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ABSTRACT Dam behavior prediction is a classic problem in the monitoring of dam structure. To obtain
accurate results, different researchers have established various models. However, the models of predecessors
rarely studied the nonlinear characteristics of dam displacement data and the abnormal values of monitoring
data. It means that abnormal values will contaminate data set, and consequently reduce the accuracy of
model predictions. In this article, an improved Random Forest (RF) model was proposed for analyzing
dam displacement prediction and was coupled with a sliding time window strategy. The proposed model
is developed by the following steps. First, for the purpose of alleviating the time-lag effect of impact
factor phenomenon, a sliding time window strategy was introduced into the RF model to improve the
time sensitivity. Second, aiming to determine the hyperparameters, Grid Search (GS) was introduced into
RF model to improve the global optimization ability. This article takes masonry arch dam in China as an
example, and adopts the horizontal displacement recorded by Global Navigation Satellite Systems (GNSS)
as the research object. The accuracy and validity of the proposed model are verified and evaluated based
on the evaluation criteria. The simulation results demonstrate that the proposed model could capture the
long-term characteristics and provide better prediction based on short-termmonitoring data. It also has strong
robustness on the abnormal data series, has simpler structures and less parameters, and requires less time for
model training, so it can be a potential tool for actual monitoring tasks.

INDEX TERMS Arch dam, health monitoring, random forest regression, grid search.

I. INTRODUCTION
According to statistics in September 2019, there are more
than 58,000 dams distributed in 96 countries [1]. China
has the largest number of dams and the largest irrigation
area in the world. Since hydropower is the best choice for
green energy, and China is rich in hydropower resources and
has huge development potential, so hydropower will play a
key role in China’s energy structure [2]. However, with the
development of hydropower, long-term maintenance of dams
should be considered. Today, dam damage, or failures are
caused by various reasons, increase in external load because
of abnormal weather, and poor durability because of the aging
of existing dams [3]. Structural failure of most dams does
not happen suddenly, but it is a process that occurs gradually
under the long-term action of various loads. Therefore, it is
necessary to monitor dam safety through equipment. The
dam safety monitoring aims to establish a long-term behavior
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monitoring and early warning model based on the observed
data, and to identify abnormal behaviors as early as possible
so as to eliminate or minimize adverse impact [4].

Compared with other engineering constructions, dams are
extremely vulnerable to environmental, hydraulic and geome-
chanical factors (i.e. air and water temperature, water level,
pore pressure, rock deformability and so on), each of which
will affect the structural behavior [5]. As the most intuitive
monitoring index, dam displacement is usually used to eval-
uate the overall structural performance and soundness. This
indicates that dam displacement is an important element in
ensuring the safe operation of the dam. The dam displacement
series has a highly nonlinear and non-stationary characteristic
due to the combined action of several random factors, and it is
difficult to employ such an approach to directly quantify the
displacement based on the current mathematical theory [6].
After all, now there is no unified and standardized method
for modeling and forecasting the similar dynamic data at
home and broad [7], so the establishment of a displacement
prediction model is a key research topic in the field of dam
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safety monitoring. Since the 1950s, various statistical models
were adopted for dam behavior modeling [8]. Some tradi-
tional statistical models, which are explicit physical interpre-
tation, simple model structure, and fast execution, like the
Hydrostatic-Seasonal-Time (HST) model, have been widely
applied in the prediction of dam displacements. The model is
explained by a simple function sum, for example, the thermal
effect is treated as a periodic function. However, the realistic
thermal effect cannot be accurately simulated by the peri-
odic function. Therefore, the regression results are only the
approximate fit of the actual relationship between variables.
The accuracy and stability of dam displacement prediction
has always been the difficult points in the dam displacement
prediction, especially for the long-term time series prediction.
Moreover, with the development of monitoring technology,
the sampling frequency of dam monitoring devices has been
increased from once a week to multiple times a day [9]. It is
necessary to propose advanced intelligent methods to satisfy
the requirements of big data processing.

