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ABSTRACT Private data is transmitted and stored online every second. Therefore, security and privacy
assurances should be provided at all times. However, that is not always the case. Private information is
often unwillingly collected, sold, or exposed, depriving data owners of their rightful privacy. In this article,
various privacy threats, concepts, regulations, and personal data types are analyzed. An overview of Privacy
Enhancing Technologies (PETs) and a survey of anonymization mechanisms, privacy tools, models, and
metrics are presented together with an analysis of respective characteristics and capabilities. Moreover,
this article analyses the applicability of the reviewed privacy mechanisms on today’s Cloud Services and
identifies the current research challenges to achieve higher privacy levels in the Cloud.

INDEX TERMS Anonymization, cloud computing, privacy metrics, privacy enhancing technologies.

I. INTRODUCTION
Over time different technologies and solutions have been
proposed to secure users’ information online or offline. These
solutions range from privacy policies to security mechanisms,
including encryption, authenticationmethods, anonymization
techniques, laws, and regulations. All these solutions play
an essential role in providing proper data privacy protection
and security to users’ information. Traditional authentication
systems (e.g., password-based authentication) are among the
most common and widely used methods of securing access
to data, systems, databases, and services. The problem is that
authentication systems can be subject to attacks or can fail.
An example is the JPMorgan attack [1], which resulted in
the exposure of personal information (e.g., names, addresses,
and email) that compromised 87 million customers. Uber was
also a target of an attack [2], and information about 57 mil-
lion customers, as well as drivers, was compromised. These
events could be minimized or eventually avoided if suitable
privacy measures are adopted (e.g., encryption or reversible
anonymization).

Encrypted data and communications should improve safety
from attacks and eavesdropping. However, this is not always
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the case. There were situations where faults in the imple-
mentation of the encryption mechanisms (e.g., bugs) or man-
in-the-middle attacks caused problems [3]. Other examples
are brute-force attacks with online services or tools, such as
FPGA or ASIC [4], plain text disclosure [5], and backdoors
[6], which allowed illegitimate access to private data. There
are options for increased security, such as Mayers’ proposal
of quantum cryptography [7], but this would compromise
data utility (i.e. the usefulness of data after the application
of PETs). Homomorphic encryption can be used to provide
data utility and privacy. Using this method, it becomes pos-
sible to encrypt and still perform calculations and compu-
tations on data, therefore providing data utility (although at
a limited scope). Moreover, it allows one to perform secure
database search queries, which in many cases are translated
into increased privacy. There are approaches, like the one
proposed by Smart and Vercauteren [8], that use smaller keys
and ciphertexts or, like the one proposed by Gentry et al.,
that have simpler and faster implementation [9], but the
performance is still an issue unless computational power is
outsourced, as suggested by Mittal et al. [10]. There is a
clear motivation to pursue improvements in this field. Nev-
ertheless, in our article, the focus is on anonymization and
privacy metrics, which should also provide a higher level of
data utility against standard encryption.
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Since a decade ago, that data has been doubling every two
years [11]. Such data is likely to contain sensitive Personally
Identifiable Information (PII) in the most variate forms (e.g.,
biographical, technical, biological, and behavioral). There-
fore, proper privacy mechanisms for handling sensitive infor-
mation in such massive amounts of data are required. Data
anonymization, pseudonymization, data minimization, and
encryption are examples of such mechanisms. They are often
denominated as Privacy Enhancing Technologies (PETs), but
they are not the only resource available to enhance privacy.
All the algorithms, tools, policies, and other mechanisms that
provide privacy protection can be classified as PETs. This
article stresses one of the ways of directly achieving informa-
tion privacy: by performing data anonymization. Thesemech-
anisms may not only help to avoid (or to minimize) the prob-
lems mentioned above, but they also increase safety while
publishing data (e.g., preserving privacy on publicly released
data). Therefore, while this survey presents an overview of
the different types of PETs, it particularly emphasizes data
anonymization mechanisms, the related privacy metrics, and
their applicability in Cloud contexts.

PETs and Privacy Metrics are many times associated with
offline data and with the respective process of transforming
and publishing data. Moreover, even anonymized data is
prone to linkage attacks if not duly treated. A known example
is when Sweeney showed that 97% of 54,805 voters were
identifiable with their birth date and full postal code [12].
Moreover, Cloud Computing and the associated services and
applications are every day more involved in our digital lives.
The implications are significant, as massive amounts of data
are being generated and held online every day. Therefore, data
privacy should be a requirement and fundamental character-
istic of offline processing and online services in the Cloud.

A survey on privacy-preserving data publishing by Fung
et al. [13] presents a consistent review of anonymization
algorithms, metrics, and different publishing scenarios. The
authors provide examples of several cases and consider dif-
ferent data types. However, Cloud implications and related
regulations are not covered. Wagner and Eckhoff’s survey on
privacy metrics [14] also details several metrics that can be
used in the context of data privacy. However, considerations
about the Cloud applicability are not sufficiently covered.
A significant aspect of achieving privacy online is by assuring
secure and anonymous communications. Shirazi et al. [15]
provide insights on several anonymous communication pro-
tocols and systems. Nevertheless, the authors emphasize that
security and anonymity are conflicting aspects, and there are
trade-offs that are still an open research issue - especially
between anonymity and performance.

Further literature [16]–[19] covers security and privacy
aspects in Cloud environments. However, it tends to be
focused on technical aspects and less inclusive. Due to the
previously described reasons, we felt compelled to perform
a comprehensive literature review for the privacy expert and,
at the same time, accessible to the reader outside the specialty.
The contributions of this article are the following:

1) a presentation and discussion of the different concepts
related to privacy, including a review and discussion of
privacy regulations, data privacy, and types of privacy
threats;

2) a literature review of the most representative PETs
with respect to anonymization options available to
obtain data privacy, with a presentation of the different
algorithms and models available, their operation, con-
straints, file types, and other relevant features;

3) since, to assess the work done on privacy algorithms
and models, it is necessary to rely on privacy metrics,
a review of the available privacy metrics, their opera-
tion domains, and their characteristics and a review of
the privacy tools available to perform data anonymiza-
tion;

4) an analysis of the Cloud applicability of the PETs and
privacy metrics presented;

5) the identification and discussion of open issues and
research challenges that need to be addressed in order
to enhance privacy assurances in the Cloud.

The remainder of this article is organized as follows:
Section II provides a background on privacy, privacy defini-
tions, regulations, and threats, as well as privacy integration
in the Cloud. PETs such as anonymization mechanisms and
privacy models are presented and analyzed in Section III.
Privacymetrics used to assess aspects such as privacy risk lev-
els or data utility are presented and discussed in Section IV.
Privacy tools supporting the application of PETs as well as
privacy metrics are presented in Section V. Sections III, IV,
and V also compare and discuss the Cloud applicability of
PETs, privacy metrics, and privacy tools. Section VI high-
lights the current and future research challenges on the field.
Final considerations are presented in Section VII.

II. BACKGROUND ON PRIVACY
Before the increase of Cloud Services, the Internet already
had an abundance of services that required privacy mecha-
nisms. As services related to Cloud Computing emerged and
spread, privacy concerns were raised. That was due to the
Cloud’s intrinsic characteristics, such as distributed online
storage, data replication, data integration, data regulation in
different countries, privacy policies, and different types of
threats. This section considers different privacy concepts,
threats, and regulations and discusses specific privacy chal-
lenges in the Cloud.

A. PRIVACY CONCEPTS AND APPLICABILITY DOMAINS
Nowadays, the word privacy can be ambiguous and, there-
fore, more difficult to define accurately. There are several
forms and definitions of privacy, none of them less relevant.
In simple terms, to have privacy is to have the ability to con-
trol which personal information is known and used. Personal
information is every piece of information that is related to an
identifiable person. Nissenbaum, for instance, links privacy
with contextual integrity such as a medical urgency episode
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and social norms [20]. The following concepts represent
common expressions and keywords used in the field:
• Anonymization – Daintith defines anonymization as ‘‘a
process that removes or replaces identity information
from a communication or record’’ [21]. For instance,
a subject in communications or records can be made
pseudonymous. The same subject will then always have
the same replacement identity but cannot be identified.

• Concealing – Petitcolas et al. [22] state that concealing
is the act of keeping from sight, to hide. By doing so,
it means to keep something secret or prevent something
from being known or noticed.

• Data Confidentiality – According to the Oxford dic-
tionary [23], something confidential is ‘‘intended to be
kept secret,’’ meaning that confidential information is
the information intended to be kept secret. It can be seen
as a set of rules that limit access or impose restrictions
on certain types of information. Thereby, providing data
confidentiality means keeping data secret.

• Data Curator – A data curator is an individual in charge
of managing data. As Cragin et al. state: ‘‘Data curation
is the active and on-going management of data through
its lifecycle of interest and usefulness to scholarship,
science, and education; curation activities enable data
discovery and retrieval, maintain quality, add value, and
provide for re-use over time’’ [24].

• Data Privacy – Data privacy is the ability of an individ-
ual or group to stop information about themselves from
becoming known to people, other than those whom they
choose to give the information to. Privacy is sometimes
related to anonymity, and Solove [25] considers that it
is often most highly valued by people who have private
data publicly known.

• Data Utility (or Data Usability) – After the anonymiza-
tion process, there is the matter of the utility of the
information, which is of high importance. Sweeney
[26] considers utility or usability as the representational
value of the amount of information preserved in the
anonymized data.

• De-identification – De-identification is the process of
identification, selection, and removal of sensitive infor-
mation in a document or data set.

• Observable Data – The information that is available for
a limited amount of time. In this case, an attacker might
need to be present to observe or collect the data. Exam-
ples are communication systemswhere contents or inter-
vening parties are actively or passively compromised.

• Personally Identifiable Information – Krishnamurthy
and Wills [27] define PII as the information which can
be used to distinguish or trace an individual’s identity,
either alone or when combined with other information
that is linkable to a specific individual.

• Published Data – Published data is all the information
willingly released and available to the public, consider-
ing all formats: databases, logs, traces, social network
profiles, posts, and others.

• Quasi-identifier –A quasi-identifier is an attribute of the
private information that can be linked with external data.
Some identifiers, such as a person’s name or address, are
explicit. A quasi-identifier is an attribute that, combined
with others, can identify individuals [26].

• Re-Identification – Re-identification is the name of
the process that matches anonymized data with other
datasets (publicly available or not). The matching pro-
cess returns an estimate of the re-identification of
records.

• Risk of Disclosure – There are a few variations (e.g.,
log-linear models or weight sampling) of the method
to calculate the risk of disclosure. However, a common
ground stated in Polettini [28] is based on the probability
of a sampled record being re-identified. In other words,
a record among the entire sample being identified.

