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ABSTRACT This article investigates a novel cooperative control system based on the sliding mode variable
structure control theory for multi-missile formation flight. It is desired in practice to form and maintain
the formation under the premise of uncontrollable missile speed. First, under the inertial coordinate system,
we obtain the model of the formation control problem using the relative position of the leader to the follower.
Then, we perform acceleration conversion and combine it to this model, getting the form of the formation
problem model in the ballistic coordinate system. The finished model is useful for researchers to design the
formation controller on this basis. Besides, the slidingmode variable structure control theory is used to design
the formation controller for the system not considering disturbances and considering disturbances. Then we
use the Lyapunov stability theory to analyze the stability of the formation control system. Finally, we compare
our method with another method which requires controllable speed. According to numerical simulations,
the method proposed in this article can achieve similar relative position errors under the condition of
uncontrollable speed. And the robustness, versatility and formation adaptability of the method we propose
are confirmed by simulation results.

INDEX TERMS Multi-missile formation, uncontrollable speed, sliding mode variable structure control,
a leader-follower strategy.

NOMENCLATURE
Xl , Yl , Zl Coordinate value of the leader in the

inertial coordinate system
Xfi, Yfi, Zfi Coordinate value of the ith follower in the

inertial coordinate system
L(ψVl, θl) Transformation matrix of the leader from

the inertial coordinate system to the
ballistic coordinate system

L(ψVfi, θfi) Transformation matrix of the ith follower
from the inertial coordinate system to the
ballistic coordinate system

x∗iR, y
∗
iR, z
∗
iR Expected position difference of the leader

and the ith follower in the relative position
coordinate system

x∗i , y
∗
i , z
∗
i Expected position difference of the leader

and the ith follower in the inertial
coordinate system

The associate editor coordinating the review of this manuscript and

approving it for publication was Haibin Sun .

V c
fi , θ

c
fi, ψ

c
Vfi Command of the velocity, the ballistic

inclination angle, and the ballistic
declination angle of the ith follower

Vfi, θfi, ψVfi Velocity, ballistic inclination angle,
and ballistic
declination angle of the ith follower

θl , ψVl Ballistic inclination angle and ballistic
declination angle of the leader

anyl , anzl Acceleration of the leader’s pitch and
yaw channel

anyfi, anzfi Acceleration of the ith follower’s pitch
and yaw channel

axl , ayl , azl Acceleration of the leader in the
x, y and z axis of the inertial coordinate
system

axfi, ayfi, azfi Acceleration of the ith follower in the
x, y and z axis of the inertial coordinate
system

F(t), F̂(t) Disturbance and its observational value
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I. INTRODUCTION
A. BACKGROUND AND MOTIVATIONS
In recent years, with the development of missile defense
systems in many countries, the ability of a single missile
to penetrate and attack has been threatened. It is incapable
of meeting the requirements put forward nowadays. During
the combat, multiple missiles can form a formation system
through information interaction, and jointly complete combat
tasks such as searching, penetration, and saturation attack,
etc. A formation system can greatly enhance the strike capa-
bility and the probability of destroying the target, and improve
the penetration capability of the missile. So it is of great
practical significance to study multi-missile formation.

There is a problem with the missile formation controller.
In the mid-guidance stage, thrust of air-to-air missiles can not
satisfy the control of speed in real time, so the speed of the
missiles is uncontrollable [1]. Moreover, controlling speed
may increase energy consumption. Therefore, we need to find
a method of designing the multi-missile formation control
system without controlling speed.

B. LITERATURE REVIEW
At present, the design of formation controllers mostly focuses
on agents that has controllable speed in real time. The reason
is that for these agents, it is easy to design the formation
controller and apply it to reality.

Based on the algebraic graph theory, Han et al. designed
a distributed formation tracking control algorithm through
the fast terminal sliding mode control (FTSMC) scheme [2].
Huang et al. [3] adopted a disturbance state observer and then
used the sliding mode control method to design a position
and attitude tracking control law and studied the collision
avoidance problem. And [4] considered the noise of wind and
measurement in reality and proposed a control strategy based
on the virtual structure. This method used the general topol-
ogy of coupled agents to ensure the stability of multi-agents
under the communication delay. Aiming at the limited time
formation control problem of quadrotor UAVs, Du et al.
designed a position and attitude controller including a limited
period of time based on the reverse stepping method [5].
Amir et al. proposed a two-stage energy optimal reconstruc-
tion strategy, which moves agents to a special formation
during the idle time between the issuance of current task and
the next formation change command [6]. The method of [7]
is the same as that in [6], except that the control of energy
is replaced by the control of the formation change time.
Aiming at the four-rotor UAV formation control problem,
Zhao adopted a hierarchical method which consists of an
upper model predictive controller (MPC) and a bottom robust
feedback linearization controller [8]. Xu and Zen [9] used
a multivariable model reference adaptive control (MRAC)
method to design the control law in view of the uncertainty of
the leader’s parameters in formation control. Zhen et al. [10]
considered the leader’s dynamic uncertainty and unknown
external disturbances, and designed the MRAC controller
aiming at the UAV formation. For the problem of multi-agent

collisions, [11] used the matrix transformation and the linear
quadratic regulator theory to propose an optimal distributed
formation control method. Although most of the formation
control methods of other types of agents cannot be directly
applied to the missiles, it can provide with design ideas.