Based on traditional statistical methods, improvements can
be made from following two aspects. First, the influence
of the temperature and water level on the displacements is
nonlinear and delayed [10]. Second, the time-varying effect
is complicated and could not be described by simple func-
tions [11]. In recent years, with the rapid development of
artificial intelligence, data-driven machine learning model,
which have strong nonlinear processing capabilities, gradu-
ally replace linear regression methods in the dam displace-
ment prediction [12]. Ranković V et al. [13] developed a
model based on Support Vector Regression (SVR) to improve
the prediction accuracy and training speed. Opyrchal [14]
used adaptive neuro-fuzzy systems to qualitatively locate
seepage paths in dams. Fernando Salazar et al. [15] used
Boosted Regression Trees (BRT) as a tool for computing
the relative influence and to identify the strength of each
input-output relationship. Lin et al. [16] proposed a Gaussian
Process Regression (GPR)-based model for dam displace-
ment forecasting and also compared the model with SVR
model and achieved comparatively better results. However,
some recent studies compared the results of deep learn-
ing model, which is a new research direction of machine
learning. In most cases the results of deep learning models
performed well as compared to machine learning models.
Mata J [17] proposed a prediction model for dam deforma-
tion based on Multilayer Perceptron (MLP) and utilized an
example analysis to verify it feasibility. Furthermore, it was
compared the results with Artificial Neural Network (ANN).
Wen et al. [18] achieved good results on a Convolution
Neural Network (CNN) and compared the results with SVR
model. Qu et al. [19] used Long-Short TermMemory (LSTM)
network for single-point and multipoint concrete dam defor-
mation prediction which outperformed the traditional models
and other machine learning models generated output results.
These new technologies provide more accurate results and
avoid the limitations of traditional statistical methods because
they can test nonlinear relationships and correlations between

predictive variables. However, there are still many shortcom-
ings of these technologies, such as overfitting and parameter
tuning [9].

Random Forest (RF) is a relative novel machine learn-
ing method, which has classification and regression func-
tions [20]. The effectiveness of RF has been proven to be
effective inmany fields. For example, Christoph Behrens [21]
used it when studying inflation forecasts. What’s more,
RF combines the predictions from a large number of deci-
sion trees and can score the importance of each predictor
variable [22]. It has two attractive features: (a) with random
sample selection and sample feature selection, it can improve
the generalization ability of the model, and it does not pro-
duce the overfitting problem with the increase of decision
trees; (b) The dam displacement can be predicted because
it can handle the complex nonlinear relationship between
high-dimensional data and input variables. For deep learning
models, in order to suppress the model from overfitting, regu-
larization or dropout layer needs to be introduced to improve
the adaptabilities and robustness, but it may also lead to
underfitting that occurs [23]. In order to solve the underfitting
problem, it is necessary to increase the number of hidden
layer units or the number of model layers, which will make
the model architecture complicated and require a heavy price
for model training [24]. Hence, compared with other models,
RF has a clear advantage in solving high-dimensional, and
nonlinear problems based on these features. The prediction
accuracy of RF also depends on the reasonable setting of
hyperparameters, but there is no consensus on selecting the
optimal associated parameters, and the practical method is to
determine the hyperparameters by the trial-and-error method.
To solve the above problems, Grid Search (GS) optimization
is utilized to fine-tune these parameters of RF model in this
study. GS has been successfully applied to various fields such
as power load forecasting [25], service satisfaction analy-
sis [26], etc. These GS-related works demonstrated that GS
is effective for hyperparameter optimization of RF model.

In short, the suppression of over-fitting or under-fitting
and hyperparameter optimization are critical for the accuracy
and validity of displacement prediction. However, although
RF model does not produce the overfitting problem as the
decision tree increases, it may cause the generalization error
within a certain limit [20]. In view of the problem, the solution
proposed in the article is to introduce the sliding time window
strategy to couple the RF model. The sliding time window
strategy can improve the time sensitivity of the statistical indi-
cators in the frame and suppressing generalization errors [27].
Aiming at the problem of RF model hyperparameter adjust-
ment, the GS method is used to select optimal parameters
to speed up model convergence. Based on previous studies,
predicting and estimating the displacement of a concrete
dam must consider the seasonal thermal changes of the dam,
otherwise it will lead to erroneous regression and prediction
errors [28]. However, the seasonal prediction component of
the thermal effect provided by the statistical model depends
on the water temperature thermometer and the dam concrete
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thermometer, and a dense and well-distributed sensor net-
work needs to be embedded in the dam. However, many dams
are not equipped with thermometers or thermometers have
been damaged. Therefore, combined with the delayed and
nonlinear characteristics of the influence of temperature on
displacement, this study adds an average temperature variable
around the dam, and implements a sliding time window strat-
egy. Using the example of a real-world masonry arch dam in
China, the results show that the optimized RF model has high
accuracy and a certain degree of robustness to abnormal time
series, and can be used for the prediction of long-term arch
dam displacement. The novel contributions of this article can
be summarized as follows. (1) Experimenting on a number
of models over normal and abnormal time series in terms of
prediction accuracy. After a deep analysis of these models,
we advocate the usage of the optimized RF as optimal model,
that is applicable for real-world dam displacement prediction
problems. (2) The optimized RF model is evaluated on a
shorter monitoring data set and achieved satisfied results as
compared to other baseline models. Thus, it has the capa-
bility to capture the long-term characteristics of the dam
displacement. (3) Verifying a nonlinear relationship between
the average temperature and the dam displacement.