It is also important to fully understand the kind of data to
which these concepts can be applied. Many areas hold PII
by default. Those areas include, but are not limited to, health
care, criminal, financial, and social information.Health care
information is one of the most sensitive types as it relates to
an individual’s health record. Blood samples, urine, Deoxyri-
bonucleic Acid (DNA), and saliva test results are examples of
health information as they relate with biological and genetic
profiles, regardless of the origin. Criminal-related informa-
tion can range from criminal records to court rulings, charges,
convictions, speed tickets,DrivingUnder the Influence (DUI)
of alcohol or drugs, and many other associated records.
Financial information regards all information related to an
individual’s finances, such as salary, debt, mortgage, and
other records such as bank accounts, credit and debit cards,
bank extracts, loans, leases, and taxes. Social information
includes, for instance, address, marital status, family, gender,
sexual orientation, education, voter information or political
preferences, location, and shopping habits.

The Cloud comprises an enormous amount of information
stored online, somewhere, with no expiration date and often
with no permanent deleting options. Along with all sorts of
personal information or media like image and video stored in
social networks or applications and web services, there are
online communication services such as email. An example
is a company processing email content to provide targeted
advertising or personal assistant-related features. There are
other aspects, such as shopping habits, product preferences,
interaction and communication with others, and many others.
What usually applies in most cases is that most online users
leave a track, thus forming a digital fingerprint that can lead to
complete or partial identification. Location, browser, search
queries, visited websites, cookies, canvas, and window size
are examples of data used to identify users.

Based on the previous concepts and respective applicabil-
ity, information (i.e. data) is our focus. Nevertheless, PETs are
also applicable in other domains that are beyond the scope of
this article. We consider that Architecture and Design, Com-
munications and Networking, Data Information, and Identify
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FIGURE 1. Proposed PETs applicability domains (emphasis on
Information Privacy).

Management (depicted in Figure 1) is what best define other
applicable areas for PETs. This is justified by the cover-
age that these four aspects provide: (1) the architecture and
design of applications with privacy embedded by design; (2)
providing secure networks and private communications; (3)
keeping private the information available in the most variate
data types; (4) keeping users’ identity private. Therefore,
following a development approach that applies state-of-the-
art mechanisms and methodologies in these four application
domains should result in a privacy-assuring product or ser-
vice.

B. PRIVACY THREATS
An invasion of privacy occurs when personal information
is used without consent or knowledge of the owner. It can
happen through a data breach, attack, eavesdropping, or other
forms of appropriation. According to Drake [29], Robison
[30], and Thomson Reuters’ Find Law [31], privacy threats
(as shown in Figure 2) can be classified as follows:

• Intrusion – An intrusion of privacy includes all
the actions that directly or indirectly invade an
individual or organization’s private affairs. Phone
calls or conversations recorded without authorization
and knowledge, taking pictures or trespassing on private
property, repeatedly making non-requested phone calls,
and spying on someone are examples of privacy intru-
sion.

• Public Disclosure – Releasing previously unknown or
private information to the public is a public disclosure.
This information can be offensive or embarrassing when
publicly released. Therefore, if the data does not provide
any public concern, the one(s) responsible for the release
can be liable for privacy invasion. Typical examples
that have their private information publicly disclosed are
individuals in public offices, celebrities, and politicians.

• False Light – Similar to the previous point (public dis-
closure) is false light. It is a form of public disclosure
of false or malicious statements. It is usually done by
distorting the truth or using fictional facts.

• Appropriation – This case refers to the appropria-
tion of an individual or organization’s name or iden-
tity. It usually happens by using an individual’s name,
image, or any other personal characteristic without

FIGURE 2. Privacy threats categories.

authorization or knowledge. It is common to see such
media cases, references in books, stories, and market-
ing. Although it is possible to happen with any person,
the issue is more recurrent with celebrities or famous
personalities. In the digital era, this happens with online
profiles or accounts as well.

There are additional types of privacy threats. For instance,
Solove [25] proposes a similar, yet more fine-grained taxon-
omy: information collection (e.g., surveillance), information
processing (e.g., identification or re-identification), infor-
mation dissemination (e.g., disclosure), and invasion (e.g.,
decisional interference). Other types of privacy invasion are
attacks directed to data records. As defined by the Interna-
tional Organization for Standardization (ISO), an attack is
an ‘‘attempt to destroy, expose, alter, disable, steal, or gain
unauthorized access to or make unauthorized use of anything
that has value’’ [39] to an individual or organization.

Within the data privacy scope, the overall consensus is that
there are three different ways an attacker gathers information
(i.e. attacker estimates) [40]–[42]. These attacker estimates
are based on the type of information available to an attacker
and the resemblance with other gathering information meth-
ods. The three main attacker estimates are as follows:

• Prosecutor – The attacker knows that data about the
targeted individual is contained in the data set.

• Journalist – The attacker has no background knowledge.
• Marketer – The attacker is not interested in re-
identifying just a specific individual.

It is also possible to enforce particular attack models that
operate on specific data conditions. The attack models iden-
tified by Fung et al. [13] are the following:

• Record Linkage – This occurs when an attacker success-
fully matches a record owner to a sensitive attribute from
datasets published or obtained elsewhere.

• Attribute Linkage – This occurs when there is no specific
record identification, but the attacker can still infer sen-
sitive values supported by the information of the group
where the record owner belongs.

• Table Linkage – This occurs when attacks successfully
derive the presence or the absence of the targeted record
owner in a table.

• Probabilistic Attack – This is based on the uninformative
principle from Machanavajjhala et al. [43]. Instead of
focusing on actual records, it assures that the beliefs
before and after accessing published data do not change
significantly.
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TABLE 1. Examples of privacy breaches and exploited threats.

Table 1 provides examples of privacy invasions in which
private data was exposed, and citizens’ or organization’s pri-
vacy was compromised. Political interests, credit card details,
and addresses were publicly disclosed. In some cases, such as
Yahoo and Uber, the data breaches happened due to security
reasons. However, in other cases (such as Netflix or AOL),
it was due to the incorrect usage of anonymization mech-
anisms. Cross-referencing or linkage attacks pose a signif-
icant risk for anonymized data. Nevertheless, the risk can
be minimized or possibly avoided if proper anonymization
mechanisms—ideally, a combination of mechanisms—are
used, and attacker models are considered.

C. PRIVACY REGULATIONS
Many countries have laws and regulations regarding pri-
vacy, data access, data sharing, and handling. In Europe,
some directives should be enforced and/or followed by the
countries that are part of the European Union (EU). More-
over, with the General Data Protection Regulation (GDPR)
enforcement in May 2018, any services or businesses han-
dling data from European citizens are forced to comply
with this regulation. In the United States of America (USA),
the Gramm-Leach-Bliley Act (GLBA) [44], [45] is being
enforced, while in Canada there is the Personal Information
Protection and Electronic Documents Act (PIPEDA) [46].
To the East, there is the Russian Federation with its Personal
Data Protection Act (PDPA) [47]. Regarding China, Green-
leaf and Chen [48] show that, although there is no national
privacy law enforced, theComputer Processed Personal Data
Protection Act (CPPDPA) and Personal Information Protec-
tion Act (PIPA) are examples of regulations created for that
effect.

Although regulations vary from country to country, they
have a common objective: to provide legal protection and
regulation over its citizens’ personal and private information.
The particularities of the regulations in the USA and Europe
are analyzed next.

In the USA, different activity sectors (e.g., insurance,
financial, and health care) have their own regulations.

• Health Insurance Portability and Accountability Act
(HIPAA) is a health care regulation that assures that
individuals’ health information is properly protected
while still (1) simplifying administrative processes by
standardizing health care transactions and (2) reforming
insurance conditions so that a job change does not affect
coverage. Failure to comply with this regulation can
result in fines up to $ 250K [49] and up to 10 years of
jail time.

• Gramm-Leach-Bliley Act (GLBA) regulates how finan-
cial institutions manage financial information. Banks,
insurance companies, securities firms, and even retail-
ers must provide confidentiality about customers’ credit
information. Furthermore, according to the Federal
Deposit Insurance Corporation [44] and the U.S. Code
[45], these institutions must inform their customers of
how their information is kept confidential and secure.

• The Clarifying Lawful Overseas Use of Data (CLOUD)
Act regulates authorities’ access to data held by Amer-
ican companies across the border of the USA. The
act allows the Department of Justice (DOJ) data
access without authorization from the courts or the
Senate [50], [51].

While in the USA there is a sectoral approach for privacy
regulation, in the EU the GDPR [52] regulates citizens’ data
privacy transversally with regard to all types of personal
information. Some of the key points of the GDPR are as
follows:

• Territorial Applicability is directed to all companies that
process the personal data of European Union residents,
regardless of the company’s location.

• Penalties are up to 4% of annual sales volume or a
maximum of e 20M. This penalty is applied in severe
cases (for instance, lacking customer consent to process
data).
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• Consent requests must also be given in an easily acces-
sible form. The purpose of data processing should also
be present in the consent request.

• Right to Access intends to provide citizens with access to
copies of all personal data held by a company. Further-
more, it is the right to know whether their data is being
processed, the purpose, and the location.

• Breach Notification is a mandatory action (with a 72-
hour limit) in cases where the data breach can pose a
risk for the rights and freedom of citizens.

• Right to be Forgotten gives the right of having a citizen’s
data erased. It also has the potential to prevent data
processing from third parties.

• Data Portability is the option that grants a citizen the
right to receive and transmit his/her data.

• Privacy by Design is the inclusion of privacy and data
protection mechanisms at each stage of development of
a system or service, rather than addition. Companies
such as Microsoft already adopt this principle when
developing new products or services [53].

• Data Protection Officers (DPOs) are mandatory for
those whose core activities consist of processing oper-
ations that require regular and systematic monitoring
of data subjects on a large scale, particular categories
of data, or data relating to criminal convictions and
offenses.

Since 2000, there has been an agreement concerning pri-
vacy between the European Commission (EC) and the USA
Government: the Safe Harbor agreement [54]. The primary
purpose was to prevent and avoid accidental disclosures of
personal information.

Despite the enforcement of such an agreement, after an EU
citizen complained about Facebook’s handling of his data,
the agreement was declared invalid [55] by the European
Court of Justice. After a modification of data collection terms
between the USA and the EU, a new agreement was drafted:
the EU-USA Privacy Shield. It is described as a framework
for transatlantic exchanges of personal data for commercial
purposes between the EU and the USA, and it is designed to
accommodate the European regulations.

