = O (ln ((2K )!)).
By adopting the Stirling’s formula [15], ln (x!) = x ln x −
x + O (ln (x)), the logarithm complexity of the exhaustive
method can be expressed as O (K lnK ). In the proposed
suboptimal algorithm, the complexity of the worst case is
O
(
K 2
)
. And the logarithm complexity is O (lnK ). Since

O (K lnK ) > O (lnK ) and the actual complexity of the
proposed suboptimal algorithm is much smaller than the
worst-case complexity, so the complexity of the proposed
algorithm is much smaller than the optimal sub-channel
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Algorithm 1 SSAA
1: Initialize the power allocation for each ED pnm = Pmax

n /M .
2: Initialize preference lists PF_ED (Dnm) for all the
offloading tasks of EDs and PF_SC (k) for all the
subchannels according to the channel state information,
∀n,m.

3: Initialize the matched list SMatch (k) to record the set of
tasks Dnm allocated on SCk for all the subchannels,
∀k ∈ SC.

4: Initialize SUnMatch to record Dnm that has not been
allocated any subchannel.

5: while {SUnMatch} 6= ∅ do
6: for n = 1 to N do
7: for m = 1 to M do
8: Based preference lists PF_ED(Dnm), each ED sends

matching request to its most preferred subchannel k∧.
9: if |SMatch(k∧)| < Jmax then
10: Subchannel k∧ adds task Dnm of ED n to SMatch(k∧),

and removes Dnm from SUnMatch
11: end if
12: if |SMatch(k∧)| = Jmax then
13: a) Subchannel k∧ select the set of Dnm, which satisfies

maximum ξ .
b) Reject other tasks of EDs, update SUnMatch and delete
the rejected tasks from subchannel k’s preference list.
c) The unchosen Dnm will go to step 8 and repeat this
step until it has been allocated on one subchannel.

14: end if
15: end for
16: end for
17:end while

allocation scheme. It can be found that for a small number
of EDs (N = 3), the SSAA will yield the identical results
from the exhaustive search.

1) POWER ALLOCATION ON EACH SUBCHANNEL
In this section, we will optimize the transmit power P under
given sub-channel allocation. The power allocation problem
on each sub-channel is expressed as

max
P

N∑
n=1

M∑
m=1

rknm, ∀k

s.t. c4− c6 (35)

Obviously, the objective function of (35) is the logarithmic
function of Pknm, the second derivative of Pknm is less than 0,
so problem (35) is convex. Therefore, it can be solved by the
KKT condition. First construct the Lagrangian function

L (P, α, β) =
N∑
n=1

M∑
m=1

rknm +
N∑
n=1

K∑
k=1

αknm

(
Pmax
n −

M∑
m=1

pknm

)

+

N∑
n=1

K∑
k=1

M∑
m=1

βknm

(
rknm − rmin

)
(36)

where α, β> 0 represents the Lagrange multiplier vector.

Algorithm 2 PAA
1: Set the iteration index t = 0, the iteration step sizes
ζ1 (t) > 0, ζ2 (t) > 0

2: Initialize ε > 0, αknm (1) > 0 and βknm (1) > 0, according
to eq. (38), we calculate pknm.

3: Update the Lagrange multiplier αknm (t) and β
k
nm (t)

according to (39) and (40).
4: Then update pknm according to equation (38)
5: if

∣∣pknm (t + 1)− pknm (t)
∣∣ < e||t > Tmax, the result is

the optimal solution, where Tmax is the maximum number
of iterations.