The remaining of this article is organized as follows.
Section 2 presents a brief description of the HST, RF and
the sliding time window strategy, and elaborates the proposed
combined model in detail. Section 3 tells about the research
design of the study case, input variable selection, evaluation
indicators. In Section 4, the experimental results of the pro-
posed model and benchmark methods for various displace-
ment time series are illustrated and discussed. In Section 5,
the conclusion is finally reached.

II. METHODOLOGY
The overall process of the proposed model is described in
this section. Firstly, the theoretical basis of the traditional
statistical model, RF models and the sliding time window
strategy is described briefly. Then the proposed optimized RF
model is formulated, and the specific steps of the proposed
model are presented in detail.

A. TRADITIONAL STATISTICAL MODEL
The factors for the arch dam displacement are illustrated
in FIGURE 1. Traditional statistical models mainly use the
hydrostatic-seasonal-time (HST)model, δ(h, s, t) [29], which
can be divided into three parts:

(a) the hydrostatic component (the influence of reservoir
water), δ(h);

(b) the seasonal component (associated predominantly
with temperature), δ(s);

(c) the irreversible component (the dissipation of hear of
hydration, creep, alkali-aggregate reaction, and so on), δ(t);
The HST model can be written as follows:

δ(h, s, t) = δ(h)+ δ(s)+ δ(t)+ ε (1)

where ε is the residuals.

FIGURE 1. Modeling for dam safety monitoring.

In this study, three components are used as input variables.
The three parts are calculated as follows:

(1) The hydrostatic component is always determined in
accordance with a polynomial function of water height
through the mechanical analysis:

δ(h) =
K∑
i=0

αihi(t) (2)

where h(t) is the upstream water height, ai is the coefficients,
and i is the power exponent.K is always selected as 4 for arch
dams and 3 for gravity dams.

(2) The seasonal component is caused by the internal
temperature change in the dam, the foundation and the air
temperature. For arch dams, the internal temperature after
concrete hydration heat dissipates can be approximated as a
steady state. Therefore, the seasonal component is calculated
with a combination of harmonic sinusoidal functions:

δ(s) =
m∑
i=1

(b1i sin
2π it
365
+ b2i cos

2π it
365

) (3)

wherem is the temperature factor, selected as 2 for arch dams,
t is the days from the initial survey date to the current survey
date and b1i and b2i are the coefficients.
(3) The irreversible component is very complicated and is

mainly related to the creep of concrete and rock. For arch
dams, the time-dependent irreversible component increases
rapidly at the beginning and slows down over time. A sum of
the logarithmic function and the linear function are used:

δ(t) = c0 ln(t)+ c1t (4)

where t is the days from the initial survey date to the current
survey date and c0 and c1 are the coefficients.

B. CLASSIFICATION AND REGRESSION TREE MODEL
Classification and regression tree (CART) were proposed
by Leo Breiman et al in 1984. It is a widely used decision
tree algorithm [20]. Since the dam displacement monitoring
data is essentially a regression problem, this article only
describes the regression tree and the basic structure is shown
in FIGURE 2. Assuming that X and Y are input and output
variables, and Y is a continuous variable. Then, the given
training data set is D = {(x1, y1) , (x2, y2) , · · · , (xN , yN )},
where xi = (x(1)i , x(2)i , · · · , x(n)i ) is the input instance
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FIGURE 2. The schematic diagram of regression tree structure.

(feature vector), n is the number of sample feature.
i ∈ {1, . . . ,N } and N is the size of sample.
A heuristic method is adopted to divide the feature space,

and the values of all the features in the current set are
examined one by one, and the best one is selected as the
cutting point according to the square error minimization cri-
terion. The characteristic variable x j and its own value s are
used as the segmentation variable and segmentation point
respectively. For the purpose of determining the optimal j
and s, R1(j, s) =

{
x|x(j) ≤ s

}
and R2(j, s) =

{
x|x(j) > s

}
are

defined. Then, the (5) is used to solve the problem, that is, the j
and s that minimize the sum of squared errors are determined
after dividing the two regions.

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2+min
c2

∑
xi∈R2(j,s)

(yi − c2)2

 (5)

where c1 and c2 are output values in the two regions after
division.

In terms of the concept of square error, it can be known
that the two optimal output values are the mean values of Y
in their respective regions. Therefore, the (5) can be shown
as:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − ĉ1)2+min
c2

∑
xi∈R2(j,s)

(yi − ĉ2)
2

 (6)

where ĉ1 = 1
N1

∑
xi∈R1(j,s)

yi and ĉ2 = 1
N2

∑
xi∈R2(j,s)

yi.