D. PRIVACY IN THE CLOUD
Cloud Services differ frommore traditional Internet Services.
The distributed data processing or the servers’ location are
aspects to consider in regard to privacy. All the aspects dis-
cussed in the previous sections should be suitable and adapted
to the Cloud’s context. The main requirements for privacy in
the Cloud are the following:

• Data Location – Privacy laws and regulations differ from
country and region. Therefore, compliance in different
locations is a challenge. Companies processing data
from international customers (e.g., European or Amer-
ican citizens) face some difficulties since the servers
with databases and computing power might be dis-
tributed across different countries. There are at least two

FIGURE 3. Considerations for privacy in the Cloud.

aspects to consider: local laws regarding the storage and
management of customers data (e.g., GLBA) and laws
regarding the country of origin of the customer’s data
(e.g., GDPR). Failure to comply might incur in signifi-
cant losses (i.e. fines) for the companies in question.

• Data Status – Another aspect that Cloud Service
Providers should consider is the disclosure of the meth-
ods used to protect data (e.g., the disclosed privacy
policy). The status of the data during the stage(s) of
processing or handling should be indicated (e.g., plain
text, encrypted, anonymized, or pseudonymized).

• Data Usage and Access – It is necessary to assure proper
handling and access to data at all times. A system or ser-
vice might be compromised even if the best security
measures and policies are in place. Ensuring proper data
usage policies and (both physical and logical) access
is sometimes not given due diligence. Suppose a more
specific data processing is intended. In that case, it is rec-
ommended to disclose usage policies in two directions:
user/customer to service provider, and service provider
to user/customer (nevertheless, the latter predominates
in most cases). Regarding data access, it is crucial to
accurately define access rules. As such, a series of
questions can be addressed: who can access, why, how,
where, and for how long?

• Security – In addition to data status, there is a security
point of view. In this case, infrastructure (e.g., an Intru-
sion Detection System), communications (e.g., a Secure
Sockets Layer), and other security features play a crucial
role in keeping data secure, regardless of the data state
(e.g., plain text or encrypted). Common aspects such
as establishing strong passwords, antivirus, and regular
software updates can effectively increase security on
both ends: users/customers and service providers.
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As depicted in Figure 3, other requirements such as
auditability, portability, and availability should also be con-
sidered. Nevertheless, there might still be vulnerabilities
despite the Cloud providers’ active measures to meet high
privacy standards. Typically, data owners or users of such
services have no physical control over the system. Therefore,
instead of full trust, there is a semi-trust relationship. Never-
theless, in cases where Cloud Services are used for the single
purpose of outsourcing data (i.e. data storage), users may take
more proactive approaches such as anonymizing their data.
For that purpose, several privacy algorithms and tools can
limit the exposure of sensitive information.

In the next section, we review such algorithms and tools,
as well as related privacy models.

III. PRIVACY ENHANCING TECHNOLOGIES
Privacy Enhancing Technologies perform data transforma-
tions or operations that result in increased data privacy levels
(e.g., data anonymization or encryption). Data anonymization
is the group of PETs that we emphasize in this article. This
section presents an overview of PETs, anonymization mech-
anisms, privacy models, and a discussion of the applicability
to the Cloud.

A. OVERVIEW OF PRIVACY TECHNOLOGIES
Several technologies are available in each applicability
domain of PETs (cf. Figure 1). Nevertheless, a methodolog-
ical approach concerning classification should be applied.
The following models proposed by Hansen et al. [56] contain
indicators for an evaluation based on the quality and readiness
of each technology:

• Quality assessment – based on nine indicators with
different weights (from the highest to lowest weight):
Protection, Trust assumptions, Side effects, Reliabil-
ity, Performance efficiency, Operability, Maintainabil-
ity, Transferability, and Scope.

• Readiness assessment – six stages of the technol-
ogy or mechanism: Idea, Research, Proof-of-concept,
Pilot, Product, and Outdated.

PETs can be chosen according to the scores provided by
the indicators mentioned above. These scores are useful to
everyone interested in following a systematic approach to
choose the right combination of PETs, for instance, software
developers, online users, researchers, and data protection
authorities.

Other types of PETs can be placed between end-users
and services. For instance, the The Onion Router (TOR)
browser and its network offer increased online privacy by
anonymizing web traffic. Clark et al. compared several tools
designed to be used in conjunction with TOR and concluded
that none was satisfactory from a usability point of view [57].
TOR later provided a bundle that includes a modified version
of the Firefox browser, which positively enhanced usability
by offering a more straightforward way of keeping users’
identity private. Nevertheless, Abbott et al. [58] showed that

it is possible to identify TOR clients by performing browser
attacks. Although it is difficult to attack TOR, Schneier [59]
reported that the National Security Agency (NSA) was able
to identify TOR users and attack computers by using private
servers and a privileged position on the Internet’s backbone.

In the Communications and Networking domain, encryp-
tion and even Domain Name Server (DNS) encryption
(although with some drawbacks, such as transitive trust and
traffic overhead [60]) are used to enhance privacy. Never-
theless, for increased data privacy, these technologies should
complement each other whenever possible. For applicability
in the Information domain, Zhou et al. [61] identified data
anonymization and pseudonymization, and Pfitzmann and
Hansen [62] identified data minimization.

Data publishing is a significant challenge for researchers
or data protection authorities due to the trade-off between
data utility and disclosure risk and the inherent risk of re-
identification by cross-referencing or linkage attacks. These
types of attacks rely on the information published else-
where that might be matched with anonymized data sets,
leading to individuals’ identification. A systematic litera-
ture review of 14 studies about re-identification attacks on
anonymized datasets [63] concluded the following: (1) 26%
of all records were re-identified (with a Confidence Interval
(CI) of 95%). (2) From the data anonymized (de-identified)
without HIPAA standards, 33% of the health records were re-
identified (CI of 95%). (3) From the only study with health
records that used anonymization (de-identification) following
HIPAA standards, only 1% of the records were re-identified
(with a CI of 95%). These results indicate that enforcing
anonymization mechanisms by itself does not suffice to pro-
vide low re-identification thresholds. A data curator must
be experienced not only with anonymization mechanisms
but also with the regulations available, which is also why
we review privacy regulations (cf. Section II-C). Moreover,
these results show that enforcing anonymization procedures
following standards lead to a strong reduction of record
re-identification. In a study about a hybrid anonymization
heuristic [64], Mivule and Anderson aimed towards higher
data utility. In the study, the timestamp and Internet Proto-
col (IP) address were anonymized using distinct methods,
and the results demonstrated effective protection against re-
identification. For the timestamp, enumeration and multi-
plicative noise were used to preserve the flow structure. For
the IP addresses, a partial prefix-preserving heuristic was
chosen. In the first octet, generalization is applied to pre-
serve the prefix. A transformation is performed by multiply-
ing or adding noise. k-anonymity is also applied to assure
that no unique values appear and that the values appear
k > 1 times. This way, the data retains usability by getting
a synthetic flow of the IP address. Differential privacy was
applied to the remaining octets.

Some technologies are more suitable than others to
particular data types or applications (e.g., structured data,
unstructured data, offline application, real-time, reversible,
and non-reversible). According to the type of application,
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data curators should consider characteristics such as suppres-
siveness (i.e. permanently suppressing or replacing original
data), order preservation, the ability to operate on structured
(e.g., tabular information) or unstructured data (e.g., text), and
parameter tuning. Next, we discuss suppressive mechanisms.

B. SUPPRESSIVE ANONYMIZATION MECHANISMS
This section analyses mechanisms (mainly algorithms) that
perform data transformations to enhance privacy. Since these
transformations reduce or eliminate PII, the process results
in increased data privacy. The transformations can pro-
vide specific data anonymization thresholds and assurances,
depending on which methods are used. Datasets with specific
characteristics can be generated by modifications that range
from the slightest generalization or swapping of attributes to
more elaborate operations and combinations of techniques.
The algorithms and mechanisms described next permanently
suppress or replace the original data.
Enumeration is defined by Goulden and Jackson [65] as

the mapping of original values to new values, in a way that
order is preserved. It is applicable in any well-ordered set.
This algorithm is very straightforward. Consider for instance
the following sequence: 3.6, 16.8, 21, 0.9, 27.9, 14.4. When
the enumeration algorithm is applied, a sequence like
3, 12, 15, 3, 18, 9 is generated. The order is preserved, but
any specific information is removed.

Slagell et al. [66] describe the Black Marker technique as
going with a black marker on a piece of paper to conceal
some field or part of the information. Though simple, this
is a powerful algorithm in practical terms because replacing
fields by NULL or 0 is an effective way of hiding sensitive
information. However, this technique does not provide high
usability levels (i.e. data utility) due to the information’s
deletion.

According to Slagell et al. [66], the difference between
truncation [67] and the black marker is that the first shortens
the values, while the latter maintains the length or struc-
ture of the privatized data. The transformation is performed
by taking a data field and selecting a point after which
all bits are removed. In the case of an email address (a
string), it is possible to truncate the domain information (e.g.,
john@domain.com becoming john). When dealing with the
binary values with fixed lengths, it is possible to choose
a point after which the truncation is applied. With an IP
address like 192.168.0.0, it is possible to apply right shifts
until all bits to the right of the selected point are shifted to
the end. This shift results in a truncated IP address such as
0.0.192.168.

In a usability awareness study [64], precision degradation
is defined as a generalization technique that removes the most
precise components of a specific field (e.g., replacing it by
0). With a timestamp, it is possible to have different precision
levels (e.g., days, hours, minutes, seconds, and milliseconds).
There is a higher precision with milliseconds and a lower
precision with days or hours. A high precision degradation

(e.g., milliseconds) applied to the time stamp 1000001001
would result in a less precise timestamp 1000001000.
Suppression [68] is similar to the black marker technique.

This technique works by suppressing (i.e. deleting) sensitive
fields from a data set, at a cellular level. There are different
ways of suppressing a record. For instance, it is possible to
delete the entire record (e.g., remove all the information of
an attribute, either by removing it or replacing the field by
zero or ‘‘∗’’) or to suppress part of it (e.g., a zip code like
35684 can be suppressed as 35 ∗ ∗∗). Similar to the black
marker technique, as suppression range increases, the data
utility reduces accordingly. This technique is often used
for generalization purposes such as precision degradation,
k-anonymity adherence, and other similar mechanisms.
Time Unit Annihilation is mentioned by Slagell et al. [66]

as a combination of the blackmarker techniquewith partition-
ing, for time and date fields. First, the values are dismantled
into year, month, day, hour, minute, second, and millisecond.
After this step, it is possible to annihilate any of the fields
by replacing them with 0. It is possible to remove the time
information (i.e. hour, minute, and second) and still have a
valid date. The opposite can also occur: removing the date
information (i.e. year, month, and day) and holding the time
information.