There are relatively fewer references on the design of
formation controllers for missiles. Many scholars used an
autopilot to design the formation controller. Wang et al.
considered multiple constraints such as the initial position,
the end position and collision avoidance, and designed an
optimal trajectory based on the Gaussian pseudo-spectrum
method [12]. Wei et al. [13]–[15] all used an autopilot for
formation controller design. Wei et al. [13] used an adaptive
control method for formation controller design but [14], [15]
used the optimal control theory for the formation controller
design. Aiming at the problem of missile formation recon-
struction, Ma et al. designed an optimal control method
for missile formation reconstruction based on the Pseudo-
spectral method [16]. Yu et al. proposed a time-varying for-
mation tracking and control strategy using a leader-based
guidance strategy [17]. Ma and Ji [18] and Wei et al. [19]
both adopted the Leader-Follower formation mode and use
the missile’s autopilot to design the formation controller
based on linear feedback and the optimal control theory.
Peng et al. [20] designed a multi-missile formation flight
control method based on the Leader-Follower method. It used
the relative position between the leader and the follower to
design a formation controller based on error feedback.

Some scholars did not use the autopilot to design the
formation controller. Wang et al. studied the design problem
of a multi-missile formation controller with aerodynamics in
three-dimensional space. This method mainly solves the for-
mation turning problem of large maneuverable aircraft [21].
Gao et al. designed a formation holding controller based on
the stability of the follower to control the speed and height
of the follower [22]. Zhang linearized the missile’s nonlinear
motion model through the differential geometry theory, and
based on this, a formation controller was designed using the
Leader-Follower missile guidance strategy and the adaptive
sliding mode control theory [23]. Wang et al. regarded the
relative velocity between the leader and the follower and the
acceleration of the leader as estimable bounded uncertainties,
and based on this designed a robust formation controller [24].
Zhang et al. [25] designed the formation controller by using
the Leader-Follower strategy and the optimal control theory
of affine nonlinear systems. Aiming at the formation tracking,
external disturbances, and model uncertainties in the missile
formation system, Zhou et al. proposed a robust adaptive for-
mation based on a directional communication topology [26].
However, the above methods all have to control the speed
of the missile, which does not meet the prerequisite that in
reality, the missile speed is usually uncontrollable.

Many scholars have conducted in-depth research on sliding
mode control. Mobayen et al. proposed a novel recursive sin-
gularity free FTSM (Fast Terminal SlidingMode) strategy for
finite-time tracking control of nonholonomic systems [27].
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This method solved the singularity of the fractional power of
the traditional sliding mode near the origin. Mobayen [28]
proposed the control of a class of underactuated systems
which are featured as in cascaded form with external distur-
bances. This method is derived from the first-order system
differential equation and can deal with the disturbance and
uncertainty of the system. Utkin studied sliding mode control
of nonlinear systems with regular forms, which laid a foun-
dation for the development of the sliding mode control the-
ory [29]. For a class of nonlinear discrete random-switching
systems, a comprehensive slidingmode control method based
on the mean dwell time and the Lyapunov function method is
proposed in [30]. Mobayen and M [31] proposed a new finite
time robust tracking andmodel tracking controlmethod based
on a composite nonlinear feedback scheme for nonlinear
time-delay uncertain chaotic systems.

Many scholars combined the disturbance observer with
sliding mode control to solve the problem. Dong et al. [32]
combined a nonlinear disturbance observer with the
non-singular Terminal SlidingMode Control (NTSMC). This
method can restrain buffeting effectively and converge the
system in the finite time. You et al. [33] proposed a control
system combining a Uniform Robust Disturbance Observer
(UREDO) with a non-singular terminal sliding mode con-
troller. This scheme can track guidance commands within a
certain time undermodel uncertainty and external disturbance
in the system, and does not need the derivative of states and
special initial conditions. So it is valuable in engineering
applications. Meng Y proposed an Improved Sliding Mode
Disturbance Observer (ISMDO). In this method, the terminal
sliding mode control law is combined with an external anti-
saturation system to compensate the saturation of the sliding
mode surface, so that the controller can track the command
smoothly. This method does not need to know the bound-
ary of disturbances and faults, and has fewer undetermined
parameters and better real-time performance [34]. Mobayen
and Tchier [35] investigated a novel nonsingular fast terminal
sliding-mode control method for the stabilization of the
uncertain time-varying and nonlinear third-order systems.
This method can overcome the singularity problem of the fast
terminal sliding-mode control technique. No knowledge of
the upper bound is required, thus eliminating the chattering
problem.

C. CONTRIBUTIONS
Through the previous formation control research, all the
formation controllers are designed under the condition that
the velocity is controllable. But generally speaking, air-to-air
missiles in the mid-guidance stage can not control the speed
in real time during the mid-guidance stage. Moreover, con-
trolling speed increases energy consumption. In recent years,
this issue has not attracted enough attention, which is still
open in the literature.

To solve the problem of uncontrollable speed, improve the
anti-interference performance of the existing methods, and
reduce the complexity of the model, we propose a formation

FIGURE 1. Formation controller of the leader.

control systemwith uncontrollable speed. Belowwe show the
comparison of an existing method and the method proposed
in this article. The structure of the controller of the leader is
shown in Fig. 1. The formation control system of the method
in [20] is shown in Fig. 2 and our control system is shown in
Fig. 3.