After all, its core is that the values of internal node fea-
tures are yes and no, which is a binary tree structure. The
regression is to determine the corresponding output value
according to the feature vector. The regression tree divides
the feature space into several units, and each division unit
has a specific output. Because each node has a yes and no
judgment, the boundaries of the partition are parallel to the
axes. The relevant variable Xj corresponds to the predicted
data. As long as it is classified into a certain unit according
to the characteristics, the corresponding output value can be
obtained. Decision trees have the advantages of handling both
data type and conventional type attributes at the same time,
and they can make feasible and effective results for large data
sources in a relatively short time [30].

However, Chen et al. [31] discovered that if the regres-
sion tree takes all training data sets into consideration, the
resulting regression tree will be too large. Although the fitting

probability of the regression tree to the training data is 100%,
theoretical and experimental evidence [32] shows that due
to excessive consideration of all data, the regression tree
learns some noise points and error points, even overfitting
phenomenon.

C. RANDOM FOREST REGRESSION MODEL
Research [33] found that the depth of the regression tree is
related to the suppression of the overfitting of the regression
tree. Therefore, Leo Breiman [20] proposed the pruning
principle of regression tree, which is achieved by minimizing
the overall loss function or cost function of the regression tree
to obtain the regression tree with the shortest height.

Nevertheless, pruningwill sacrifice part of the training data
learning, so Breiman [34] proposed RF model. RF model
increases the randomness of guided clustering, and trees with
higher resolution in the feature space will not be pruned.
Therefore, the feature space will be divided into more and
more smaller regions. Since the random forest is divided
into Random Forest Classification (RFC) and the Random
Forest Regression (RFR), the prediction of dam displacement
is actually a regression problem, so this study only focuses on
the RFR model.

RF is a supervised learning algorithm. Its base learner is
a regression tree, but it can generate multiple trees without
pruning. In the training process, it has two randomness [20].
One is the randomness of the sample. Each tree is built based
on a random subset of the original data with replacement, that
is, repeated sample data will be obtained when researchers
make sampling. The other one is the randomness of features.
When each regression tree is to be built, a certain number
of candidate predictor subsets are randomly selected, and the
most suitable value is selected as the split node.

It is assumed that the random regression forest prediction
set is {h(x,2k ), k = 1, 2, . . .}, the appropriate output value of
each tree is finally selected in the form of voting, and the pre-
dicted value is obtained based on averaging [20]. Moreover,
all decision trees in the forest have the same distribution, and
each regression tree has the right to vote. Therefore, the opti-
mal output of each tree is up to the random vector {2k}, which
be sampled independently, and the process is illustrated in the
FIGURE 3.

Three parameters should be emphasized in RF modeling.
The first one is n_estimators. It means the number of trees
in the forest. The second one ismax_features, which refers to
maximum number of features in a single tree. The third one is
min_samples_leaf and it is minimum size of sample for leaf
nodes. Themax_features are related to the prediction strength
of each individual tree and the strength of the correlation
between them. Increasing this parameter will also enhance
the prediction ability of each tree and the strength of the
correlation between them [35].

In terms of input vector X and output Y , the general-
ization error of regression tree h(x) is EX ,Y (Y − h(X ))2.
Leo Breiman [20] indicates that although RF model will
not cause overfitting with the increase of the number of
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FIGURE 3. The schematic diagram of random forest structure.

regression trees, it may cause generalization errors within a
certain range.

D. SLIDING TIME WINDOW STRATEGY
The original data of arch dam displacement monitoring is
a one-dimensional time series, and the data collection fre-
quency is 24 hours. In the real-time monitoring system,
the data in the online module is continuously updated.
In view of the characteristic of the time series, the model
can be trained through capturing the data context. Therefore,
the sliding time window strategy can be used to directly
enter the newly generated data into the window, so as to
alleviate the trouble of deleting the expired data. In addition,
the model learning accuracy can be improved through the
change trajectory in the captured time length, which can
further improve the data processing efficiency.

When a data stream comes in, this time series is t =
{x1, x2, · · · , xn}. At that time, the time window is moved to
the starting point of the time sequence, and the time window
intercepts a sub-sequence of length W , is the so-called the
basic block of the sub-sequence. Then the time window con-
tinues to move back according to the step size. If the step size
is one, the second point of the time sequence is taken as the
starting point, and a subsequence of length W is continued
to be extracted, and so on. In this way, a total of n −W + 1
subsequence basic block can be obtained.

In this study, the size of the slidingwindow is fixed, namely
seven. The step size is one. The sliding time window strategy
is shown in the FIGURE 4. It is assumed that the basic block
of the sub-sequence numbered i is represented by Bi, with the
length of 7. The optimized model can use the time series data
of the first 5 days in Bi to predict that of the seventh day.