6: else set t = t + 1and return step 3.
7: end if

The first derivative of pknm is

∂L (P, α, β)
∂pknm

=
Wgknm(

I knm+σ 2 + pknmgknm
)
ln 2

(
1+ βknm

)
− αknm

(37)

Let ∂L (P, α, β) /∂pknm = 0, the optimal power allocation
is expressed as

(
pknm

)∗
=

W
(
1+

(
βknm

)∗)(
αknm

)∗ ln 2 −
I knm + σ

2

gknm
(38)

The power allocation solution is obtained in (38), we can
apply the sub-gradient method to update the Lagrange mul-
tiplier for the objective function is differentiable. Therefore,
the Lagrange multiplier can be updated with gradient descent
as

αknm (t + 1) =

[
αknm (t)−ζ1 (t)

(
Pmax
n −

M∑
m=1

pknm

)]+
, ∀k

(39)

βknm (t + 1)=
[
βknm (t)−ζ2 (t)

(
rknm−rmin

)]+
, ∀k (40)

where t is the iteration index, ζ1 (t), ζ2 (t) are positive step
sizes at iteration t . Power allocation algorithm (PAA) is elab-
orated in Algorithm 2.

C. JOINT SUB-CHANNEL ASSIGNMENT AND TRANSMIT
POWER ALLOCATION
In the previous sections, equal power allocation is assumed,
the solution for the subchannel allocation was given, then we
optimize transmission power under the given conditions of
channel allocation. To simultaneously optimize power allo-
cation and subchannel allocation, we propose a joint com-
munication resources allocation algorithm (JCRAA) to solve
problem (31). The key idea of JCRAA is to iteratively update
sub-channel assignment through Algorithm 1 and transmit
power allocation through Algorithm 2. When the subchannel
assignment solution can’t be changed, the iterations stop.
The details of JCRAA is shown in Algorithm 3.
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FIGURE 2. The relationship between the total tasks and task allocation for each ED.

Algorithm 3 JCRAA
1: Let the iteration index t1 = 0.
2: Initialize power allocation for each ED within the power

range P(0).
3: Let t1 = t1 + 1.
4: Under power allocation P(t1−1), update the sub-channel

allocation result according to Algorithm 1.
5: Assign the sub-channel SC(t1−1) and update the power
allocation results according to Algorithm 2.

6: if SC(t1) = SC(t1−1) then
7: the algorithm is terminated
8: else return step 3
9: end if

Algorithm 4 TAA
Input: Task size of each ED to be calculated, and resource
allocation results in P2’.
Output: Local task allocation ratio θnn and offloading task
ratio θnm.
1: For ∀n, compute the total offloading rate Rn;
2: For ∀n, compute offloading rate Rnm from ED n to MSN
m;

3: Calculate the offloading ratio θnm = Rnm/Rn;
4: Calculate the proportion of tasks performed locally
θnn = 1−

∑M
m=1 θnm,∀n

D. TASK ALLOCATION STRTEGY BASED ON RESOURCE
ALLOCATION
Based on the resource allocation, we design a task allocation
algorithm (TAA) to determine how many tasks should be
allocated to local and edge nodes for problem P2. The main
steps of the Algorithm 4 are as follows.

VI. SIMULATION RESULTS
In this section, the simulation results are used to evaluate
the impact of the proposed resource allocation scheme on
system performance. We consider the scenario of 3 EDs,
3 MSNs and 5 subchannels. In simulations, the local com-
puting capacity for the 3 EDs is f ln = {0, 6, 0.8, 1}GHz.
Meanwhile for MEC server, the computing capacity of the

3 MSNs is Fm = {5, 10, 15}GHz as [9]. For the wireless
transmission, the channel gains are characterized by a path-
loss model and we set the pass loss model as modeled as
36.7 log(dnm) + 140.7 [35], dnm is the distance between the
ED n and MSN m, Rayleigh fading obeys zero mean and
unit variance similar to [37]. Sub-channel bandwidth W =
1MHz, maximum transmission power of the 3 EDs is Pmax

n =

27dBm, we set the noise power is σ 2
= −174dBm/Hz.The

minimum transmission rate of each ED is normalized rmin =

1bps/Hz. We compare our proposed scheme in this article
(NOMA-MEC) against the following benchmark schemes:

1) All local computing scheme (ALL LOCAL): AAll tasks
of EDs are executed locally.

2) All MEC computing scheme (ALL MEC): All tasks are
offloaded to 3 MSNs by NOMA.

