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ABSTRACT Two-dimensional principal component analysis (2DPCA) has been widely used to extract
image features. As opposed to PCA, 2DPCA directly treats 2D matrices to extract image features instead of
transforming 2D matrices into vectors. However, the classical 2DPCA based on F-norm square is sensitive
to noise. To handle this problem, 2DPCAs based on `1-norm, `p-norm, and other norms have been studied.
In this paper, as a further development, 2DPCA based on T`1 criterion is proposed, referred as 2DPCA-T`1.
Notice that, different from some norms used before, T`1 criterion is bounded and Lipschitz-continuous. So it
can be expected that our 2DPCA-T`1 should bemore robust. In fact, the experimental results have shown that
its performance is superior to that of classical 2DPCA, 2DPCA-L1, 2DPCAL1-S, N-2-DPCA, G2DPCA,
and Angle-2DPCA.

INDEX TERMS Two-dimensional principal component analysis (2DPCA), T`1 criterion, robust, dimen-
sionality reduction, feature extraction.

I. INTRODUCTION
Principal component analysis (PCA) [1], [2] is a popu-
lar dimensionality reduction and feature extraction method.
It has been widely used in the fields of image recognition
and computer vision. However, classical PCA is sensitive to
outliers and noise. Thus, many improved versions are pro-
posed, e.g., L1-PCA [3], R1-PCA [4], PCA-L1 [5], PCA-Lp
[6], kernel PCA [7], [8], and low-rank PCA [9]. PCA aims to
search for several principal components resulting in a projec-
tionmatrix, such that the dimensionality reduction is realized.
In addition to PCA, linear discriminant analysis (LDA) [10],
[11] and locally preserving projection (LPP) [12] are also the
representative dimensionality reduction methods. The former
extracts the most discriminating features, the latter, as the
linear approximation of locally linear embedding (LLE) [13],
characterizes the local geometric structure.

However, when the above-mentioned methods are applied
to extract features from images, we have to transform the
image matrices (2D matrices) into high-dimensional image
vectors (1D vectors) by concatenating all columns of image
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matrices, resulting in damage to the spatial structure embed-
ded in pixels of the image. To tackle this issue, a new kind
of PCA called 2DPCA is proposed, which directly deals with
the 2D image matrices rather than 1D vectors. In addition to
retaining spatial structure information, another advantage is
that its covariance matrix is much smaller than that of PCA
because the covariance matrix is computed directly using the
original image matrices, resulting in being evaluated with
much less time consuming and higher accuracy. Just like
PCA, its model can be constructed by either maximizing the
dispersion or minimizing the reconstruction error. And the
corresponding optimization problem can be solved by either
greedy strategy or non-greedy strategy.

2DPCA proposed by Yang et al. [14] is the early one
to deal with 2D matrices directly. Since F-norm square of
matrix is employed, it is sensitive to outliers and noise. It is
well known that `1-norm is more robust than F-norm square.
Therefore, some `1-norm-based 2DPCAs have been studied.
More precisely, 2DPCA-L1 [15] was proposed as a gener-
alization of PCA-L1 [5]. Then Wang et al. [16] proposed
its non-greedy version. Based on 2DPCA-L1, 2DPCAL1-S
[17] was proposed, aiming at improving both the robustness
and sparseness simultaneously. G2DPCA [18] was a further
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study, where the general `p-norm was introduced, and the
parameter p is restricted by p ≥ 1 and p > 0 in the objective
function and the constraint respectively. 2DPCA, 2DPCA-L1,
and 2DPCAL1-S are all the special cases of G2DPCA.

Besides, to be more robust, 2DPCAs based on other norms
have also been proposed. R-2DPCA [19], Angle-2DPCA
[20], F-norm 2DPCA [21], and OMF-2DPCA [22] employ
F-norm as the distance metric instead of F-norm square,
resulting in both robustness and rotational invariance. R1-
2DPCA [23] is based on R1-norm and helps encode dis-
criminant information. N-2DPCA [24] uses nuclear norm to
measure the reconstruction error. Its robustness comes from
the fact that nuclear norm is essentially the convex envelope
of the matrix rank. Moreover, 2DPCA-Sp [25] is based on
Schatten p-norm (0 < p < ∞) to maximize the dispersion,
and GC-2DPCA [26] is based on `2,p-norm (0 < p ≤ 2) to
minimize the reconstruction error. Both of them are regarded
as a framework of 2DPCA.