Rastogi et al. [69] proposed the α β-algorithm,
an anonymization algorithm on random insertions and dele-
tions of tuples from a database. The algorithm considers
the attacker’s prior knowledge for its estimates. Adhering
to a set of restrictions, the algorithm performs an enhanced
type of noise addition and suppression. With a somewhat
limited empirical study, the authors claim balanced privacy
and utility tradeoffs. To the best of our knowledge, a practical
implementation of the algorithm has not yet been released.
The algorithm is also hard to evaluate given the limited study
provided by this article, and the lack of publicly available
implementation.
Anonimytext, developed by Pérez-Laínez et al. [70],

is designed to ‘‘de-identify sensible data from unstructured
documents’’ and preserve its structure. It is not an algo-
rithm. Nevertheless, it is a system that follows a systematic
approach to provide data anonymization. By using Natural
Language Processing (NLP) and Information Extraction (IE)
techniques, this method performs a semantic analysis of the
documents (i.e. unstructured text) and creates tokens. Sub-
sequently, with those tokens, it can detect sensitive infor-
mation. This operation is supported by pre-loaded induction
dictionaries and legal information (e.g., laws and regula-
tions such as HIPAA). Finally, an expert reviews it and
approves or rejects the suggested de-identification. This
mechanism was validated on clinical notes (i.e. limited
scope), and the results showed that, although it performed
relatively well to de-identify patients’ names, it showed little
effect de-identifying medical facilities due to the ambiguity
of the terms.

In the partitioning technique [71], the fields chosen to be
anonymized are partitioned into meaningful sets. Afterward,
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TABLE 2. Properties of suppressive anonymization and concealing mechanisms.

the actual values are replaced with a fixed value from the
same set. For instance, with TCP ports (0−65535), a possible
solution could be to have the port numbers within 0 and 4095
replaced with a 0, and have the ports within the other set,
4096 and 65535, replaced with 65535. The black marker and
truncation techniques are special cases of partitioning.

A study by Mivule and Anderson’s [64] defines permu-
tation as a one-to-one mapping of values. This method is
useful when it is necessary to preserve the count or the
order of the data sets without maintaining its value. There
are several variations of permutation functions with different
characteristics, such as performance or guarantees of non-
collision or security. Nevertheless, a general feature in all
permutation functions should be the difficulty in reversing
it without knowing the parameters. For instance, using a
hash function as a selection function while anonymizing an
IP address can be dangerous if the hash function is known.
The limitation, in this case, is that given the small space
of IPv4 addresses, if additional parameters are not applied,
the hash function could be retrieved through brute force.

Boschi and Trammell [72] proposed prefix-preserving as a
particular type of permutation, due to the direct substitution
technique that it enforces, with the restriction of having to
preserve the structure of the value. For instance, considering
two private IP addresses that match on a prefix of n bits,
the two anonymized IP addresses that will be generated will
match on a prefix of n bits as well. Therefore, the structure
of subnets is preserved at each level while anonymizing IP
addresses.
Hashing functions [73] can be useful for anonymization of

both text and binary data. A hash function maps each value
to a new value, not necessarily unique (as the permutation).
Nevertheless, it has a limitation with binary data: truncating
the result of a hash function to the shorter length of the value
is often required. Consequently, the hash function is weaker
and suitable for more collisions.

Table 2 summarizes the discussed suppressive mecha-
nisms, considering properties such as order preservation,
parameterization, and the ability to handle structured or
unstructured data. Most methods are applied to structured
files such as Comma Separated Values (CSV), Extensible

Markup Language (XML), or other file types with organized
information (e.g., tables or logs). Four mechanisms can pre-
serve the order of data, and another three allow the tuning of
its anonymization parameters.

C. NON-SUPPRESSIVE ANONYMIZATION MECHANISMS
This section analyzes mechanisms that perform data transfor-
mations to enhance privacy without suppressing or replacing
the original data.

Mivule and Anderson [64] claim that random time shifts
can be considered a particular case of permutation. When
applied to time stamps, it adds a random offset (e.g., sec-
onds or milliseconds) to every record within the timestamp
attribute. As such, since all timestamps are shifted at once,
an entire data set can be anonymized at once. The duration
and the chronological order of the events are preserved in
this technique. However, an attacker with external knowledge
about the network traffic can easily revert the anonymiza-
tion. Although a pseudorandom shift could avoid its reversal,
it would also mean a loss of order preservation.
Differential Privacy, proposed byDwork [74], tries tomax-

imize query accuracy from a given dataset while minimizing
the chances of identifying its records. There are similarities
with the noise addition method. However, differential privacy
performs anonymization by adding the Laplace transform to
the data set queries. With this, it is not possible to distinguish
if a particular value was modified or not. It is a method widely
used across the industry (e.g., Microsoft or Apple) and with
many application types. Due to this method’s mathematical
rigor and characteristics, the US Census Bureau adopted [81]
differential privacy as the disclosure avoidance methodology
of the 2020 census. Another application was demonstrated
by Li et al. [82], which applied differential privacy to col-
laborative filtering (used in recommender systems) in such
a way so that a two-party collaboration scheme can still be
privacy-preserving. Despite being a state-of-the-art mecha-
nism, it also has limitations. Since the Laplace transform
accounts for outliers and influential observations, when the
privacy is higher (i.e. by setting the epsilon parameter to a low
value such as 0.0001), according to Fienberg et al. [83], data
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TABLE 3. Properties of non-suppressive anonymization and concealing mechanisms.

utility remains a challenge because the statistical properties
change.

When dealing with noise perturbation, it is common to
add or multiply values. Noise Addition [75] works by adding
random values chosen between the mean and standard devi-
ation of the original data. The random values are then added
to the original data set’s sensitive attribute values, providing
confidentiality. Multiplicative Noise [76] is similar to noise
addition; however, instead of adding the values to the orig-
inal data, the random values are typically picked between
the mean and the variance and afterward multiplied with
the original data. Logarithmic Multiplicative Noise [77] is
described as a variation of multiplicative noise. In this case,
a logarithmic change is performed on the original data.

Exchanging sensitive cell values with other cell values
(within the same attribute) is the basis of data swapping [78].
This data transformation technique preserves the underlying
statistics and frequency of the data. In turn, this makes it
difficult for an attacker to map the original values with the
anonymized values. In this case, what needs to be considered
is the selection of the swapping rate, the attributes to be
swapped, and the respective candidate data records for the
data swapping.

By using perturbation mechanisms characterized as ran-
dom variables elements, Agrawal et al. [79] claim that
FRAPP facilitates ‘‘a systematic approach to the design of
perturbation mechanisms for privacy-preserving mining.’’
FRAPP is designed to provide acceptable tradeoffs between
privacy and utility. This high-accuracy privacy-preserving
method intends to reduce mining classification errors for
association rule mining and achieve a classification accu-
racy comparable to direct mining. The privacy improvements
obtained by the usage of random variable elements have
a marginal impact on accuracy. The mechanism registered
2.46% lower classification accuracy when compared to the
direct classification on the original database.

Kencl and Loebl [80] developed a DNA-inspired infor-
mation concealing algorithm able to conceal information
based on the introduction and maintenance of families of
repeats. There are two types of applications for this algorithm:
weak concealing and strong concealing. Theweak concealing
method is intended for non-specific inputs where there is
no outside knowledge about the likelihood or presence of
some segments in the input. The strong concealing method

is intended for all other applications. It comprises five pro-
cedures that operate on unstructured data sequences (e.g.,
characters and audio samples). The transformations add dust
(a random part of the sequence itself) in the process. There
are four procedures with a common pattern: (1) partition the
input sequence into consecutive disjoint blocks; (2) in front of
each block, add the terminal part of its predecessor (overlap);
(3) add dust at the end of each block; (4) rearrange the blocks
into an output sequence. The final results are documents, such
as text files or audio tracks, with mathematically scrambled
information. However, the generated files are from three
times (using the weak concealing method) up to twenty-four
times (using the strong concealing method) larger than the
original files [84].

Table 3 summarizes the discussed non-suppressive mecha-
nisms, considering order preservation, parameter tuning, and
the ability to handle structured or unstructured data. Only
Random Time Shift can preserve to order of the original data.
All the mechanisms work over structured data, while Differ-
ential Privacy, Noise Addition, Multiplicative Noise, and the
DNA-inspired information concealing algorithm also support
unstructured files (e.g., files with email contents or notes)
with text or even audio files.

D. PRIVACY MODELS
Privacy models are composed of rules and algorithms applied
to data, resulting in transformations and operations that can
be measured and quantified. Such measurements can lead
to ambiguous interpretations of privacy metrics and privacy
models. Literature also shows that some authors refer to pri-
vacy models as privacy metrics and vice versa. The following
section describes what we consider to be privacy models.
Generalization [85] is a way of transforming a sensitive

attribute into less specific information. There are several ways
of performing these transformations. For instance, by attribut-
ing a single value to a group of sensitive fields such as a ZIP
code, it is possible to group specific zip codes as part of a
region or state. Instead of specifying whether an individual is
a male or female, gender can be generalized, stating that it is
a person. The same applies to age or any other numeric field
with ranges or intervals that are suitable to use (e.g., ‘‘< =
25’’ or 18-25).

The k-anonymity model was first proposed after Sweeney
was able to identify a USA senator using ZIP codes and
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voter information [26]. The method intends to provide a solu-
tion to the following challenge: ‘‘given person-specific field-
structured data, produce a release of the data with scientific
guarantees that the individuals who are the subjects of the
data cannot be re-identified while the data remain practically
useful’’ [26]. As such, k-anonymity provides data privacy by
ensuring that the sensitive attributes are repeated k times, with
k being always greater than one in order to provide confiden-
tiality and make more difficult the identification of individual
values. The algorithm relies on the combination of gener-
alization and suppression methods to achieve k-anonymity.
However, it does not guarantee data privacy against attackers
with background knowledge.

The MinGen algorithm [86] was developed with a default
condition of adhering to k-anonymitywith a minimal general-
ization. The algorithm starts by creating a frequency list with
the distinct sequences of values of the private data. Until there
is a minimum of k or fewer tuples with distinct sequences
of values in the frequency list, the generalization proceeds,
making it a greedy algorithm. If there is some sequence
of values occurring less than k times, it is suppressed.
Nevertheless, since this method does not guarantee privacy
against attackers with background knowledge (similarly to k-
anonymity), other mechanisms like L-diversity or T-closeness
(described next) were proposed so that this limitation could
be reduced.
L-diversitywas proposed byMachanavajjhala et al. [43] as

an effort to overcome the drawbacks of attackers with back-
ground knowledge experienced in k-anonymity or MinGen.
A certain block of information (e.g., a set of attributes of
a table) is l-diverse if it provides at least l values of the
sensitive attribute(s). An entire table is l-diverse if all blocks
are l-diverse. However, despite overcoming the background
knowledge attack problem, according to [87], if there are
two or more sensitive attributes, then it is more difficult to
apply l-diversity due to the additional dimensions.

Achieving l-diversity might be difficult. Moreover, even
if it is reached, it may be insufficient to prevent disclosure.
As such, t-closenesswas proposed by Li et al. [88] to address
the concerns related with l-diversity and k-anonymity. The
authors state it ‘‘requires that the distribution of a sensitive
attribute in any equivalence class is close to the distribution
of the attribute in the overall table (i.e. the distance between
the two distributions should be no more than a thresh-
old t)’’. Based on Aggarwal and Yu’s findings [87], applying
t-closeness on numerical attributes is far more effective than
several other mechanisms.