E. THE CONSTRUCTION PROCESS OF THE DAM
DISPLACEMENT PREDICTION MODEL BY RF WITH A
SLIDING TIME WINDOW
The generalization ability of the HST model is weak. In fact,
it is based on the mathematical expression of dam safety
theory. Each component can analyze the displacement data of
the arch dam. The RF model requires fewer parameters to be

FIGURE 4. The schematic diagram of sliding time window strategy.

set by the user, and the implementation process is simple. For
a good prediction result, it is necessary to improve the pre-
diction strength of trees, lower the correlation between trees,
and reduce the generalization error. Therefore, GS method is
used to select the most appropriate value for each parameter.

The GS divides the training set data into K groups. Then,
the value range of each parameter is set, each data subset is
verified, and the remainingK−1 subset is used as the training
set, so that each parameter combination will get K models.
The final model regression result is the average regression
result of K model validation sets. K is generally greater than
or equal to two, and generally starts from three in reality.
Only when the amount of data in the original data set is small,
two will be tried. The GS schematic diagram is shown in the
FIGURE 5.

FIGURE 5. The schematic diagram of grid search.

In order to further improve the prediction of the RF model,
this article uses segmented input vectors to capture the chang-
ing trend between variables and improve the ability to simu-
late dam response. Therefore, the RF model is coupled with
a sliding time window strategy to adapt to the nonlinear
interaction between high-dimensional input variables. The
steps are shown in FIGURE 6.
Step 1: According to the length of the sliding time

window, this study obtains the time sub-sequence basic
block data set of the arch dam displacement monitoring
data, and converts the two-dimensional tensor data into the
three-dimensional tensor data. Therefore, the input variable
is {h, h2, h3, h4,T7,T14, · · · ,Tn, t}.
Step 2: Divide the basic block data set into a training set

and a testing set, and the data are standardized to facilitate
model training and speed up model convergence.
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FIGURE 6. Flow chart of the optimized random forest model.

Step 3: Define the initial RF model parameters based on
the input vector.
Step 4: Input the testing set into the optimized model and

the predicted value of the arch dam displacement is obtained,
which is the average value of each regression tree.
Step 5: Use the GS method to calculate the score of the

model on the testing set, and the parameters are optimized
according to the highest score. Repeat Step 4 to get the
optimized forecast.
Step 6: Compare the model performance of the HST, RF,

MLP, the optimizedMLP, CNN, LSTMand the optimizedRF.

III. CASE STUDY
A. PROJECT OVERVIEW
A parabolic hyperbolic stone masonry arch dam located in
China. Themain water retaining structure is a rubble masonry
from fine aggregate concrete, as shown in FIGURE 7. It is
composed of eleven sections in total, with sections 1# to 11#
from the left bank to the right bank. It has a maximum height
of 68.8 m and a crest length of 237.42 m. The total storage
capacity of the reservoir is estimated to be 24.28 million m3

and the dam crest elevation is 97.0 m. It is an annual adjust-
ment and valley-type reservoir. The water level of the reser-
voir varies slightly as the season changes.

FIGURE 7. The spatial location of global navigation satellite systems.

Various sensors are installed on the dam to detect the per-
formance of the dam. Environmental variables include tem-
perature, hydrology, water level, and rainfall. For structural
variables, the arch dam has displacement and seepage around
the dam. The sensor has recorded data for more than 10 years.
Therefore, through the analysis of different monitoring data,

not only the current structural characteristics of the arch dam
can be obtained, but also the long-term change law of the arch
dam can be obtained.

The displacement of the arch dam is measured by the
global navigation satellite systems (GNSS), and the measur-
ing points are arranged respectively at 1#, 4#, 6# and 11#
on the dam sections, as shown in FIGURE 7 for measuring
the displacement of the dam crest and body. This study uses
radial displacement monitoring data as the research object.
For example, G0-HY represents the absolute displacement
monitored by the GNSS at the 1# dam section.

B. DATA SET
The input environmental variables are the daily average tem-
perature and daily water level measurement values from the
beginning of the monitoring to the survey date. The water
level and daily average temperature changes are shown in
FIGURE 8. It can be seen from the figure that the water
level varies from 66.3 m to 100.2 m, and an overall slight
increasing trend can be observed. The temperature changes
with the changing seasons, ranging from 4 ◦C to 36 ◦C, and
themean temperature is 24◦C.Output variable is the observed
displacement value. The radial displacement changes of each
measuring point are shown in FIGURE 9. G0-HY varies from
−0.8 mm to 5 mm, G1-HY varies from −6 mm to 23 mm,
G2-HY ranges from −5 mm to 33 mm, and G3-HY ranges
from −3 mm to 4 mm. The displacement of each mea-
suring point has seasonal characteristics. This study takes
June 2009 to December 2019 as the analysis period.

FIGURE 8. The environmental variables of water level and daily average
temperature.

FIGURE 9. Radial displacement change of each measuring point.

G2-HY suddenly generated a small peak during the
April 27, 2010 to July 11, 2010, which is the abnormal data.