Different from using the norms mentioned above, the
T`1 criterion is used to construct our 2DPCA-T`1. The T`1
criterion looks like the `p-norm with p ∈ (0, 1). How-
ever, they are markedly different since T`1 criterion has
two properties: boundedness and Lipschitz-continuity, where
Lipschitz-continuity measures relative changes in the objec-
tive function with respect to the input. These two properties
make the T`1 criterion to be a suitable distance metric for
PCA, particularly for robustness, due to its stronger suppres-
sion of noise. Thus we employ T`1 criterion as a distance
metric to formulate the optimization problem. For solving the
optimization problem, a modified gradient ascent method is
designed. This leads to our 2DPCA-T`1. 2DPCA-T`1 has two
major advantages:

• Because the distance metric T`1 criterion has the
stronger suppression effect to noise, 2DPCA-T`1 is
robust to noise.

• Compared with PCAs, the spatial structure information
is preserved.

The experimental results on real datasets have shown the
effectiveness of our 2DPCA-T`1.
The rest of this paper is organized as follows. In Section II,

we present briefly related works including 2DPCA, 2DPCA-
L1, 2DPCAL1-S, G2DPCA, N2DPCA and Angle-2DPCA.
In Section III, our T`1-criterion-based 2DPCA is described
in detail. Its performance is compared with the related works
in Section IV. Finally, the conclusion follows in Section V.

II. RELATED WORKS
Suppose that there are N training image matrices
X1,X2, . . . ,XN , where Xi ∈ Rm×n, i = 1, . . . ,N , m and
n stand for the image height and width, respectively. Without
loss of generality, assume that the image matrices have been

centralized, i.e., 1
N

N∑
i=1

Xi = 0. For a given d > 0, our

task is to find a projection matrix W = [w1, . . . ,wd ] ∈
Rn×d , where wi ∈ Rn is the ith projection vector

(principal component), i = 1, . . . , d . Then, the correspond-
ing low-dimensional representation Yi ∈ Rm×d of image Xi
is given by

Yi = XiW =


Xi1
Xi2
...

Xim

W, i = 1, . . . ,N ,

where Xij ∈ R1×n is the jth row of Xi, j = 1, . . . ,m.
Herein, for finding the projection matrix

W = [w1, . . . ,wd ], the approach we are interested in is
maximizing the dispersion by greedy strategy. So the key
step is to find the first projection vector w1 by constructing
and solving an optimization problem because the followed
w2, . . . ,wd can be obtained one by one similarly. In the
following review of the related works, we are only concerned
with the first projection vector w1 and the corresponding
optimization problems with the single vector variable w.

A. 2DPCA
Remind the early 2DPCA [14] dealing with the 2D matrices
directly, its key point is to solve the following optimization
problem with the projection vector w

max
w

N∑
i=1

||Xiw||22

s.t. ||w||22 = 1. (1)

Its solution, the projection vector w, could be obtained by
calculating the eigen decomposition of the image covariance
matrix

S =
N∑
i=1

XT
i Xi ∈ Rn×n,

and selecting the eigenvector with the largest eigenvalue.
As can be seen in problem (1), `2-norm square is employed
as the metric. Its sensitivity to outliers and noise leads to the
following improvement.

B. 2DPCA-L1
2DPCA-L1 [15] is formulated by replacing `2-norm square
with `1-norm in the objective function of the problem (1).
Thus, its optimization problem is as follows

max
w

N∑
i=1

||Xiw||1

s.t. ||w||22 = 1. (2)

Since `1-norm is employed as the distance metric,
2DPCA-L1 is more robust. Due to the fact that problem (2)
does not exist closed-form solution, an iterative algorithm is
necessary.
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C. G2DPCA
Corresponding to problems (1) and (2), G2DPCA constructs
its optimization problem as follows.

max
w

N∑
i=1

||Xiw||ss

s.t. ||w||pp = 1, (3)

where ||.||s and ||.||p stand respectively for s-norm (s ≥ 1)
and p-norm (p > 0). Obviously, it is a general formulation
and both the above 2DPCA and 2DPCA-L1 are its special
cases. Different from 2DPCA-L1, it may be not only robust
but also sparse.

In addition to the aforementioned three methods, the other
related methods include 2DPCAL1-S, N2DPCA, and Angle-
2DPCA, which are also compared with 2DPCA-T`1 in our
numerical experiments later.