The LKC-privacy model proposed by Mohammed et al.
[89] is intended for anonymizing high-dimensional data
where the LKC-privacy is formulated to ensure that all com-
binations of Quasi Identifiers with maximum length L in
the data table T are shared by at least K records. Moreover,
the confidence of inferring any sensitive values in S is, as the
authors describe, ‘‘not greater than C, where L, K, and C
are thresholds, and S is a set of sensitive values specified by
the data holder.’’ Respectively, L is the maximum adversary’s

knowledge, K is the minimum anonymity, and C is the max-
imum confidence threshold.

Cao and Karras proposed the β-likeness model [90] for
microdata anonymization, using a β threshold satisfaction
rule with low utility loss. The authors claim that an attacker’s
confidence in a tuple of sensitive attributes is not higher after
seeing published data. For that effect, it uses generalization
methods and data perturbation. The combination of such
methods claims to result in better privacy assurances than
state-of-the-art t-closeness models and to be more efficient
than similar approaches. The results that support the authors’
claims only apply for categorical data as the applicability on
numerical data is limited and vulnerable to proximity attacks.
Nevertheless, according to Li et al. [91], an extension of this
algorithm where the neighboring values are also perturbed
would make these mechanisms immune to proximity attacks.

Seen as an extension of the k-anonymity model, the
p-sensitive model proposed by Truta et al. [92] prevents
disclosure of sensitive information by considering more than
one sensitive attribute. Therefore, an anonymized dataset sat-
isfies p-sensitivity if it satisfies k-anonymity and guarantees
that each sensitive attribute’s cardinality is at least P. Hold-
ing these two properties (k-anonymity and p-sensitive) pro-
vides further protection against homogeneity and background
attacks. The results show that, as K increases, the number of
disclosed attributed decreases. Therefore, p-sensitiveness and
k-anonymity are only guaranteed with large P values.

Brickell and Shmatikov [93] define δ-disclosure consid-
ering a table as ‘‘δ-disclosure private if the distribution of
sensitive attribute values within each quasi-identifier class is
roughly the same as their distribution in the entire table.’’
With this model, it is also possible to calculate a gain in adver-
sarial knowledge by relating δ with the information gain used
by decision tree classifiers (e.g., ID3 and C4.5 by Quinlan
[94]). In such a relation, there is a difference between the
entropy of the set of sensitive attributes and the conditional
entropy of quasi-identifiers and sensitive attributes. On the
other hand, Cao and Karras [90] find that δ-disclosure’s
properties can become unnecessarily rigid and exceedingly
lax at the same time. Moreover, they state that Brickell and
Shmatikov [93] do not propose a mechanism (or tool) capable
of applying δ-disclosure in real use cases.

Xiao and Tao [95] presentM-invariance as a generalization
method that aims at providing a strong level of privacy pro-
tection on re-published data. The authors mention that most
methods rely on on-time publishing and cannot guarantee
privacy assurances after deletions or insertions of records.
This method’s differentiating factor is the consideration of
data re-publication, which is not respected by the well-known
k-anonymity or l-diversity models.

Unlike most methods, which operate on data, PrivAPP
[99] is an integrated approach for the design of privacy-
aware applications that operates at the design level. It uses
Unified Modified Language (UML) to introduce privacy in
the design of applications. With the aim of systematizing
privacy concepts for web applications and Cloud Services,

VOLUME 9, 2021 10483



P. Silva et al.: Privacy in the Cloud: Survey of Existing Solutions and Research Challenges

TABLE 4. Properties of the privacy models.

this approach uses a conceptual model, a referential archi-
tecture, and an extension of UML with a privacy profile.
After validating the approach with an example bookstore,
the authors claim this method is suitable for a model-based
approach implementation.

Other models include, for instance, κ-map [96], δ-presence
[97], and ε-indistinguishability [98]. All of them share an
ultimate goal: modify data in such away that private identities
and information is protected but still able to provide useful
information.

Table 4 shows that these privacy models rely on mea-
sures of distinguishability (e.g., similarity or diversity) and
information gain (or loss). Overall, most models present
a low or medium complexity and support structured data.
Moreover, Kelly et al. applied such models on general
datasets and concluded that they provide highly generic appli-
cability characteristics [100].

E. PRIVACY TECHNOLOGIES FOR THE CLOUD
It is possible but not easy to modify and adapt the previously
described mechanisms to apply them to the Cloud. Moreover,
most of the previously described mechanisms rely on full
access to the datasets and need to load all the data into mem-
ory. Nevertheless, other state-of-the-art PETs can be found in
the literature, with some even taking advantage of Artificial
Intelligence (AI) to perform their tasks. Such mechanisms are
analyzed next.

Kohlmayer et al. [101] proposed a flexible approach to
distribute data anonymization (more specifically, sensitive
biomedical data). The authors rely on an encrypted global
view of the dataset and then apply K-anonymity, L-diversity,
T-closeness, and δ-presence. The global view is built using
an Secure Multiparty Computation (SMC) protocol. In SMC
protocols [102], [103], functions are computed and evaluated
anonymously by different members of a group, with each
member only getting to know its input and output. This allows
members of a group to perform common computations using
private data from each other while still ensuring privacy.

There are cases in which SMC can be adapted for dif-
ferent purposes. For instance, on-the-fly SMC on the Cloud
via Multikey Fully Homomorphic Encryption [104] allows

arbitrary computations on data in a non-interactive fashion.
Another case is the usage of proactive SMC with a dishonest
majority [105], addressing the possibility of members having
been corrupted over a lifetime of secrets that should remain
confidential for a long time (e.g., cryptographic keys). This
mechanism uses a tradeoff between an adversary penetration
rate and the resetting speed of other members to achieve such
a feat.

In a Zero Knowledge Proof (ZKP) system [106], a party
(a prover) can prove to another party (a verifier) that a given
statement (or any form of data) is true, without disclosing any
additional information. There are two kinds of ZKP systems:
interactive [107] and non-interactive [108]. The interactive
method requires the prover to perform a series of actions to
the verifier. On the other hand, non-interactive systems offer
a way for verifiers to perform the verification by themselves,
thus not requiring actions to be repeated by the entity that
owns or claims the truthfulness of a statement. This method
can also be used to perform private queries to third parties.
Despite the advantages, there are limitations such as the
required computational power and the fact that the proof
cannot be given with 100% certainty.

Shinde and Vishwa show how to preserve privacy by using
a data partitioning technique for secure Cloud storage [109].
The proposed scheme divides data files into small blocks.
In this way, the authors claim it provides security, integrity,
and privacy.

Fu et al. [110] proposed a framework where, among others,
tensorization (i.e. the mapping of lower-order data to higher-
order data), Fourier transform, and homomorphic encryption
are used to provide a privacy-preserving analysis of multime-
dia data in cloud environments. The authors show that their
approach has a lower error ratio than similar approaches, such
as those not applying secure tensorization.

Another approach is to perform anonymization techniques
(e.g., permutation or truncation) before the data is outsourced
to the Cloud. The difference here is the need to securely
store the real values’ mapping to the anonymized ones, which
creates an overhead in storage. Companies such as Intel are
following this approach and claiming success [111].

Other privacy-preserving methods provide data privacy
and have minimal impact on the usability of a cloud ser-
vice. For instance, a similarity-based method proposed by
Pang and Shen [112] provides privacy assurances in text
retrieval by anonymizing search results from authorized
servers and preventing the reconstruction of queries and
documents.

Homomorphic encryption, discussed byMittal et al. [113],
can be used to preserve privacy and still provide data utility
because it allows computations to be performed on encrypted
data. It also allows private database queries by taking advan-
tage of its encrypted computation capabilities. Nevertheless,
with homomorphic or any other type of encryption, a few
aspects should always be considered. For instance, the Cloud
Security Alliance (CSA) recommends the following guide-
lines:
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• sensitive data should be encrypted with approved algo-
rithms and long, random keys;

• data should be encrypted at all times: in transit, at rest,
and in use;

• data should be encrypted before it passes from the enter-
prise to the cloud provider;

• the Cloud provider or service, as well as its staff, should
never have access to the decryption keys used.

The development of AI services usually demands large
amounts of (at times sensitive) data to produce capable
Machine Learning (ML) models. Moreover, the training of
such models often requires data to be sent to a centralized
server, potentially jeopardizing data privacy. To optimize
the training process, Konecný et al. [114], [115] proposed
Federated Learning. This technology allows each device to
contribute to the improvement of a shared model by training
it with local data. The updates made are summarized and sent
to the Cloud server, which aggregates the updates sent by
different devices. In this way, as no private data leaves the
device, higher privacy guarantees are offered.

Since its inception, Federated Learning is evolving, accom-
modating different application scenarios and having even
stronger privacy focus. From Blockchain integration [116]
to deployment in wireless networks [117], a large focus is
on performance and privacy improvements [118]–[122]. For
instance, Niu et al. [122] proposed a framework where clients
download only portions of the model, train it locally, and then
upload the renewed version. Thus, avoiding inefficient large-
scale learning tasks for resource-constrained mobile devices.
Moreover, they increased privacy assurances by coupling
the framework with features like differential privacy, secure
aggregation, randomized response, and a bloom filter.

In addition to the application of privacy algorithms and
technologies, it is crucial to assess the privacy levels that each
one of them can provide. Therefore, in the following section,
we analyze privacy metrics.

IV. PRIVACY METRICS
When dealing with data privacy, it is evident that privacy
metrics are required as they facilitate the assessment, quan-
tification, and evaluation of privacy-enhancing processes and
anonymized data sets. This section provides an overview of
privacy metrics, a discussion and analysis of privacy metrics
that can be applied for anonymization purposes, and the
analysis of its applicability to the Cloud.

A. OVERVIEW OF PRIVACY METRICS
Metrics are quantitative assessment measures typically
adopted across industries to assess and compare operations,
performance, or any other measurable indicator. Several met-
rics can be used as privacy metrics due to its applicability
in the data privacy domain. Information theory (e.g., Shan-
non’s Entropy [123] orMutual Information (MI)), descriptive
statistics (e.g., percentage or average), and even advanced
clustering algorithms (e.g., K-means or Davies Bouldin

Index) provide many of those metrics. However, they do not
represent all the options available.

There are population models such as Pitman’s [124] or
McNulty’s [125] that estimate the characteristics of the over-
all population (i.e. dataset). They do that with probability
distributions fine-tuned with sample characteristics. These
models are particularly useful for determining disclosure and
re-identification risks. Such models are part of statistical
methods analyzed by Dankar et al. [126], which compared
differentmodels to estimate the number of population unique-
ness accurately.