VOLUME 9, 2021 9147



Y. Su et al.: Improved RF Model for the Prediction of Dam Displacement

Therefore, it is necessary to select the normal dam deforma-
tion time series and abnormal dam deformation time series
to explore the universality of the proposed prediction model.
We take G2-HY and G3-HY as representative examples to
explore the effectiveness and robustness of the proposed
prediction model in this study. Moreover, for the purpose of
verifying the long-term prediction accuracy of the optimized
RF model, 30% data and 60% data are selected to train the
model, and the remaining data are used as the testing set for
comparison. All models are trained in the same training set
and verified in the same tesing set.

C. EVALUATION INDICATORS
The accuracy of the prediction models is evaluated based on
the mean absolute error (MAE) on the testing set. MAE can
effectively measure the performance of a forecasting model
when tracking dam displacement [36]. The definition ofMAE
is provided below:

MAE =
1
M

M∑
i=1

|yi − ŷi| (7)

where M is the size of the training or testing sets, yi is the
actual observed value, and ŷi is the predicted value.

D. MODEL IMPLEMENTATION
In this study, for the purpose of alleviating the time-lag
effect of impact factor phenomenon, a sliding time window
strategy was introduced into the RF model to improve the
time sensitivity. To execute the sliding time window strategy,
the size of sliding window is needed to be predetermined,
namely seven. Then, seven models, including HST model,
MLP model, the optimized MLP model, CNN model, LSTM
model, RF model and optimized RF model, are taken into
consideration to explore the effectiveness of the proposed pre-
diction model. These models for comparison have the same
input variable set, {h, h2, h3, h4,T7,T14, · · · ,Tn, t}, namely,
the three-dimensional tensor data set. They are implemented
using the Python module.

Moreover, GS is used for cross-validation and parameter
selection, and the determination coefficient, R2, is used to
measure the final goodness of fit and score the final model.
When R2 approaches 1, it means that the model is much more
effective for predicting the divided testing set. Conversely,
the smaller the value of R2 is, the worse the model’s predic-
tion on the divided testing set. Equation of R2 can be rewritten
as:

R2 =
n∑
i=1

(ŷi −
1
n

n∑
i=1

yi)2/
n∑
i=1

(yi −
1
n

n∑
i=1

yi)2 (8)

where n is the size of the training or validation sets, yi is the
actual observed value, and ŷi is the predicted values.
Determine the values of the parameters of the best model

score by dividing a wide range, and then narrow the range
to be close to this value for further parameter optimization,
and then loop until the model score decreases or no longer

changes. Use GS to seek the optimal parameters of each
model so as to ensure that the model converges to the optimal
status and improve the prediction accuracy of each model.

In addition, in order to prevent overfitting, this study intro-
duces the dropout technique to regularize some networks.
The hyperparameters of the MLP models including the num-
ber of neurons in the hidden layers, and dropout rate. Four
hyperparameters of the CNN model (the number of neurons
in the convolution layers, the size of kernel, the number of
layers, and dropout rate) make up a four-dimension space.
The LSTMmodel including the number of layers, the number
of neurons in each layer, and the dropout rates make up a
three-dimension space. The RF model needs to define three
parameters: the total number of trees, n_estimators (the initial
value is 100), the maximum number of features of a single
tree, max_ features with an initial value of 1, and the mini-
mum number of leaf nodes sample, min_samples_leaf with
an initial value is 1. TABLE 1 shows the final determined
hyperparameters of these models.

TABLE 1. The Determined Hyperparameters of Different Models

IV. RESULTS AND DISCUSSION
A. THE ADVANTAGE OF THE OPTIMIZED RF MODEL FOR
PREDICTION ACCURACY
MAEof the training set and testing set are shown in TABLE 2,
and are illustrated in FIGURE 10 for the sake of comparison.
Due to the abnormality of the data series and the large varia-
tion range, the value of MAE for G2-HY is out of the normal
range. The analysis is given in detail in section IV-C. The
value of MAE for G3-HY varies from 0.12 to 3.12, with high
accuracy.

Although HST model captures the trend of the time series
in training set, it can be defined as a deviation from the normal
displacement and the prediction accuracy is reduced for some
cases where the amplitude is significantly larger. Compared
with the HST model, the fitting of RF model and MLP model
are stable on the training set, and even the abnormal peak
and trough data series can be better fitted. Although the MAE
value is significantly reduced, butMLPmodel could not accu-
rately capture the trend of original dam displacement time
series the testing set, meanwhile, RF has the generalization
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FIGURE 10. MAE of the prediction models for the selected monitoring
variables: (a) Training set for G2-HY; (b) Testing set for G2-HY; (c) Training
set for G3-HY; (d) Testing set for G3-HY.