III. T`1-CRITERION-BASED 2DPCA
In this section, we first introduce T`1 criterion as a distance
metric, which is based on the transformed `1 (T`1) penalty
function [27]–[32]. For a vector z = [z1, . . . , zn]T ∈ Rn, its
T`1 criterion is defined as

TL1a(z) =
n∑
i=1

ρa(zi), (4)

where ρa(t) is the operator of the component:

ρa(t) =
(a+ 1)|t|
a+ |t|

,

and a > 0 is a positive shape parameter.
Let us compare T`1 criterion with some relevant norms.

Remind that the `p-norm of a vector z = [z1, . . . , zn]T ∈ Rn

is defined as

||z||p =

(
n∑
i=1

µp(zi)

)1/p

, 0 < p < 1,

where µp(t) is its operator of component µp(t) = |t|p. The
`1-norm and `0-norm are respectively defined as

||z||1 =
n∑
i=1

µ1(zi)

and

||z||0 =
n∑
i=1

µ0(zi)

with the operators of componentµ1(t) = |t| andµ0(t) = |t|0,
respectively.

Notice that a norm should satisfy the following three prop-
erties: the positive definiteness, the triangle inequality and
the absolutely homogeneity. The `p-norm (0 < p < 1)
only satisfies the positive definiteness and the absolutely
homogeneity. Similarly, the T`1 criterion only satisfies the
positive definiteness and the triangle inequality. So strictly

speaking, T`1 criterion is not a norm. However, this should
not prevent it to be a distance metric.
In order to compare T`1 criterion with the `p-norm

(0 < p < 1), examine their operators of component ρa(t)
and µp(t). For any fixed t , with the change of parameter a,
we have

lim
a→0+

ρa(t) = µ0(t), lim
a→∞

ρa(t) = µ1(t),

which shows that T`1 criterion interpolates `0- and `1-norm.
It seems that T`1 criterion with the parameter a ∈ (0,∞) is
similar to `p-norm with a parameter p ∈ (0, 1), but they have
significant difference. In fact, investigate their operators of
component ρa(t) and µp(t) first. Obviously, both ρa(t) and
µp(t) are even functions. So, we only consider the case where
t > 0. In this case, for any fixed parameter a(a > 0) and
parameter p(0 < p < 1), it is easy to see that

ρ′′a (t) =
−2a(a+ 1)
(a+ t)3

< 0, ρ′a(t) =
a(a+ 1)
(a+ t)2

> 0,

lim
t→0

ρ′a(t) = 1+ a−1, lim
t→∞

ρa(t) = a+ 1, (5)

and

µ′p(t) = ptp−1 > 0, lim
t→0

µ′p(t) = ∞, limt→∞
µp(t) = ∞. (6)

This means that, on the one hand, ρa(t) is bounded and
Lipschitz-continuous; on the other hand, µp(t) is unbounded
and not Lipschitz-continuous. Thus we conclude that T`1
criterion should have a stronger suppression effect to noise
and better continuity than the `p-norm (0 < p < 1) in theory.

A. MODEL
Motivated by the advantages of T`1 criterion, we employ
T`1 criterion as the distance metric and construct our T`1-
criterion-based 2DPCA called 2DPCA-T`1. Corresponding
to problems (1), (2), and (3), our optimization problem is as
follows

max
w

N∑
i=1

TL1a(Xiw)

s.t. ||w||22 = 1. (7)

Since Xiw =


Xi1w
Xi2w
...

Ximw

 ∈ Rm×1 and TL1a(Xiw) =

m∑
j=1

(a+1)|Xijw|
a+|Xijw|

, problem (7) can be reformulated as

max
w

f (w) =
N∑
i=1

m∑
j=1

(a+ 1)|Xijw|
a+ |Xijw|

s.t. ||w||22 = 1, (8)

where Xij ∈ R1×n is the jth row of Xi, i = 1, . . . ,N ,
j = 1, . . . ,m.
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The optimization problem (8) can be used to find the first
projection vector w1, and the followed projection vectors
w2, . . . ,wd as well.

B. ALGORITHM
Our T`1-criterion-based 2DPCA can be described by two
parts: solving the problem (8); and searching for the projec-
tion vectors w1,w2, . . . ,wd by greedy strategy.