Compared with the existing methods, the proposed method
has some advantage as follows:

(1) The formation control system proposed in this article
does not need to control the speed.

(2) We propose a general and less complex model of the
formation control problem.

(3) The formation control system, based on the sliding
mode variable structure control theory, is suitable for
multiple formations and can overcome internal uncer-
tainties and external disturbances.

The main contributions of this article are stated as follows:

(1) We start from the uncontrollable-speed condition for
modelling, which is more in line with the requirements
in reality.

(2) The formation control model is modelled in inertial
system, which greatly reduces the complexity of the
model.

(3) A linearized control model is obtained by applying
coordinate and equation transformation, which pro-
vides a basis for the formation controller design.

(4) Sliding mode control is adopted to improve the robust-
ness of the formation control system.

Under the premise that the speed of missiles is uncon-
trollable, firstly, we introduce the relative position of the
leader and the follower, and define the state variables of the
formation control problem in the inertial system, then design
the model of the problem. To obtain the specific expression
of the problem, the pitch and yaw acceleration of the missiles
are transferred from the ballistic coordinate system to the
inertial coordinate system. Secondly, aiming at the presence
or absence of disturbances in the system, we design the
formation controller using the sliding mode variable structure
control theory. And the Lyapunov stability theory is used to
prove the stability of the system. Finally, for the scenario that
the leader attacks the virtual target (the predicted hit point)
in the mid-guidance stage, we design simulation experiments
using the formation formed by one leader and two followers.
Comparing with an existing method which does not consider
the speed change, we achieve the similar formation position
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FIGURE 2. An existing formation control system [20].

FIGURE 3. Formation control system proposed in this article.

error with that of the method. And we verify the method
of designing the formation controller for both disturbed and
non-disturbed conditions, and the effectiveness and feasibil-
ity of the method.

D. ARTICLE ORGANIZATION
The rest of this article is organized as follows. In Section 2,
we design the model of the missile formation problem.
In Section 3, aiming at the two situations of the presence
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FIGURE 4. Three-dimensional interception geometry.

or absence of disturbance in the system, we use the sliding
mode variable structure control theory to design the formation
controller for the leader and the follower. Then, the process
of proving the stability of the controller is given. Simulation
experiments are performed in Section 4 to demonstrate the
superiority of the proposed method by comparing it with an
existing method. Section 5 concludes this article. Section 6
includes the future recommendation.

II. DESIGN OF FORMATION CONTROL PROBLEM MODEL
In this section, we first give the basic knowledge of formation
problem. Then we adopt the Leader-Follower strategy to
design the model of formation control problem under uncon-
trollable speed.

A. BASIC KNOWLEDGE OF MISSILE FORMATION
PROBLEM
Amissile may have a small angle of view in the mid-guidance
stage, resulting in that the target cannot be observed.
To increase the probability that the missile finds the target
in the mid-guidance stage, multiple missiles are used to
form a formation and observe the target at the same time.
Three-dimensional interception geometry is given in Fig. 4.

As shown in Fig. 4, Oxyz denotes the inertial coordi-
nate system;Ox2y2z2 denotes the ballistic coordinate system;
M and T denote the missile and target, respectively; θ andψV
denote the ballistic inclination angle and ballistic declination
angle, respectively.

The transformation matrix of the missile from the inertial
coordinate system to the ballistic coordinate system can be
obtained by two rotations. First, we rotate the inertial coor-
dinate system by angle ψV around the axis Oy, and then by
angle θ around the axis Oz2.

L (ψV , θ) = L (θ)L (ψV )

=

 cos θ cosψV sin θ − cos θ sinψV
− sin θ cosψV cos θ sin θ sinψV

sinψV 0 cosψV


(1)

FIGURE 5. Leader’s and follower’s coordinate system.

The kinematic equation set of the missile is:
ẋ = V cos θ cosψV
ẏ = V sin θ
ż = −V cos θ sinψV

(2)

Before designing the formation model, we make the fol-
lowing assumptions:
(1) The missile can be regarded as a mass point and its

speed is a constant;
(2) The acceleration direction of the missile is perpendicu-

lar to the velocity direction, which means acceleration
only changes the direction of the speed, not the value
of the speed;

(3) Usually, the response of dynamic characteristics in the
missile is fast, so we ignore its dynamic characteristics.
That is, any = acny, anz = acnz. any and anz denote the
missile’s acceleration in the pitch and the yaw channel,
respectively; acny and a

c
nz denote the command of accel-

eration in the pitch and the yaw channel, respectively.

B. FORMATION PROBLEM MODEL
In this section, we describe the difference between the actual
and expected distance of the leader and the follower in the
inertial coordinate system. Then the Leader-Follower guid-
ance strategy is adopted to design the formation control
model. After this, we propose the formation control model
that does not need the controllable speed. Based on this
model, it is convenient for readers to design the formation
controller. The definition of the leader’s and the follower’s
coordinate system is shown in Fig. 5. The transition of infor-
mation between the leader and the follower is one-way, which
means the follower can receive information from the leader
but the leader cannot receive information from the follower.
The leader attacks the virtual target under the designed guid-
ance law. The relative positional relationship between the
leader and the ith follower in the inertial coordinate system
is shown in Fig. 6.