TABLE 2. MAE of Different Models

error problem described in section II-C. And the prediction
accuracy of both has not been effectively improved. CNN
model, LSTM model, the optimized MLP model and the
optimized RF model have similar MAE on the training set
and are smaller than that from the HST model. It can be seen
that by introducing time-sensitive factors, the optimized RF
model captures the trend of displacement and improves the
generalization ability of the model. Moreover, the prediction
accuracy on the testing set is significantly higher than other
models.

FIGURE 11 shows the predicted radial displacement for
the G3-HY obtained from the seven models. These are also
true for other prediction results, which are not illustrated
herein. The training set selects 60% data from June 2009 to
March 2015. The testing set selects data from April 2015 to
December 2018. It can be seen that, due to the use of non-
linear relationship to describe the evolution law, MLP model
and RF model perform better at the training set than the HST
model.

MLP model and RF model can capture the changing trend
at the testing set as same as the HST model, meanwhile,

FIGURE 11. The predicted displacements of G3-HY from different models
using training data with different lengths: (a) HST with 30% training data;
(b) HST with 60% training data; (c) MLP with 30% training data; (d) MLP
with 60% training data; (e) RF with 30% training data; (f) RF with 60%
training data; (g) the optimized MLP with 30% training data; (h) the
optimized MLP with 60% training data; (i) CNN with 30% training data;
(j) CNN with 60% training data; (k) LSTM with 30% training data; (l) LSTM
with 60% training data; (m) the optimized RF with 30% training data;
(n) the optimized RF with 60% training data.

they improve predictions at the peaks and troughs of the
curve. Compared with the previous models, CNN and LSTM
perform better at the peak of the curve, confirming the conclu-
sion that the deep learning model generally has better predic-
tion than the machine learning model. However, thanks to the
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introduction of a sliding time window strategy, the optimized
MLP model and the optimized RF model not only fit the
training set data well, but also achieve similar or better results
with the deep learning model on the testing set.

But the optimized RF model has higher accuracy for
the testing set compared with the optimized MLP model.
Compared with RF model, MLP model is short of the char-
acteristics of random feature selection. For large data sets,
overfitting problems are prone to occur. As a result, the over-
fitting of the training set data reduces the prediction accu-
racy of the testing set. In contrast, the optimized RF model
can capture the trend of changes between variables, thereby
providing sufficient accuracy. Therefore, compared with the
MLP model, the RF model is more suitable for coupling with
the sliding time window strategy in terms of the prediction
of the dam behavior. The optimized RF model has similar
or better accuracy than the deep learning model, but has a
simpler model architecture than them.Moreover, it can reflect
the nonlinear effects of mean air temperature on the dam
displacements.

B. THE ADVANTAGE OF THE OPTIMIZED RF MODEL FOR
LONG-TERM PREDICTION
The testing set divided by the time series can be regarded as
future data, which is a method to verify the generalization of
the model. Therefore, this study selects the original data set
within 30% as the training set to verify the training effect of
the training set from June 2009 to April 2012. The remaining
70% data, which are from May 2012 to December 2018, are
used as the testing set. The seven models are used to test
the ability of long-term prediction in the future. Previously,
60% of the data is selected as the training set and 40% of the
data is used as a contrast, and these seven models are used to
test the future long-term prediction ability.

FIGURE 11 shows the predicted radial displacement for
G3-HY obtained from the seven models. Other predicted
results have similar phenomena, which are not illustrated in
this article. It can be seen that the HST model fits well on
the 30% training data set, but has a large deviation on the
testing set, which is significantly higher than the prediction
using 60% data for training. Because the reason behind is that
the HST model only calculates the seasonal effect based on
a simple linear function, so prediction of long-term displace-
ment requires more data to fit.

MLP model has a great capability of nonlinear function
approximation, so it is suitable for nonlinear time series
prediction. Comparedwith theHSTmodel, it has a significant
improvement on the training set, but there are still errors on
the testing set.

RF model performs better on the 30% training data set.
Although RF model can fit the variation trend, but the pre-
diction deviation of the displacement value is large, and it
will eventually oscillate within an average value because RF
model feeds back the average value of the prediction of each
regression tree.

On the contrast, the prediction of CNN and LSTM reveals
that using of a shorter training set could get the results as good
as those from a longer training data set. This phenomenon
could be explained with the feature’s representation ability of
CNN and the long-term dependency of LSTM. They store
the useful history information and captures the long-term
characteristics of time series, and thus, they could be trained
with shorter monitoring data set and simulate the time effect
of the displacements of the dam.

Meanwhile, the prediction of the optimized MLP and the
optimized RF model reveals that using a shorter training set
can achieve the same results as a longer training data set.
The phenomenon can be explained by using the sliding time
window strategy to capture the trend of monitoring data,
making the model with the time sensitivity. The randomness
of RF model suppresses the overfitting phenomenon and
improves the generalization ability of the optimized model.
Thus, a shorter monitoring data set can be used to train the
optimized RF model to obtain a better dam displacement
prediction model.