1) GRADIENT ASCENT ALGORITHM FOR SOLVING (8)
Since problem (8) is non-convex and non-smooth, the tra-
ditional optimization techniques [33], [34] could not be
used directly. Thus a modified gradient ascent algorithm is
designed. The search direction of the steepest ascent algo-
rithm at w is the subgradient

∂f (w) =
N∑
i=1

m∑
j=1

a(a+ 1)sign(Xijw)XT
ij

(a+ |Xijw|)2
, (9)

where

sign(λ) =


1, λ > 0,
0, λ = 0,
−1, λ < 0.

Noticing the unit sphere constraint ||w||22 = 1, project ∂f (w)
onto the tangent plane to this sphere at w and get

g(w) = ∂f (w)− 〈∂f (w),w〉w.

Obviously, g(w) is perpendicular to w

〈g(w), w〉 = 0, (10)

and

〈g(w), f (w)〉 ≥ 0. (11)

The direction g(w) can be considered as the steepest ascent
one among the ones satisfying the constraint as much as
possible. This is a reasonable search direction if the line
search is applied. However, in order to keep the constraint
strictly a curve search is constructed. It is easy to see that g(w)
lies on the planeπ spanned byw and ∂f (w). Furthermore, due
to (10), the intersection of the plane and the unit sphere yields
a great circle

wcosθ + g0(w)sinθ, (12)

where g0(w) = g(w)/||g(w)||2 is the unit vector along the
tangent of the great circle on the plane π . The schematic is
plotted in Fig. 1. Obviously, for the great circle, when θ →
0+, we have

f (wcosθ + g0(w)sinθ )− f (w) ≈ 〈g0(w), ∂f (w)〉sinθ ≥ 0.

Note that 〈g0(w), ∂f (w)〉 can be considered as the increasing
rate of the objective when moving from w along the great
circle (12). Let h0(w) be the unit vector along the tangent of
any smooth curve at w. It is not difficult to see that

〈g0(w), ∂f (w)〉 ≥ 〈h0(w), ∂f (w)〉.

FIGURE 1. Schematic of search direction. The plane π is spanned by w
and ∂f (w). Project ∂f (w) onto the tangent plane of the unit sphere at w as
g(w) and normalize g(w) as g0(w). w and g0(w) yields the red circle
wcosθ + g0(w)sinθ .

This means that moving along the great circle (12) is the path
of the steepest ascent on the unit sphere. So the search along
the above circle (12) is selected. More exactly, θ = 0 corre-
sponds to the initial point w, and increasing θ corresponds to
moving on the circle. The Armijo-type rule is used to adjust
its value here. Note that the basic idea of the algorithm is
followed from [35]. Its reasonability and efficiency have also
been discussed there.

Algorithm 1 Algorithm for Solving (8)
Input: The image matrices Xi ∈ Rm×n, i = 1, . . . ,N , the

parameter a of T`1 criterion.
Output: The projection vector w.
Initialize: w(0) ∈ Rn×1 satisfying w(0)Tw(0) = 1, θ(0) ∈

(0, π/2].
t ← 0.
Repeat:
Compute the subgradient ∂f (w(t)) by (9);
Project ∂f (w(t)) onto the tangent plane of the unit
sphere at w(t) as g(w(t)) = ∂f (w(t))− 〈∂f (w(t)),
w(t)〉w(t);
Normalize g(w(t)) as g0(w(t)) = g(w(t))/||g(w(t))||2;
Update w(t + 1) = w(t) cos θ (t)+ g0(w(t)) sin θ (t),
Repeat:
θ(t)← θ (t)/2,

Until f (w(t + 1)) ≥ f (w(t));
Update θ (t + 1) = min(2θ (t), π/2);

Until convergence

2) GREEDY STRATEGY
By implementing Algorithm 1, we can obtain the first pro-
jection vector w1 directly. To get more than one projection
vector, greedy search is applied here. Suppose the first j −
1 orthonormal projection vectors w1, . . . ,wj−1 have been
obtained, to compute wj for j > 1, we use the deflation
technique to extract it, the training samples have to be updated

Xj
i = Xj−1

i − Xj−1
i wj−1wT

j−1, (13)
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with X0
i = Xi ∈ Rm×n and w0 = 0 ∈ Rn, i = 1, . . . ,N , j =

1, . . . , d . (13) means that Xj
i are computed such that the

information contained in the previously obtained projection
vectors is deducted. Obviously, wj is a unit vector according
to Algorithm 1. And as proved in [36], wj is orthogonal
to w1, . . . ,wj−1. Thus W is an orthonormal matrix, i.e.
WTW = I. Algorithm 2 shows the details of the greedy
strategy.