In Fig. 6,Ml andMfi denote the leader and the ith follower,
respectively; Xl , Yl , Zl denote the coordinate value of the
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FIGURE 6. Relative position relationship between leader and follower.

leader in the x, y and z axis of the inertial coordinate system,
respectively; Xfi, Yfi, Zfi denote the coordinate value of the
leader and the ith follower in the x, y and z axis of the
inertial coordinate system, respectively; and 1Xi, 1Yi and
1Zi denote the difference of the position of the leader and
the ith follower in the x, y and z axis of the inertial coordinate
system, respectively. The definition equation of1Xi,1Yi and
1Zi is given below:

1Xi = Xl − Xfi
1Yi = Yl − Yfi
1Zi = Zl − Zfi

(3)

Defining state variables: x1 = Xl − Xfi − x∗i , x2 =
Ẋl − Ẋfi, x3 = Yl − Yfi − y∗i , x4 = Ẏl − Ẏfi, x5 = Zl −
Zfi − z∗i , x6 = Żl − Żfi, where x∗i , y

∗
i and z∗i denote the

expected position difference between the leader and the ith
follower in the x, y and z axis of the inertial coordinate
system, respectively. Therefore, the model of the formation
control problem in three-dimensional space can be expressed
as below: 

ẋ1 = x2
ẋ2 = Ẍl − Ẍfi = axl − axfi
ẋ3 = x4
ẋ4 = Ÿl − Ÿfi = ayl − ayfi
ẋ5 = x6
ẋ6 = Z̈l − Z̈fi = azl − azfi

(4)

where axl , ayl and azl denote the acceleration of the leader,
respectively; axfi, ayfi and azfi denote the acceleration of the
ith follower, respectively. The x, y and z axis here is in the
inertial coordinate system.

We define that in the ballistic coordinate system, the accel-
eration of the leader’s pitch and yaw channel is anyl and
anzl , and the acceleration of the ith follower’s pitch and yaw
channel is anyfi and anzfi. And according to the transformation
matrix from the inertial coordinate system to the ballistic
coordinate system, the inverse transformation matrix can be

obtained:

L−1 (ψV , θ)

=

 cos θ cosψV − sin θ cosψV sinψV
sin θ cos θ 0

− cos θ sinψV sin θ sinψV cosψV

 (5)

Then we convert the acceleration of the leader and the
follower from the ballistic coordinate system to the inertial
coordinate system. axl

ayl
azl

 = L−1 (ψVl, θl)

 0
anyl
anzl

 (6)

 axfi
ayfi
azfi

 = L−1
(
ψVfi, θfi

) 0
anyfi
anzfi

 (7)

Substituting (5) into (6) and (7), we can get the specific
expressions for the acceleration of the leader and the follower
in the inertial coordinate system. axl

ayl
azl

 =
− sin θl cosψVlanyl + sinψVlanzl

cos θlanyl
sin θl sinψVlanyl + cosψVlanzl

 (8)

 axfi
ayfi
azfi

 =
− sin θfi cosψVfianyfi + sinψVfianzfi

cos θfianyfi
sin θfi sinψVfianyfi + cosψVfianzfi

 (9)

Substituting (8) and (9) into (4), the formation control
problem model can be obtained:

ẋ1 = x2
ẋ2 = − sin θl cosψVlanyl + sinψVlanzl
+ sin θfi cosψVfianyfi − sinψVfianzfi

ẋ3 = x4
ẋ4 = cos θlanyl − cos θfianyfi
ẋ5 = x6
ẋ6 = sin θl sinψVlanyl + cosψVlanzl
− sin θfi sinψVfianyfi − cosψVfianzfi

(10)

Observing (10), after reasoning and conversion, the spe-
cific expression of the model can be obtained:

ẋ1 = x2
ẋ2 = sin θfi cosψVfianyfi − sinψVfianzfi

−
Vfi
Vl

tan θlanyl cos θfi cosψVfi

+ sinψVlanzl −
sin θlanyl
Vl cos θl

x2

ẋ3 = x4

ẋ4 = − cos θfianyfi +
Vfi sin θfi cos θlanyl

Vl sin θl
+

cos θlanyl
Vl sin θl

x4

ẋ5 = x6
ẋ6 = − sin θfi sinψVfianyfi − cosψVfianzfi

+
Vfi
Vl

tan θl cos θfi sinψVfianyl + cosψVlanzl

−
tan θlanyl

Vl
x6

(11)
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To make the design process of the controller in
Section 3 easier, we simplify (11) as below:

A1 = sin θfi cosψVfi, A2 = − sinψVfi, A3 = − cos θfi,
A4 = − sin θfi sinψVfi, A5 = − cosψVfi;

B1 = −
sin θlanyl
Vl cos θl

, B2 =
cos θlanyl
Vl sin θl

, B3 = −
tan θlanyl

Vl
;

D1 = −
Vfi
Vl

tan θl cos θfi cosψVfianyl + sinψVlanzl,

D2 =
Vfi sin θfi cos θlanyl

Vl sin θl
,

D3 =
Vfi
Vl

tan θl cos θfi sinψVfianyl + cosψVlanzl,

u1 = anyfi, u2 = anzfi.