In a survey of technical privacy metrics by Wagner and
Eckhoff [14], aspects such as data inputs, outputs, and types
of data were addressed. For instance, uncertainty, similarity,
diversity, indistinguishability or information gain, and loss
are types of outputs that are attainable from privacy metrics.
They also propose an informal method for choosing metrics
based on data types, input sources, target audiences, and oth-
ers. Nevertheless, it was also concluded that the combination
and aggregation of privacy metrics are necessary.

Aside from data publishing and datasets, some metrics
focus on information available on the Internet. By attempting
to quantify howmuch of a user’s information is online, Blauw
and von Solms [134] show that it is possible to calculate
users’ visibility or invisibility scores incrementally. Never-
theless, the scores are subject to the classification and weight
given to each layer of visibility, which can lead to subjective
interpretations of the scores in different scenarios.

A similar work by Becker and Chen [135] targeted social
media and the quantification of a user’s privacy. A slightly
different approach by Braunstein et al. [136] tried to infer
privacy scores with privacy surveys. However, the authors
discovered that the formulation of the surveys has a high
impact on responses. Therefore, it was proposed to continue
research on mapping indirect answers instead.

B. ANONYMIZATION METRICS
Information theory and descriptive statistics provide several
metrics that can be used in contexts such as anonymization
and privacy. Anonymization metrics are measures applied
under specific conditions and datasets that provide the output
required to estimate privacy scores.

The usage of descriptive statistics [137] is a general but
effective way of estimating the amount of privacy granted
to data or its usability. With this method, several measures
can be taken to analyze the anonymized data. Mean, standard
deviation, average, variance, covariance, and dispersion are
some of the measures that can quantify the distortion between
anonymized and original data.
Classification Error Metrics [127] are similar to descrip-

tive statistics as they measure the classification error of an
anonymized dataset and compare it to the original data.
Mivule and Anderson [64] show that the difference between
the two indicators presents a trade-off between data privacy
and usability. In this case, both original and anonymized data
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TABLE 5. Properties of the privacy metrics.

are passed through a machine learning algorithm that returns
a classification error for original and anonymized data.
Shannon’s Entropy is a metric proposed by Shannon [123]

that is widely used in Information Theory (IT). It measures
the amount of information in a particular block of information
based on the data’s uncertainty or randomness.
Mutual Information [128] is a statistical method that calcu-

lates the amount of shared information in two data sets. This
metric is useful with anonymization processes (i.e. original
vs. anonymized dataset). Using MI, there are several ways
to improve the assumptions taken of the privatized data and,
with the same principle, provide better anonymizations when
the MI is used in the anonymization algorithm.

The correlation metric, also known as Pearson’s Cor-
relation Coefficient [129], measures the linear correla-
tion between two data sets (the original data set and
the anonymized one). Mivule and Anderson [64] show
how it measures the correlation’s direction, being posi-
tive or negative. This method returns values between −1 and
1. The signal indicates the direction of the correlation—
positive if the data from the two data sets moves in the
same direction and negative if it moves in the opposite
direction.

When working with anonymization techniques, it is pos-
sible to implement clustering for anonymization perfor-
mance purposes, for instance, k-means. In this situation,
the Euclidean Distance [130] becomes handy in measuring
the distances within the original and privatized cluster. Fur-
thermore, with these results, it is possible to assess how well
the anonymization went.

The Davies Bouldin Index [131] evaluates the quality of
data clustering. It is similar to the Euclidean distance. It also
quantifies how functional the clustering is. Furthermore,
the resultant distance between clusters (and distances within
the cluster) can be useful for further analysis (e.g., using
Euclidean Distance).

The Cosine Similarity [132] is a function of the inner prod-
uct of vectors (i.e. the representation of files or documents),
divided by the product of their lengths. Usually applied in
information retrieval, this function generates a normalized
value between zero and one. The files being compared have
the same information if the Cosine Similarity is one. On the
other hand, the files are completely different if the Cosine
Similarity is zero.

It is possible to assess the risk of re-identification [133] by
relating the uniqueness of the records of a dataset. If unique-
ness can be measured accurately, then this kind of risk (i.e. re-
identification of disclosure) can be managed. Nevertheless,
in practice, it is often not possible to measure uniqueness
directly. Therefore, it must be estimated, for instance, as pro-
posed by Dankar et al. [126].
Table 5 summarizes identified metrics, considering their

types, the nature of the input data with which they operate
(structured or unstructured), and the metrics’ range. Apart
from re-identification risk, all metrics can operate on struc-
tured and unstructured data.

C. PRIVACY METRICS FOR THE CLOUD
Only a few privacy metrics, in their original form, have
characteristics suitable for Cloud concepts and services. The
reason is that it is necessary to consider different data sources,
instances, locations, life cycles, automation, and regulation.
Another challenging step is to develop software capable of
adapting and implementing such metrics in Cloud environ-
ments (cf. Section V-C). The following improvements may
enhance their applicability in the Cloud:
• Setting sensitive attributes – As mentioned before, some
metrics operate according to the sensitive attributes indi-
cated by the data curator. Since a faulty identification of
sensitive attributes or quasi-identifiers may increase the
risk of re-identification, this is an issue that must be fur-
ther researched and improved. Although still a challenge
and object of research, such mechanisms could benefit
from AI approaches to identify sensitive attributes and
automate the anonymization process. For instance, cloud
services that have run-time flows could benefit from
these adaptations.

• Linkage and cross-referencing attacks – It is not possible
to know with certainty what the background knowledge
of a potential attacker is. Therefore, it is not possible to
effectively avoid linkage and cross-referencing attacks.
However, it is possible to make assumptions and esti-
mates to raise privacy thresholds and reduce the risk of
disclosure. Whenever possible, an exhaustive mapping
of all the data sources spread across different Cloud
services and providers (and respective measurement of
the anonymization levels) can reduce the likelihood of
such attacks.
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• Data location and retention – Significantly related to
the previous point, it is hard to deal with this aspect.
Data curators may be unaware of other datasets available
elsewhere. Therefore, it is necessary to make conser-
vative assumptions and estimates for linkage attacks.
Cloud service providers have different policies concern-
ing data retention and location. Moreover, the scalable
and dynamic nature of the processing, storage, and net-
working services highly affects the usage of traditional
privacy metrics. Moreover, data curators applying such
metrics must comply with enforced policies and regula-
tions in the applicable regions.

• Application schemes and guidelines – There are appli-
cation schemes and guidelines that help to provide uni-
formity in data privacy. There is also related work that
provides insight on the topic and offers guidelines such
as parameters, attackers, and data inputs, as shown by
Wagner and Eckhoff [14]. Nevertheless, there is not yet
a norm to follow. In the Cloud, one should not only com-
ply with data privacy thresholds by anonymizing data,
but also by probing the different services’ components
and modules to keep track of data and service changes
and act accordingly.

Regardless of the purpose of data privacy operations and
methods (e.g., compliance with regulation, data mining, secu-
rity, and research), setting and defining sensitive attributes
to anonymize, monitoring Cloud services’ changes, esti-
mating attackers’ background knowledge, developing appli-
cations and services, and complying with regulation still
face one common issue: the trade-off between privacy and
utility. Nevertheless, efforts have been made in different
fields. Privacy by Design (PbD) is taken into account while
developing services and applications in Europe [52], while
other methodologies are followed in different regions. Cloud
service providers also have more privacy-driven policies.
Moreover, research on PETs is active, and the scientific
community keeps making progress in privacy metrics and
methods.

Given the characteristics of Cloud environments, the pre-
viously discussed privacy metrics (Table 5) fail to cover all
the relevant aspects. They mainly rely on data analysis and
dismiss the surrounding factors. Nevertheless, they can still
be used together with additional indicators. In cases where
no specific data transformation occurs, but rather transac-
tions, such as an exchange of private information between a
user and a service provider, it is possible to devise metrics
based on such service providers’ properties. Such metrics
as trustworthiness scores derived from appropriate indicators
(e.g., security features), previous incident history (e.g., pre-
vious data breaches), and privacy mechanisms adopted (e.g.,
in communications, privacy policies, and transparency) can
provide additional input for data owners sharing information
with specific service providers. In turn, since data owners’
privacy awareness increases, they can make appropriate deci-
sions regarding their data.

Not all cloud services are identical, run in similar infras-
tructures, or employ the same security mechanisms. There-
fore, the aforementioned trustworthiness scores are usually
assessed from different perspectives. Sule et al. [138], for
instance, propose fuzzy logic algorithms to assess trustwor-
thiness levels based on characteristics from physical, infras-
tructure, platform, and software layers (e.g., Secure Shell
(SSH), Secure Sockets Layer (SSL), Intrusion Detection Sys-
tem (IDS), Virtual Machines (VMs), and other character-
istics). A downside of this approach is the computational
cost associated with computing, collecting, and storing scores
across nodes.

To overcome the previously described limitation, Zhang
et al. [139] proposed a domain-based trust model that can
reduce the aforementioned overhead by storing trust scores
within the same domain and with trusted third-party nodes.
The proposed model not only reduces computational over-
head but also offers higher detection ratio of malicious nodes.
Nevertheless, it depends on trustworthy nodes, and at some
moment in time, they can be corrupted. As such, another work
[140] further improved the approach by proposing a double-
blind anonymous evaluation-based trust model that not only
discards the usage of trusted third parties but also prevents
malicious attacks in cloud computing.

The following section analyzes privacy tools. Some of
the tools adopt the previously described privacy metrics,
while others implement privacy models and respective pri-
vacy mechanisms and algorithms.

V. PRIVACY TOOLS
There is quite a choice of privacy software and tools avail-
able for different purposes. Tools are available not only to
perform data anonymization operations but also to implement
privacy metrics. They operate on different data types, data
formats, and scenarios, thus providing different solutions for
different needs. This section analyses the different types of
anonymization tools and their characteristics and discusses
their applicability in the Cloud.

A. ANONYMIZATION TOOLS
Anonymization tools are designed to provide the means to
anonymize different datasets with different characteristics.
These tools implement algorithms such as those described in
Section III (e.g., k-anonymity and t-closeness). Examples of
such tools and their characteristics are described next.
Open Anonymizer [141] is a Java tool designed to protect

sensitive data with generalization. This feature, based on
the concept of k-anonymity and l-diversity, allows for the
creation of data twins that mask the identity of individuals.
AnonTool [142] is an open-source tool developed in C pro-

gramming language that provides easy, flexible, and efficient
functions that can be used to anonymize live traffic or packet
traces in the libpcap file format. It supports several formats
such as IP, Transmission Control Protocol (TCP),User Data-
gramProtocol (UDP),Hyper Text Transfer Protocol (HTTP),
File Transfer Protocol (FTP), and Netflow.
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To be able to anonymize a wider variety of data logs,
new solutions were proposed. Li et al. [143] introduced
Converter and ANonymizer for Investigating Netflow Events
(CANINE): an anonymization tool aiming at the privatization
and conversion of different NetFlow1 formats. The tool is
coded in Java with a user-friendly Graphical User Interface
(GUI), giving the possibility to click and choose the method
to use, such as truncation, random permutation, or prefix-
preserving.