Algorithm 2 2DPCA-T`1
Input: The image matrices Xi ∈ Rm×n, i = 1, . . . ,N , the

parameter a of T`1 criterion, and the number d of pr-
ojection vectors.

Output: The projection matrixW = [w1, . . . ,wd ].
Initialize:W← ∅, w0 = 0 ∈ Rn, {X0

i ← Xi}
N
i=1.

j← 1.
Repeat:
Compute {Xj

i}
N
i=1 according to (13);

Apply Algorithm 1 to {Xj
i}
N
i=1 and get wj;

UpdateW← [W,wj];
Until j = d

IV. EXPERIMENTS
In this section, we evaluate the performance of 2DPCA-T`1
on three human face databases Yale [37], ORL [38], Jaffe
[39] and one object database COIL-20 [40], where the block
noise with black and white dots is added to examine the
robustness. We compare our method with classical 2DPCA
[14], 2DPCA-L1 [15], 2DPCAL1-S [17], N-2-DPCA [24],
G2DPCA [18] and Angle-2DPCA [20] in the task of 2D
image dimensionality reduction and classification, where
1-nearest neighbor (1-NN) is used for classifying. Among
the above methods, 2DPCA-T`1, 2DPCAL1-S and G2DPCA
depend on the selection of parameters. For 2DPCA-T`1,
we tune a from {100, 50, 10, 1, 0.5, 0.1, 0.05, 0.01, 0.001}.
For 2DPCAL1-S, it has a positive tuning parameter λ. In [17],
λ is in the range of [0.001, 1000], so we search the optimal
λ from {0.001, 0.02, 1, 10, 200, 500, 1000}. For G2DPCA,
it depends on two parameters s ≥ 1 and p > 0. Since all
other methods have the `2-norm-based constraints, to be fair,
we set p = 2 and s = {1.1, 1.3, 1.5, 1.7, 1.9} in the following
experiments. For 2DPCA-T`1, 2DPCAL1-S and G2DPCA,
we employ the parameters with the best classification perfor-
mance as their final ones, respectively. All the experiments
are performed in MATLAB R2017a.

The Yale face database consists of 165 grayscale images
of 15 individuals under different lighting conditions and
facial expressions, these facial expressions include happy,
normal, sad, sleepy, surprised, and wink. Each individual
has 11 images. Each image in Yale database is reshaped into
32 × 32 pixels. 6 images of each individual are randomly
selected for training, the others for testing. For these train-
ing images, the i × i (i = 16, 20, 23) block noise with
black and white dots is added to them, and the location of

this block is random for each image. Fig. 2(a) shows some
original and noised images from this database. Our method
and the aforementioned six methods are employed to extract
low-dimensional representations, respectively. Then 1-NN is
used for classification. This process is repeated ten times.

The ORL face database contains 40 individuals, each indi-
vidual contains 10 images. For some individuals, the images
are taken at different times, varying facial expressions and
lighting conditions. Here we resize each image to 32×32 pix-
els. Thenwe randomly select 6 images per person for training,
adding randomly i × i (i = 16, 20, 23) black and white
noise to them, and the rest for testing. Some images with and
without noise are shown in Fig. 2(b). 2DPCA, 2DPCA-L1,
2DPCAL1-S, N-2-DPCA, G2DPCA, Angle-2DPCA and our
2DPCA-T`1 are respectively to extract features, and 1-NN is
used for classification. We repeat this process 10 times.

The Jaffe database contains 213 images of 7 facial expres-
sions posed by 10 Japanese female individuals. Each image
is resized to 32 × 32 pixels. We randomly choose 70% of
each individual’s images for training and the remainders for
testing. Like Yale and ORL database, the same noise is added
to the training images. Some original and noised images
from Jaffe database are shown in Fig. 2(c). 2DPCA, 2DPCA-
L1, 2DPCAL1-S, N-2-DPCA, G2DPCA, Angle-2DPCA and
2DPCA-T`1 are applied to extract features. Based on the
extracted features, we compute the 1-NN classification accu-
racy. We do this process ten times to evaluate performance of
each method.