Substituting the above simplification into (11), a simplified
form of the formation control model can be obtained:

ẋ1 = x2
ẋ2 = A1u1 + A2u2 + B1x2 + D1

ẋ3 = x4
ẋ4 = A3u1 + B2x4 + D2

ẋ5 = x6
ẋ6 = A4u1 + A5u2 + B3x6 + D3

(12)

Observing the above equation, we can simplify it one step
further. We define

A=

A1 A2
A3 0
A4 A5

, B=

B1 0 0
0 B2 0
0 0 B3

, D=
D1
D2
D3

,
u=

(
u1
u2

)
, X1=

 x1
x3
x5

, X2=

 x2
x4
x6

.
Substituting the above matrices into (12), the further

simplified model of the formation control problem can be
obtained: {

Ẋ1 = X2

Ẋ2 = Au+ BX2 + D
(13)

III. DESIGN OF MULTI-MISSILE FORMATION
CONTROLLER
In this article, we adopt the Leader-Follower formation mode
to design the formation controller. Considering the two cases
of presence or absence of disturbance, we use the sliding
mode variable structure control theory to design the guidance
law of the leader and the follower respectively. Finally, the
Lyapunov stability theory is used to give stability proof.

A. DESIGN THE CONTROLLER OF THE LEADER
The sliding mode variable structure theory in [36] is used to
design the controller of the leader. The specific form is as
follows:

anyl = m |ṙl | q̇εl +
|ṙl |
rl
n

q̇εl
|q̇εl | + δ1

(14)

anzl = −m |ṙ1l | q̇βl −
|ṙ1l |
rl

n
q̇βl∣∣q̇βl ∣∣+ δ2 (15)

where, rl and ṙl denote the distance between the leader and
the virtual target and its change rate, respectively; q̇εl and
q̇βl denote the change rate of the inclination and that of the
declination of the line of sight, respectively. r1l = r cos qεl ,
m > 0, n > 0, 0 < δ1 < 0.1, 0 < δ2 < 0.1.

B. DESIGN THE CONTROLLER OF THE FOLLOWER
(IGNORING DISTURBANCE)
In this section, we adopt the sliding mode variable structure
control theory to design the controller for the model without
disturbance. Then we use the Lyapunov stability theory to
analyze the stability of the controller.

1) DESIGN OF THE CONTROLLER
For the formation controller model without disturbances
derived in the previous section, we adopt the sliding mode
variable structure control theory to design the controller in
this section.

Observing the system model shown in (13), we select a
linear sliding mode to design the controller for the system.
The specific form of the linear sliding mode surface is [37]:

si = k1iX1 + k2iX2 + k3isigαi (X1) (16)

where si =
[
s1i s2i s3i

]T , sigαi (X1) = ‖X1‖
αi sign(X1),

k1i = diag(k11i, k12i, k13i), k1ji > 0(j = 1, 2, 3), k2i =
diag(k21i, k22i, k23i), k2ji > 0(j = 1, 2, 3), k3i =

diag(k31i, k32i, k33i), k3ji > 0(j = 1, 2, 3), 1 < αi < 2.
Then the derivative of the sliding mode surface can be

obtained:

ṡi = k1iẊ1 + k2iẊ2 + k3iαi ‖X1‖
αi−1 Ẋ1

= k1iX2 + k2i (Au+ BX2 + D)+ k3iαi ‖X1‖
αi−1 X2

(17)

Choosing the exponential approach as:

ṡi = −εisign(si)− k4isi (18)

where εi = diag(ε1i, ε2i, ε3i), k4i = diag(k41i, k42i, k43i),
εj, k4ji > 0(i = 1, 2, 3).
Substituting (18) into (17), we obtain:

k2iAu = −εisign(si)− k4isi − k2iD

− (k1i + k3iαi ‖X1‖
αi−1 + k2iB)X2 (19)

As it can be seen from (19), it is necessary to inverse
the matrix A, but A is not a square matrix. By using its
pseudo-inverse form AT (AAT )−1 instead, we can further
obtain the expression of the acceleration:

ui = AT (AAT )−1k−12i (−εisign(si)− k4isi
− k2iD− (k1i + k3iαi ‖X1‖

αi−1 + k2iB)X2) (20)

2) STABILITY ANALYSIS
Theorem 1: For the deduced formation model in (13) under

the condition of uncontrollable speed, we use the sliding
mode surface in (16) and the reaching law in (18) to get the
controller in (20) that can achieve and maintain formation.
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Proof: Choosing a Lyapunov function V1 = 1
2 s
T
i si.