3) One MSN scheme (One MSN): We consider a MSN
scheme, that is an edge server, as in [20]. In simulation, Let
MSN’s computing capability be the sum of the computing
capability of the multi-node collaborative edge nodes in this
article, which is 30GHz.

4) OMA-MEC scheme (OMA-MEC): We consider an
OMA-MEC system as a benchmark, where EDs adopt
frequency division multiple access (FDMA) scheme for
computation offloading.

A. EVALUATION OF TASK ALLOCATION RESULTS
Firstly, to intuitively and concretely reflect the task distribu-
tion of the proposed scheme in this article, the relationship
between the total tasks volume of each ED and task assign-
ment is shown respectively in Fig. 2 (a), (b) and (c). It can
be seen from the figures that for each ED, the number of
tasks assigned to local EDs andMSNs increases with the total
number of processed tasks growing. At the same time, it can
be seen that for ED3, the amount of tasks assigned to local
is basically is equal to the tasks assigned to MSN3, which is
due to the larger computing capacity of ED3, when assigned
a large amount of tasks, it will lead to a small delay.

In addition, in order to analyze the overall distribution of
system computation tasks, Fig. 3 describes the relationship
between the total tasks of the system and the tasks allocation
ofMSNs and local EDs. It can be seen that as the total number
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FIGURE 3. The relationship between the total number of tasks in the
system and task allocation.

of system tasks increases, the amount of tasks allocated to
the MSNs and users themselves increases. At the same time,
it can be seen that when the amount of system tasks is
small (less than 100Mb), the tasks allocated to the three edge
servers is basically the same. However, when the system tasks
become large (200Mb), the tasks allocated to MSN3 is much
larger than the tasks allocated to MSN1 and MSN2. This is
because MSN3 has strong computing capacity and can meet
the needs of EDs with large tasks. As the amount of tasks
increases, the amount of tasks allocated to ED3 is larger.

B. EVALUATION OF SYSTEM PERFORMANCE
The relationship between total tasks and system performance
under the five schemes is shown as Fig. 4. As shown in Figure
(e) and (f), the relationship between system delay and energy
consumption with the total tasks is pictured. Since it is a
task assignment based on resource allocation, the time delay
and energy consumption are linear with the total amount of
tasks. We can see from the figure that the solution in this
article has the most advantages in terms of delay and energy
consumption. The case of OMA-MEC is slightly inferior to
the NOMA-MEC case proposed in this article. The third best

FIGURE 5. The relationship between system tasks and system processing
capability.

case is all offloading scheme, compared with the case of one
MSN, although local computing is not considered, EDs’ tasks
are offloaded to different MSNs to perform collaborative
computing. And the computing capacity of the edge server is
the sum of the computing capacity of the 3MSNs proposed in
this article, but it does not carry out collaborative computing,
resulting in high delay and energy consumption. And the
system performance of all local was the worst compared to
the other schemes.

Fig.5 performs the relationship between the total amount
of tasks and the system processing capability. Since the
processing capability characterizes the system capacity, for
a system, as the task size increases, the system processing
capability remains unchanged. However, it can be seen from
the figure that when the solution in this article is adopted,
the processing capability of the system is the best, followed
by the solution for OMA-MEC, and the worst for all local
computing. This is because for the five schemes, under the
condition of equal tasks, the scheme proposed in this arti-
cle has the smallest delay so that leads to the processing
capability.

FIGURE 4. The relationship between total tasks and system performance.
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VII. CONCLUSION
To enhance the performance of MEC systems and further
improve user experience, we proposed a novel network sce-
nario which we used NOMA to transmit the offloading tasks
of EDs to multiple edge servers. In the paper, we presented
an optimization framework for a multi-user multi-task and
multi-server NOMA-MEC system to maximize system pro-
cessing capability via jointly optimizing the tasks offloading
and resources allocation. By decomposing the formulated
problem, an efficient algorithm was proposed to tackle the
formed problem under the help of convex optimization the-
ory. Through computer simulation, the effectiveness of the
proposed scheme was verified. It showed that our proposed
scheme can efficiently reduce the delay and energy consump-
tion and improve the processing capability of MEC systems.
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