Columbia Object Image Library (COIL-20) consists
of 20 objects.While each object is rotated through 360 degrees
on a turntable, its images are taken at pose inter-
vals of 5 degrees with a color camera. So each object
has 72 images and COIL-20 database contains 1440 images.
To reduce the computational time, we transform color images
into grayscale images and crop them to 64 × 64 pixels. 46
images of each object are randomly selected for training, the
remainders for testing. We add i × i (i = 24, 36, 48) block
noise with black and white dots to all training images. Several
samples are shown in Fig. 2(d). Then we employ 2DPCA,
2DPCA-L1, 2DPCAL1-S, N-2-DPCA, G2DPCA, Angle-
2DPCA and our 2DPCA-T`1 to extract low-dimensional
features and compute classification accuracy by 1-NN. This
process is repeated ten times to evaluate performance of each
method.

A. PARAMETER SELECTION
2DPCA-T`1 has a parameter a required to be optimal. a con-
trols the shape of T`1 criterion. In order to find optimal a, for
every a, we compute the corresponding average classification
accuracy with the different dimensions of reduced space on
each database. Based on the performance of the average clas-
sification accuracy, we choose the parameter a with the best
performance as the optimal parameter. Tables 1, 2, 3, and 4 list
the optimal parameters a of Yale, ORL, Jaffe, and COIL-20
database under different noise intensities, respectively. For
2DPCAL1-S and G2DPCA, they also have parameters to be
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FIGURE 2. Sample images from four databases. (a). Yale. (b). ORL. (c). Jaffe. (d). COIL-20.

TABLE 1. Optimal parameters on Yale database under different noise
intensities for 2DPCAL1-S, G2DPCA, and 2DPCA-T`1.

TABLE 2. Optimal parameters on ORL database under different noise
intensities for 2DPCAL1-S, G2DPCA, and 2DPCA-T`1.

optimized and the method of selecting optimal parameters
is similar to 2DPCA-T`1. Their optimal parameters are also
respectively listed in Tables 1-4.
From Tables 1-4, it can be seen that the optimal parameter

a of 2DPCA-T`1 is relatively small, especially for the data
with noise. The reason may be that the upper bound of T`1
criterion is also small when a is small, making 2DPCA-T`1 of
stronger robustness to noise than other 2DPCAs. Empirically,
the value of parameter a is between 0.01 and 1 for noised data
in most cases.

TABLE 3. Optimal parameters on Jaffe database under different noise
intensities for 2DPCAL1-S, G2DPCA, and 2DPCA-T`1.

TABLE 4. Optimal parameters on COIL-20 database under different noise
intensities for 2DPCAL1-S, G2DPCA, and 2DPCA-T`1.

B. CLASSIFICATION COMPARISON
In this subsection, we compare the performance of
our 2DPCA-T`1 with classical 2DPCA, 2DPCA-L1,
2DPCAL1-S, N-2-DPCA, G2DPCA, and Angle-2DPCA on
Yale, ORL, Jaffe, and COIL-20 database.

Under the optimal parameters of Tables 1-4, Figs. 3, 4, 5,
and 6 plot the average classification accuracy curves versus
the dimension of reduced space on Yale, ORL, Jaffe and
COIL-20 database, respectively. Tables 5, 6, 7, and 8 list
the average classification accuracy of each method under
the optimal dimension (i.e., the dimension corresponding to
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FIGURE 3. Average classification accuracy vs. dimension on Yale database with different noise intensities. (a) Original
data. (b) 16× 16 black and white noise. (c) 20× 20 black and white noise. (d) 23× 23 black and white noise.

TABLE 5. The average classification accuracies of Yale database under the optimal dimension.

TABLE 6. The average classification accuracies of ORL database under the optimal dimension.

TABLE 7. The average classification accuracies of Jaffe database under the optimal dimension.

the highest accuracy). In addition, it is easy to see that for
all databases, the greater the noise intensity, the lower the
classification accuracy, which is consistent with common
sense.

From Figs. 3(a), 4(a), 5(a) and 6(a), for original databases
(i.e. noise-free databases), the curves of all methods are rela-
tively concentrated. The reason is that the extracted features
of all methods tend to be similar when the data is noise-free,
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FIGURE 4. Average classification accuracy vs. dimension on ORL database with different noise intensities. (a) Original
data. (b) 16× 16 black and white noise. (c) 20× 20 black and white noise. (d) 23× 23 black and white noise.