Obviously, V1 is positive definite and continuous.
Differentiating V1, we can get V̇1 as

V̇1= sTi ṡi
= sTi (k1iX2 + k2i (Au+ BX2 + D)

+ k3iαi ‖X1‖
αi−1 X2)

= sTi k1iX2 + sTi k2iAu+ s
T
i k2iBX2

+ sTi k2iD+ s
T
i k3iαi ‖X1‖

αi−1 X2

= sTi k1iX2 + sTi k2iBX2 + sTi k2iD

+ sTi k3iαi ‖X1‖
αi−1 X2 + sTi (−εisign(si)

− k4isi − k2iD− (k1i + k3iαi ‖X1‖
αi−1 + k2iB)X2)

= sTi k1iX2 + sTi k2iBX2 + sTi k2iD

+ sTi k3iαi ‖X1‖
αi−1 X2 − sTi εisign(si)

− sTi k4isi−s
T
i k2iD−s

T
i (k1i+k3iαi ‖X1‖

αi−1+k2iB)X2

=−sTi εisign(si)− s
T
i k4isi (21)

Observing (21), due to

sign(s)s =

{
s, s > 0
−s, s < 0

(22)

and since εi > 0 and k4i > 0, we can get

sTi εisign(si) ≥ 0 (23)

sTi k4isi ≥ 0 (24)

From (21), we can know that

V̇1 ≤ −sTi εisign(si)− s
T
i k4isi (25)

If we let V̇1 = 0, we can derive si = 0. According to (16),
the expression of si is shown below.

si = k1iX1 + k2iX2 + k3isigαi (X1) (26)

Assuming that X1 = 0 and substituting it into (26),
X2 = 0 can be obtained. Therefore, V̇1 = 0 can only be
obtained when X1 = 0 and X2 = 0. This result cannot be
obtained at any other points. So according to the principle of
invariance [38], it can be obtained that:

V̇1 < 0 (27)

So V̇1 < 0, which means the system state can reach the
sliding mode surface. According to the Lyapunov stability
theory, the system is progressively stable. The sliding mode
surface si designed in this article can converge to zero in the
finite time. The system state at that time is

k1iX1 + k2iX2 + k3isigαi (X1) = si = 0 (28)

The state equation of the system can be written as

X2 = k−12i (−k1iX1 − k3isigαi (X1)) (29)

Selecting another Lyapunov function as

V2 =
1
2
XT
1X1 (30)

Then we differentiate (30) as

V̇2 = XT
1 Ẋ1 = XT

1X2 (31)

Substituting (29) into (31), we can get

V̇2 = XT
1 Ẋ1 = XT

1X2

= XT
1 k
−1
2i (−k1iX1 − k3isigαi (X1))

= −k−12i k1iX
T
1X1 − k−12i k3iX

T
1 sig

αi (X1)

= −k−12i k1iX
T
1X1 − k−12i k3iX

T
1 ‖X1‖

αi sign(X1)

= −k−12i k1i ‖X1‖ − k−12i k3i ‖X1‖
αi+1

≤ 0 (32)

From (32), according to the principle of invariance,
we know that V̇2 < 0, so the system state can converge.
According to the Lyapunov stability theory, the system is
gradually stable, which means when t →∞, X1→ 0.

lim
t→∞

1Xi = x∗i

lim
t→∞

1Yi = y∗i

lim
t→∞

1Zi = z∗i

(33)

According to (33), the position difference 1Xi, 1Yi
and 1Zi can converge to the expected value in each axis,
respectively.

Note that the formation control function shown in (20) has
a sign function term. To reduce chattering, the sign function
is replaced with a saturation function, and the controller can
be rewritten as

ui = AT (AAT )−1k−12i (−εisat(si)− k4isi
− k2iD− (k1i + k3iαi ‖X1‖

αi−1 + k2iB)X2) (34)

The expression of the saturation function is

sat (si) =

 sign (si) ‖si‖ > σi
si
σi

‖si‖ ≤ σi
(35)

where σi > 0, when ‖si‖ > σi, sat(si) = sign(si). Therefore,
replacing the sign function with a saturation function not only
has no impact on the convergence effect of the system, but
also can improve the stability of the missile and make control
performance better.

C. DESIGN THE CONTROLLER OF THE FOLLOWER
(CONSIDERING DISTURBANCE)
In this section, through the similar process with Section B,
we design the controller for the model with disturbance and
analyze the stability.

1) DESIGN OF THE CONTROLLER
For the controller design in Section B, factors like distur-
bances and linearization errors are not considered. In this
section we take them into consideration, and we can get the
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formation control problem model with external disturbances
and linearization errors:{

Ẋ1 = X2

Ẋ2 = Au+ BX2 + D+ F(t)
(36)

where F(t) =
[
f1(t) f2(t) f3(t)

]T is the external dis-
turbance and linearization deviation in the formation control
system.

To eliminate F(t), the non-homogeneous disturbance state
observer with finite-time convergence is used to estimateF(t)
in the system shown in (36). The specific form of the observer
is [39]:

ż0 = v0 + Au+ BX2 + D

v0 = −L
1
3 λ2ξ0sign(z0 − X2)− µ2(z0 − X2)+ z1

ż1 = v1
v1 = −L

1
2 λ1ξ1sign(z1 − v0)− µ1(z1 − v0)+ z2

ż2 = −Lλ0sign(z2 − v1)− µ0(z2 − v1)
F̂(t) = z1

(37)

where λi = diag( λi1 λi2 λi3 ), λij > 0, i = 0, 1,
2i = 0, 1, 2, j = 1, 2, 3,µi = diag(µi1 µi2 µi3 ), µij >
0, i = 0, 1, 2, j = 1, 2, 3, L > 0, z0 = diag( z01 z02 z03 ),
z1 = diag( z11 z12 z13 ), z2 = diag( z21 z22 z23 ),
v0 = diag( v01 v02 v03 ), v1 = diag( v11 v12 v13 ),

ξ0 = diag
(
|z01 − x2|

2
3 |z02 − x4|

2
3 |z03 − x6|

2
3

)
, ξ1 =

diag
(
|z11 − x2|

1
2 |z12 − x4|

1
2 |z13 − x6|

1
2

)
.