With the intent of anonymizing Process Accounting (PA)
logs, SCRUB-PA was proposed. It is one of the four modules
of the SCRUB infrastructure. SCRUB-tcpdump is based and
built on tcpdump. Yurcik et al. [144] designed it to provide
the application of multi-level anonymization to packet traces,
allowing for the management of packet traces while pro-
tecting sensitive information from being disclosed. SCRUB-
PA is based on the Java code used in CANINE, and this
module developed by Luo et al. [145] is intended for the
anonymization of Process Accounting logs. Aiming for a
similar outcome, Liu et al. [146] also show how busi-
ness processes can be mined resorting to their proposed
privacy-preserving framework. SCRUB-NetFlows is a Net-
Flow anonymization tool developed by Yurcik et al. [147] to
fix the flaws found in previous tools and uses several options
to anonymize the fields of standard NetFlows. SCRUB-Alerts
anonymizes intrusion detection system alerts, for example,
firewall or virus alerts.

Xu et al. [148] developed a tool that allows data curators
to anonymize network traces by applying a prefix-preserving
technique. Crypto-PAn is a cryptography-based method,
where the data curators provide the tool with a secret key.
With the same key, consistency is achieved in multiple net-
work traces, whichmeans that the same IP address in different
traces is anonymized with the same resultant IP address. The
algorithm uses bitwise anonymization, and the privatized IP
addresses depend on previous anonymizations. Therefore,
it leads to a security flaw. As the anonymized IP addresses
share a common prefix with the private addresses, if one
can de-anonymize one IP address, all the other addresses
with the same prefix are affected. Nevertheless, in scenarios
where injection attacks are not likely to happen, this option
is preferable due to the maintenance of IP structures and the
possibility of anonymization across different locations (with
key sharing).

Kristoff [149] later proposed a Perl port derived from
Crypto-PAn: IPanonymous. This tool provides a one-to-
one mapping of the private to the anonymized IP address
and supports prefix-preserving (cf. Section III), consistency
across traces (over time and location), and cryptography-
based anonymization. The logic is similar to that of Crypto-
PAn, and it can provide consistency in the process. Using
the same key will guarantee consistent results with different
implementations.

1NetFlow is a feature that was introduced on Cisco routers that provides
the ability to collect IP network traffic as it enters or exits an interface.

TCPdprive is a lightweight tool, developed by Farah [150],
that anonymizes data by eliminating confidential information
from packet traces collected from a network. It eliminates
sensitive information by replacing sensitive fields with fab-
ricated information, avoiding the reconstruction of sensitive
information. It works on tcpdump ‘-w’ files and supports dif-
ferent levels of anonymization, from 0 to 99, with 99 being the
level where the information is released and 0 being the most
secure level. Some of its limitations are, for instance, the sys-
tem compatibility (SunOS, Solaris, and FreeBSD) or the non-
preservation of subnet broadcast information.

Based on TCPdprive, Plonka [151] developed Ip2anonIP
to turn IP addresses into hostnames or anonymous IP
addresses. This tool provides the option of adding some
arbitrary fields. However, it can take hours to prepare a data
set of a single day.

B. ANONYMIZATION TOOLS THAT ALSO SUPPORT
METRICS
The previously described anonymization tools focused on
settings associated with each particular algorithm it imple-
ments. Nevertheless, some tools implement anonymization
algorithms as well as privacy metrics that are not algorithm-
dependent. As such, there is higher flexibility, and different
metrics can be used to support the anonymization process.
Such tools are analyzed next.

A modular command-line UNIX tool named FLAIM was
proposed by Slagell et al. [66]. This framework primes for
being particularly modular and not bound by specific types
of logs to be anonymized. Data curators or the system admin-
istrators can also tune the trade-off between information loss
and anonymization level. Since the framework includes sev-
eral anonymization techniques such as truncation and prefix-
preserving, it supports a broader range of applications.

Not all solutions are freeware or under open-source
licenses. PARAT [154], rebranded to Privacy Analytics
Eclipse, is a commercial solution for privacy and anonymiza-
tion. It offers a solution similar to those referred to before
(anonymization algorithms, risk, and data utility metrics) but
focuses on medical data from a professional and commercial
point of view.

Poulis et al. [155] proposed a system for evaluating the effi-
ciency and effectiveness of anonymization algorithms: SEC-
RETA. Having the possibility of choosing which algorithms
to evaluate, the analysis is interactive and progressive. The
results are displayed with the attribute statistics and several
data utility indicators in a summarized and graphical form.
It supports different operationmodes and invokes one ormore
instances of the anonymization module with the specified
algorithm and parameters. The evaluator module collects the
anonymization results and forwards them to the experimenta-
tion module. From there, results are forwarded to the plotting
module (for graphical visualization) or exported.
Datafly [156] is a tool developed to privatize medi-

cal records. It works by generalizing, suppressing, insert-
ing, or removing information without losing the useful details
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TABLE 6. Privacy tools characteristics.

contained in the data and guaranteeing k-anonymity. To our
knowledge, there is no publicly available implementation at
the time of this writing.

Hundepool and Willenborg [157] designed µ-Argus for
creating safe micro-data files. This tool implements a greedy
algorithm developed by Sweeney [86]. First, the data curator
specifies a value for k and selects how sensitive an attribute
is within a range between 0 and 3 (not identifying and iden-
tifying, respectively). The rare (i.e. unsafe) combinations are
detected by testing two and three combinations of attributes.
Generalization and cell suppression are used to eliminate
unsafe combinations of attributes. As µ-Argus suppresses
data at the cell level, the output data usually contains all
the tuples, but with deleted values in some cells. As it tests
two and three combinations, the algorithm does not assure
k-anonymity due to the possibility of finding unique com-
binations. As the k-anonymity requirement is not enforced
on suppressed values, it becomes vulnerable to linking and
inference attacks.

Operating slightly differently from most tools available,
Wang et al. [158] proposed a Utility-Aware Visual Approach
for Anonymizing Multi-Attribute Tabular Data. This long
name describes an approach that combines multiple methods
and models for data anonymization (e.g., k-anonymity, l-
diversity, and t-closeness). It is different from most since it
is a user-oriented solution that aims to help users identifying
disclosure risks by proposing appropriate methods for the
process. The authors use Privacy Exposure Risk Trees to
visually guide users through the process.

The ARX Data Anonymization Tool is commonly men-
tioned in the literature and is widely used due to its fea-
tures. First introduced by Prasser and Kohlmayer [152],
it is capable of analyzing data utility and re-identification
risks. Moreover, it supports various privacy models (such
as k-anonymity, l-diversity, and t-closeness), semantic pri-
vacy models (e.g., differential privacy), data transformation
techniques (e.g., generalization, suppression, and top/bottom
coding), and global and local recoding.

sdcMicro (Statistical Disclosure Control Methods for
Anonymization of Microdata and Risk Estimation) is an ‘R’
package2 developed by Matthias et al. [153] to generate
anonymized data. It also includes metrics and estimation pro-
cesses, which provide better andmore complete data analysis.
It supports a wide variety of techniques to visualize and apply
in the anonymization process. Compared with other tools
such as µ-Argus, it supports a broader range of techniques.
Table 6 summarizes the privacy tools discussed, taking

into account the inclusion or the lack of a supporting GUI,
licensing costs, and the inclusion of privacy metrics.

C. PRIVACY TOOLS FOR THE CLOUD
Some of the previously analyzed privacy tools could be
adapted to accommodate the Cloud’s dynamics and character-
istics. Others were designed from scratch for Cloud scenarios.
Next, we analyze some of those tools.

Matsunaga et al. [160] proposed using a general
anonymization policy in Cloud and Big Data platforms. The
objective was to move towards an Ontology-Based definition
of Data Anonymization Policy for Cloud Computing and
Big Data in order to standardize the use of anonymization
policies and share a universal agreement on data anonymiza-
tion structure. It is one step further towards uniformity.
By defining which attributes are sensitive, quasi-identifiers,
and key attributes, the proposed ontology describes which
methods (e.g., suppression or generalization) to use and what
the associated regulation is (e.g., HIPAA or Payment Card
Industry Data Security Standards (PCI-DSS)).
PRIVA as a Service (PRIVAaaS), a toolkit offering a set of

libraries for providing privacy, was proposed by Basso et al.
[161]. The toolkit works based on anonymization methods,
such as generalization, suppression, and encryption, and poli-
cies, such as PIPEDA, GDPR, and HIPAA. The process is
focused on three types of attributes: (1) key attributes (e.g.,

2R is a language and environment for statistical computing and graphics
[159].
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name and social security number), (2) quasi-identifiers (e.g.,
birth date and zip code), and (3) sensitive information (e.g.,
salary and credit card information).

There are also tools such as the privacy-preserving frame-
work for outsourcing location-based services to the cloud
[162], which are context-specific (i.e. location). Others, such
as PMDP (A Framework for Preserving Multiparty Data
Privacy in Cloud Computing) [163], focus on data shared
across multiple servers. Nevertheless, although there are not
many solutions designed for Cloud scenarios and applica-
tions, there is potential to improve existing privacy models
and metrics. It is possible to pursue this goal by doing further
research, updating existing software, and taking advantage of
the Cloud paradigm—instead of disregarding current policies
and regulations, adapting to Cloud and Big Data paradigms.

There are also security and performance aspects related to
Cloud scenarios. Toch et al. [164] discussed privacy in the
scope of cybersecurity. Such systems often demand detailed
personal information from attack logs. This information shar-
ing may put privacy and rights at stake if a proper balance
is not found. It is important to weigh and study the pros
and cons of giving away personal or private information
to such systems in exchange for a promise of security and
performance in the Cloud.

In the scope of data anonymization, ETL (Extract Trans-
form Load [165]) processes used for anonymizing data can be
computationally heavy. The aforementioned tools and met-
rics can benefit from the distributed computation. Moreover,
data curators using these mechanisms as a service could rely
on predefined regulations and policies offered by service
providers.

VI. OPEN ISSUES AND RESEARCH CHALLENGES
In the previous sections, the characteristics of different pri-
vacy concepts, threats, PETs, metrics, and tools for the
Cloud were presented. All the mentioned approaches pos-
sess a unique set of strengths and weaknesses. Moreover,
their applicability to the Cloud also poses different chal-
lenges and open issues. Some of the open issues from
algorithms, models, and infrastructure are scientific, while
others such as laws and regulations are more political.
Nevertheless, it is possible to group open issues and
research directions into respective categories. Next, the open
issues and the challenges concerning Cloud applicability are
identified.