TABLE 8. The average classification accuracies of COIL-20 database under the optimal dimension.

leading to the relatively concentrated classification accuracy.
The results of original data in Tables 5-8 also verify this view
to some extent because the average classification accuracies
of each method under the optimal dimension are also close.
Although the performance of 2DPCA-T`1 is not always the
best on original databases, but it is still relatively better than
some methods.

Then, we investigate the robustness of our 2DPCA-`1 to
noise. To see this, we compare the average classification
accuracies with the different dimensions of reduced space
on Yale database, ORL database, Jaffe database and COIL-
200 database, with i × i black and white noise, as plot-
ted in Figs. 3(b)-(d), 4(b)-(d), 5(b)-(d), and 6(b)-(c). Here
i = 16, 20, 23 for the Yale, ORL, and Jaffe database, and
i = 36, 48 for the COIL-20 database. From Figs. 6(b)-(c),
on COIL-20 database, 2DPCA-`1 is only slightly better than
2DPCA-L1 which is the best one among the other six meth-
ods. The reasonmay be that the features of different objects in

this database are quite different, the classification accuracies
have no significant difference based on the extracted features
of different methods. However, from Figs. 3(b)-(d), 4(b)-
(d), and 5(b)-(d), 2DPCA-`1 is significantly better than other
methods on Yale, ORL and, Jaffe database. Overall, our
2DPCA-`1 is superior to the other six methods on all noised
databases, especially for Yale, ORL, and Jaffe database. This
may be because that T`1 criterion is more robust due to
its boundedness and Lipschitz-continuity. Combined with
Tables 5-8, we can see that, under the optimal dimension, our
2DPCA-T`1 also outperforms the other six methods on all the
noised databases. In most cases, the accuracy of 2DPCA-T`1
is at most 5% higher than that of classical 2DPCA. Compared
with 2DPCA-L1, 2DPCAL1-S, N-2-DPCA, G2DPCA, and
Angle-2DPCA, the accuracy of our method is 1% to 3%
higher than theirs. At the same time, it is easy to see that the
greater the noise intensity, the more obvious the advantage of
2DPCA-`1.
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FIGURE 5. Average classification accuracy vs. dimension on Jaffe database with different noise intensities. (a) Original
data. (b) 16× 16 black and white noise. (c) 20× 20 black and white noise. (d) 23× 23 black and white noise.

FIGURE 6. Average classification accuracy vs. dimension on COIL-20 database with different noise intensities. (a) Original data. (b) 36× 36
black and white noise. (c) 48× 48 black and white noise.

It is also worth mentioning that classical 2DPCA,
2DPCA-L1, 2DPCAL1-S, N-2-DPCA, and G2DPCA are
vulnerable to the variation of dimensions, and the classifi-
cation accuracy may descend as dimensions increase. For
example, Figs. 3(b)-(c), Figs. 4(b)-(c), and Fig. 6(a) are all in
this situation. We speculate the reason for this phenomenon
is that when the reduced dimension is higher than a cer-
tian dimension, some useless or disturbing information may
also be contained, causing negative effects. However, our
2DPCA-T`1 is stable to the variation of dimensions with a
basic uptrend along with the dimensions.

C. CONVERGENCE EXPERIMENTS
At last, to observe the convergence of 2DPCA-T`1,
we test the variations of the objective function (8)
under different noise intensities on Yale, ORL, Jaffe,
and COIL-20 database. Fig. 7 shows the convergence of
the objective functions along with the number of itera-
tion. It is easy to see that these objective functions are
non-decreasing functions of iterations. And the objective
function of 2DPCA-T`1 can converge quickly, generally
within about 25 steps. This shows the stability of our
2DPCA-T`1.
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FIGURE 7. Variation of objective function value along the number of
iteration for 2DPCA-T`1 on Yale, ORL, Jaffe, and COIL-20 database with
different noise intensities.

V. CONCLUSION
A novel two-dimensional principal component, 2DPCA-T`1,
is proposed. Compared with the existing two-dimensional
PCAs, our method employs T`1 criterion as the distance
metric. The main difference between T`1 criterion and
`2-norm, `1-norm, `p-norm is that T`1 criterion is bounded
and Lipschitz-continuous. The above two properties imply
that T`1 criterion is more robust, resulting in making our
2DPCA-T`1 less affected by noise remarkably. To solve the
optimization problem required by our 2DPCA-T`1, an mod-
ified gradient ascent algorithm is provided. Experimental
results on several real databases have shown the effectiveness
and advantages of our method
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