Surmise 1:The external disturbance and nonlinear error are
bounded, that is

F̃1 ≤ 12 (38)

where F̃1 =

[ ∣∣∣f1(t)− f̂1(t)∣∣∣ ∣∣∣f2(t)− f̂2(t)∣∣∣ ∣∣∣f3(t)− f̂3(t)∣∣∣ ]T ,
12 = (121 122 123 ), 12j > 0, j = 1, 2, 3.
Observing the system model shown in (36), we select the

linear sliding mode to design the controller for the system.
The specific form of the linear sliding mode surface is as
follows:

si = k1iX1 + k2iX2 + k3isigαi (X1) (39)

The derivative of the sliding mode surface can be obtained
as

ṡi = k1iẊ1 + k2iẊ2 + k3iαi ‖X1‖
αi−1 Ẋ1

= k1iX2 + k2i (Au+ BX2 + D+ F(t))

+ k3iαi ‖X1‖
αi−1 X2 (40)

The choice of exponential approach is

ṡi = −εisign(si)− k4isi (41)

For the sliding surface expressed in (39), we can design the
controller as follows:

ui = AT (AAT )−1k−12i (−εisign(si)− k4isi
− k2iD− k2i1̂2σ sign(si)− k2iF̂(t)

− (k1i + k3iαi ‖X1‖
αi−1 + k2iB)X2) (42)

where 1̂2 is the estimated value of12; and σ = ( σ1 σ2 σ3 ),
σj > 1, j = 1, 2, 3. The adaptive law is

˙̂
12 = ςσ

T (43)

where ς = diag
(
|s1| |s2| |s3|

)
.

2) STABILITY ANALYSIS
Theorem 2: For the deduced formation model with distur-

bance in (36) under the condition of uncontrollable speed,
we use the sliding mode surface in (39) and the reaching law
in (41) to get the controller in (42) which can achieve and
maintain formation.

Proof: Choosing a Lyapunov function

V3 =
1
2
sTi si +

1
2
1̃
T
2 1̃2 (44)

where 1̃2 = 12 − 1̂2, 12 =
[
12 12 12

]T . Differentiat-
ing V3, we can get V̇3 as

V̇3 = sTi ṡi + 1̃
T
2
˙̃
12

= sTi (k1iX2 + k2i (Au+ BX2 + D+ F(t))

+ k3iαi ‖X1‖
αi−1 X2)− (12 − 1̂2)Tςσ T

= sTi (k1iX2 + k2iAu+ k2i (BX2 + D+ F(t))

+ k3iαi ‖X1‖
αi−1 X2)− (12 − 1̂2)Tςσ T

= sTi (k1iX2 − εisign(si)− k4isi − k1iX2

− k2i (BX2 + D+ F(t))− k3iαi ‖X1‖
αi−1 X2

+ k2i (BX2 + D+ F(t))− (12 − 1̂2)Tςσ T

= sTi (−εisign(si)− k4isi)− (12 − 1̂2)Tςσ T

= sTi (F(t)− F̂(t)− 1̂2σ sign(si)

− εisign(si)− k4isi)− (12 − 1̂2)Tςσ T

= sTi F(t)− s
T
i F̂(t)− s

T
i 1̂2σ sign(si)

− sTi εisign(si)− s
T
i k4isi − (12 − 1̂2)Tςσ T

≤ sTi 12 −1
T
2 ςσ

T
− sTi εisign(si)− s

T
i k4isi

≤ 1T
2 ςσ

T
−1T

2 ςσ
T
− sTi εisign(si)− s

T
i k4isi

= 1T
2 ς (I3×1 − σ

T )− sTi εisign(si)− s
T
i k4isi

≤ −sTi εisign(si)− s
T
i k4isi (45)

Observing the (45), due to

sign(s)s =

{
s, s > 0
−s, s < 0

(46)

and since εi > 0 and k4i > 0, we can get

sTi εisign(si) ≥ 0 (47)

sTi k4isi ≥ 0 (48)

So according to the proof of V̇1 < 0, it can be obtained that
V̇3 < 0, and the system state can reach the sliding surface.
According to the Lyapunov stability theory, the system is
asymptotically stable. The sliding mode surface si designed
in this article can converge to zero in the finite time. After
convergence, the system state is

k1iX1 + k2iX2 + k3isigαi (X1) = si = 0 (49)
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The state equation of the system can be organized as

X2 = k−12i (−k1iX1 − k3isigαi (X1)) (50)

Choosing another Lyapunov function

V4 =
1
2
XT
1X1 (51)

and differentiating (51), the result is

V̇4 = XT
1 Ẋ1 = XT

1X2

= XT
1 k
−1
2i (−k1iX1 − k3isigαi (X1))

= −k−12i k1iX
T
1X1 − k−12i k3iX

T
1 sig

αi (X1)

= −k−12i k1iX
T
1X1 − k−12i k3iX

T
1 ‖X1‖

αi sign(X1)

= −k−12i k1i ‖X1‖ − k−12i k3i ‖X1‖
αi+1

≤ 0 (52)

According to the principle of invariance, we can know
V̇4 < 0, so the system state can converge. According to
the Lyapunov stability theory, the system is gradually stable,
which means when t →∞, X1→ 0.

lim
t→∞

1Xi = x∗i

lim
t→∞

1Yi = y∗i

lim
t→∞

1Zi = z∗i

(53)

According to (53), the position difference 1Xi, 1Yi
and 1Zi can converge to the expected value in each axis,
respectively.