A. PRIVACY ALGORITHMS
The main purpose of using PETs and anonymizing data is
data publishing. Extracting information from data is highly
valuable, for instance, for marketing or research purposes.
Therefore, protecting private data or PII is essential. In
Sections III-D and V, we mentioned approaches, such as the
ones proposed byBasso et al. [99] and Prasser andKohlmayer
[152], that focus on this point. Regardless of the improve-
ments and novelty of such methods, it seems hard to reach
an international consensus on the matter. The issues in these

cases are closely related to insufficient cross-border legisla-
tion and policies. Next, we analyze the domains where we
have identified open issues:

• Data publishing – Re-identification is a significant issue
(and risk) in the scope of data publishing. By cross-
referencing and linking information, attackers may gain
access to private information. It is difficult for data
curators to transform data while preventing the linkage
with external information and the loss of data utility.

• Attribute classification – Usually, attributes are classi-
fied manually as sensitive, quasi-identifiers, or identifi-
able. It is a process that demands expert knowledge but
still fails to avoid cross-referencing or linkage attacks.
This also represents a barrier for automated operations
suitable in Cloud environments. It is hard to define and
classify all the attributes and, at the same time, prevent
attacks and allow automation.

• Standardization – Closely related to regulations, there is
preliminary work on standardization. There are various
proposals for providing data privacy in the literature,
for instance, data anonymization methods or enhanced
encryptionmechanisms. However, very few consider the
Cloud perspective. Nevertheless, in both cases, there is
a lack of consistency in standards.

• Data life cycle – Another issue to consider is the life
cycle of data. Static datasets should gradually reduce
with time, giving place to dynamic data. Several data
updates, related datasets, different data sources, loca-
tions, and owners should be considered when privacy
operations and assurances are to be provided. Cloud
service providers and their respective Data Protection
Officers (DPO) should be able to provide assurances.
However, it is currently hard to define strategies and
develop procedures that comprehensively cover such
aspects.

• Security, anonymity, and performance – These concepts
are conflicting. There are trade-offs between secure and
anonymous communications, as well as anonymity and
performance.When considering the three components in
parallel, the difficulty in finding a proper balance rises
even further. Proposing PETs that are, at the same time,
secure, anonymous, fast, and efficient is a considerable
research challenge.

B. PRIVACY METRICS
Although many metrics already have normalized formula-
tions (e.g., Pearson’s Correlation Coefficient [64] and Cosine
Similarity [166]), this is an important aspect to consider in
future research. By having normalized metrics, it is possible
to perform objective analysis and allow the direct compar-
ison and classification of datasets or systems. The search
for efficient algorithms for optimal trade-offs between data
privacy and data utility is ongoing. Furthermore, it seems
only natural that recent developments in AI will contribute
to the optimization of trade-offs and attribute classification.
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Next, the domains where we have identified open issues are
discussed:

• Anonymization versus data utility – This trade-off is a
recurrent challenge. In data publishing, it is computa-
tionally hard to transform data while providing optimal
data privacy and utility. There is a substantial number
of possible combinations of data transformations. Thus,
it would require tremendous amounts of computational
power and memory to analyze all the outcomes and
always achieve the best results. The research challenge
here is on how to efficiently compute optimal trade-off
values.

• Normalization – There is a large choice of metrics
and models used to calculate privacy and risk thresh-
olds. However, some metrics and models are not bound
and therefore have subjective interpretations of clas-
sifications. For instance, l-diversity, t-closeness, and
m-invariance range from zero to infinity. As such, sub-
jective evaluations and classifications are possible.

C. PRIVACY TOOLS
The algorithms and methods used for data anonymization
perform operations across the datasets. Many are stand-alone
implementations, while others are part of more compre-
hensive solutions such as ARX [152] or sdcMicro [153].
Although possible, it is not easy to implement such algo-
rithms and methods in ways that entirely take advantage of
Cloud platforms. The domains where we have identified open
issues are the following:

• Development, implementation, and access – PETs, pri-
vacy metrics, and models in Cloud environments are
not common. Nevertheless, some improvements and
enrichment of available solutions have appeared. Many
originated in academic research and turned into fur-
ther refined open-source projects such as ARX Data
Anonymization Tool or sdcMicro. However, there are
still issues to overcome, such as the low community-
accessible offer of solutions beyond prototypes and
demonstrations. For example, the LKC-privacy model
and the αβ-algorithm are still being integrated with the
ARX Data Anonymization Tool, and, like many others,
it does not offer publicly known implementations.

• Probing services and data – Probing services or appli-
cations about privacy-related details is not an issue, but
rather a development to be done as future work in most
cases. Cloud services are often scattered across clus-
ters in different servers and locations. With the variety
of services running and processing potentially sensi-
tive information, privacy monitoring tools must probe
diverse and sometimes decentralized services, which can
be challenging.

• Distributed deployment and computation – Cloud infras-
tructures horizontally and vertically scale instances of
applications and services. Despite a few developments
and prototypes (e.g., ARX Data Anonymization Tool),

FIGURE 4. Seven principles of privacy by design.

most privacy tools are not designed to support and take
advantage of the Cloud’s life cycle and overall archi-
tecture. Accordingly, it is still an issue to fully take
advantage of Cloud architecture.

• Runtime Privacy – The trend of service and microser-
vice containerization needs to be considered in runtime
privacy. Cloud services and applications should be con-
tinuously monitored at runtime and upon deployment.
Unless tailor-made probes are developed, it is a signifi-
cant challenge to have adaptive mechanisms, due to the
number and variety of available services and architec-
tures.

D. PRIVACY BY DESIGN
The concept of Privacy by Design (cf. to [167] and
Section VI-D) contributes to consistent privacy monitor-
ing since specification and development aspects are taken
into account in the assessment. In Europe, the longer-
term enforcement of the GDPR is expected to bring fur-
ther improvements. Nevertheless, it is necessary to further
research privacy mechanisms for the Cloud, for instance,
designing and developing adequate adaptive monitoring
services.

PbD recommends designing systems accounting for the
inclusion of privacy and data protection at each stage of
development, rather than as an addition. Figure 4 shows
the seven principles recommended to reach PbD. There are,
however, several challenges when designing systems with
privacy by design. For instance, as privacy can be ambiguous
and fuzzy, it can be difficult to protect, there is no transversal
methodology for systematic privacy enforcement (except the
recently active GDPR [52] for European citizens), and there
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is not much knowledge about the privacy benefits or risks
practiced by the companies.

According to Shapiro [167], to have PbD, it is necessary to
clearly define and produce privacy models and mechanisms
early in each development context. As there are security
engineers and technical security disciplines, having privacy
disciplines and engineers would help to create privacymodels
and tools that are robust and systematically and transparently
implementable.

Despite what was mentioned before, there is one factor
that still considerably influences privacy: human behavior.
Research conducted by Spiekermann on the behavioral eco-
nomics of privacy [168] concluded that, regardless of the
guidelines, people make irrational decisions and underesti-
mate long-term privacy risks.

Companies have started to adopt such concepts after a
period of formulating and consistently defining privacy poli-
cies and requirements. For instance, Microsoft adopted it
when developing new products or services [53]. In other
areas, such as data publishing, there was also room for
improvement. For instance, Monreale et al. [169] have shown
analytic processes such as mobility data publishing, dis-
tributed analytical systems, and Global System for Mobile
Communications (GSM) profiling that minimize (or in some
cases prevent) privacy harm and still achieve adequate trade-
offs between privacy and utility.

Langheinrich [170] estimates that personal data collection
is expected to continue throughout the years. With such con-
ditions, with possible growth rates and data collection means,
privacy might not be readily assured if proper measures
are not taken. As such, social and technological contexts,
as well as privacy laws and regulations, need to change and
adapt. Moreover, the multitude of services, micro-services,
and applications available in the Cloud are examples of ideal
targets to employ privacy by design starting at the earliest
development stages.

E. PRIVACY REGULATIONS
Although regulations are in place (e.g., HIPAA in Mercuri
[49] or GDPR [52]), there is a lack of international coopera-
tion in this scope. It is not easy to provide uniformity and con-
sistency due to different legislation and politics in different
regions. Nevertheless, aggregation of existing regulations and
respective compliance should be possible. Next, the domains
where we have identified open issues are discussed:

• The ambiguity of concepts and differentiation – Contex-
tual integrity or social norms are examples of distinct
privacy concepts, which can lead to ambiguity. Simul-
taneously, these different interpretations are not always
subject to the scrutiny of regulations and policies.

• Conflicting regulations in different regions – HIPAA
and GLBA in the USA, GDPR in Europe, PIPEDA in
Canada, and CPPDPA in China are examples of distinct
regulations across the world.Whenmany Cloud services
operate globally, this is a challenge for system develop-

ers and data curators, as data and operations are scattered
across different regions.

• Data location – It is not always easy to keep track of
data origin and location in Cloud services operating with
several data centers worldwide. Since the applicability
of existing regulations (e.g., GDPR) also depends on the
country of origin of the data owner, data location is an
important aspect to consider.

Despite the issues and challenges identified, improvements
are being made across all of the areas mentioned. Every
month, researchers publish completely novel research. Either
by enhancing the shortcomings of existing methods or by
following different approaches, the outcomes certainly add
value to these areas.

The technical advancements, along with regulatory
reforms, positively contribute towards more privacy. Never-
theless, while privacy increases, the difficulty for real-world
implementation and regulation compliance also increases for
many businesses. This difficulty is often a factor that is not
given enough attention. For instance, companies that fail to
implement such regulations are fined; business models that
are incompatible with higher privacy standards (e.g., data
collection in exchange for service) require profound changes
in the services or products offered.

VII. CONCLUSION AND FINAL REMARKS
The massification of Cloud Services, along with increased
privacy awareness, drives an increase in privacy concerns.
Information is collected from various sources. Data is pro-
cessed in many locations, and somewhat different laws reg-
ulate it. Therefore, it is relevant to survey the central privacy
concepts currently adopted and the PETs, metrics, and tools
available in the scope of data anonymization.

This survey provided a background on privacy concepts,
threats, and regulations and analyzed its applicability to the
Cloud. The functionalities and characteristics of PETs were
discussed. The applicability of such mechanisms, tools, and
privacy metrics in Cloud contexts was analyzed, and the
current open issues and future research challenges were dis-
cussed.

Despite the diversity of algorithms, metrics, and tools,
no solution fits all purposes. The combined use of such
mechanisms and metrics should be the ultimate and ideal
scenario. It is relevant to determine the characteristics of such
mechanisms (to be able to use the most appropriate ones)
and comply with different regulations from different regions.
Our review is a contribution to guiding and assisting other
privacy (or non-privacy) researchers. Moreover, it can help
make informed choices about using PETs, metrics, and tools
in the Cloud.
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