C. THE ADVANTAGE OF THE OPTIMIZED RF MODEL FOR
ABNORMAL DATA SERIES
G2-HY suddenly generated a small peak during the April 27,
2010 to July 11, 2010. The abnormal phenomenon of dis-
placement is caused by some complicated factors. It will
pollute the data set, and affect the model identification,
parameter estimation, diagnostic test and prediction of time
series [37]. In this section, this study explores the reaction of
the seven models to abnormal data series and compare how
they are affected by the abnormal data.

FIGURE 12 shows the prediction results from the seven
models, of which 30% of the monitoring data and 60% of
the monitoring data are used for training. In terms of 30%
monitoring data for training, only LSTM and the optimized
RF model can provide satisfactory predictions. The other
models have great deviations. Moreover, the HST model and
MLP model cannot fit the abnormal data. In contrast, due
to the randomness of the RF model, and LSTM forgets the
old error information and storing the new useful information,
which are robust to abnormal data, the fitting of abnormal
data is good.

When 60% of data are used for training, great deviations
are still found in the HSTmodel. This is because the functions
of the time effect in the HST model are simple and can lead
to spurious regression. With the increase of training data,
the prediction of CNN and MLP model is improved, but
their architectures are susceptible to abnormal data and there
are still great deviations on the testing set. On the contrary,
RF model, the optimized MLP model and LSTM can fit the
training data well, and only the prediction results of the test-
ing set data at peaks and troughs have a small deviation. The
optimized RFmodel inherits the fitting ability of RF model at
training data set, and it also has sound predictive ability than
other models. This is due to time sensitivity, which makes the
model more robust to abnormal data sequences.
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FIGURE 12. Comparison of predicted displacements from different
models for abnormal time series: (a) HST with 30% training data; (b) HST
with 60% training data; (c) MLP with 30% training data; (d) MLP with
60% training data; (e) RF with 30% training data; (f) RF with 60% training
data; (g) the optimized MLP with 30% training data; (h) the optimized
MLP with 60% training data; (i) CNN with 30% training data; (j) CNN with
60% training data; (k) LSTM with 30% training data; (l) LSTM with 60%
training data; (m) the optimized RF with 30% training data; (n) the
optimized RF with 60% training data.

V. CONCLUSION
The accuracy of the prediction model is of great impor-
tance for arch dam monitoring and safety assessment. This
research proposes a RF model combined with sliding time

window strategy to predict dam deformation. Water level,
time and daily average temperature are input into the model.
Compared to the HST model, the response of the dam can
be predicted more accurately by simply adding the average
temperature data. The performance of the proposed model
was verified on the measured data of a masonry arch dam.
In terms of thermal effects, the RF model based on long-term
average temperature coupled with the sliding time window
strategy can achieve better performance than the model using
harmonic sine functions. As MAE is reduced observably,
the accuracy is greatly improved. Therefore, the model can
capture the hysteresis of temperature and reflect the influence
of air temperature changes on structural behavior.

A masonry arch dam with the max height of 68.8 m was
taken as the example. It can be seen that after adding mean
air temperature, the prediction accuracy of the model can
be significantly improved, because temperature in dam is
affected by external temperature. Besides, as there is a hys-
teresis between internal temperature and external temperature
changes, a sliding time window strategy is used to capture the
time relationship of the original data. Numerical experiments
show that the introduction of this strategy can obviously
improve accuracy. For masonry arch dams, the appropriate
time window size requires further tests on the actual moni-
toring data of masonry arch dams.

Compared with the HST model, MLP model, RF model,
and the optimized MLP model, the proposed model provides
higher accuracy for the displacement prediction. In contrast,
the accuracy of the proposed model to predict dam displace-
ment is almost the same as or even better than that of CNN and
LSTM. Given that the proposed model has simpler structures
and less parameters, and requires less time for model training,
it may be the preferred method for short term dam displace-
ment prediction. In addition, in terms of shorter monitoring
data sets, the performance of this model is better than other
models. The proposed model also has high robustness to
abnormal time series to abnormal time series, because it has
the randomness of sample extraction and random data feature
selection and can increase the generalization ability of the
model. To build predictive models, it relies entirely on data
rather than previous assumptions about physical properties
of the phenomenon. Moreover, the dam safety monitoring
system is usually arranged with multiple measuring points,
and there may be spatial correlation between the measuring
points, but the proposed model cannot use multiple mea-
suring points to explain these correlations. In the further,
patio-temporal diagnosis method such as clustering analyses
will be introduced into the field of arch dam safetymonitoring
to mine the dam deformation to avoid accident.
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