Note that the guidance law function shown in (42) has a
sign function term. To reduce chattering, the sign function is
replaced with a saturation function, and the controller can be
rewritten as

ui = AT (AAT )−1k−12i (−εisat(si)− k4isi
− k2iD− k2i1̂2σ sat(si)− k2iF̂(t)

− (k1i + k3iαi ‖X1‖
αi−1 + k2iB)X2) (54)

Remark: The adjustment rule of parameters
The control algorithm designed in this article includes

many parameters. We choose some important parameters
to discuss the adjustment rule of parameters, including
αi, k1i, k2i.
αi: The value range of αi is 1 < αi < 2. We take a

point between 1.1 and 1.9 for each 0.1 to conduct simulation
verification. It is found that 1.2 is the best for the effect of the
control system. The change of the value will make the control
performance bad.
k1i: We adjust the three parameters in k1i and carry

out many simulations. Results show that the error of
formation control system is the smallest when k1i =
diag[ 0.8 16.5 0.53 ].
k2i: We adjust the three parameters in k2i and carry out

many simulations. Results show that the error of formation
control system is the smallest when k2i = diag

[
1 1.2 1

]
.

The parameters k1i and k2i do not have clear range, and are
only required to be positive. Therefore, we have not enough

TABLE 1. Initial parameter values of missiles.

guidance on parameter selection and can only test through
simulations.

IV. SIMULATIONS
To verify the quality of the control method proposed in
this article for the formation of missiles with uncontrollable
speed, four simulation experiments are designed in this arti-
cle. In the simulation Scenario 1 - Scenario 3, we use the
formation model without disturbances and linearization devi-
ations. The purpose of Scenario 1 is to verify the effectiveness
and feasibility of the formation control system. The purpose
of Scenario 2 is to verify the ability of dealing with the
measuring noise of the system. The purpose of Scenario 3 is to
verify that the formation control system applies to various for-
mations. In Scenario 4, we use the formation control system
with disturbances and linearization deviations. Its purpose
is to verify that the formation control system has a better
anti-disturbance effect.

We use one leader and two followers to form the formation.
The leader is going to attack the virtual target during the mid-
guidance stage. It is required that the two followers form the
desired formation with the leader in the finite time. The initial
parameter values of the missiles are shown in Table 1. It is
assumed that the virtual target is located at (0, 5000, 0)m and
is stationary, and the speed of the leader and two followers are
all 1000m/s and remain unchanged. The maximum amplitude
of acceleration is AM = 40g and the simulation step size is
0.001s. We choose MATLAB as the simulation software.

For the three missiles shown in Table 1, the sliding mode
coefficients of the leader are selected as follows: m = 5,
n = 10, and δ1 = δ2 = 0.0025. The parameter values of
the followers are as follows: α1 = α2 = 1.2, γ1 = γ2 =

0.6, k1i = diag[ 0.8 16.5 0.5 3], k2i = diag
[
1 1.2 1

]
,

k3i = diag[ 0.01 0.01 0.01 ], k4i = diag[ 13 0.02 10 ],
εi = [ 1 1.1 0.8 ], and i = 1, 2. The parameters in the
saturation function are selected as σ1 = σ2 = 0.01. In the
following work, we perform four simulation experiments.
Scenario 1: Expect the three missiles to form a one-line

formation. That is, the expected position difference between
the leader and the first follower is x∗1 = 0m, y∗1 = 0m,
z∗1 = 8000m, and the expected position difference between
the leader and the second follower is x∗2 = 0m, y∗2 = 0m, z∗2 =
−8000m. Simulation results of the control law in (34) are
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FIGURE 7. Three missiles’ trajectory under the algorithm proposed in this
article.

FIGURE 8. Acceleration curves of the leader.

FIGURE 9. Acceleration curves of the first follower.

shown in Figs. 7-12. The error of the relative position between
the leader and the follower in the same initial condition is
shown in Table 2. To prove the feasibility of the method pro-
posed in this article, we compare it with an existing method
using autopilot from [20]. Simulation results of the existing
method are shown in Figs. 13-21. The position error of the
two methods is shown in Table 2, and the convergence time
is shown in Table 3.

FIGURE 10. Acceleration curves of the second follower.

FIGURE 11. Relative position error of the leader and the first follower in
three axes.

FIGURE 12. Relative position error of the leader and the second follower
in three axes.

TABLE 2. Relative position error information.

The leader uses a guidance law designed with the sliding
mode variable structure control theory to attack the virtual tar-
get. So, as shown in Fig. 7, it can be seen that the trajectories
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FIGURE 13. Three missiles’ trajectory of the existing algorithm [20].

FIGURE 14. Speed tracking curves of the first follower [20].

FIGURE 15. Ballistic inclination angle tracking curves of the first
follower [20].

are smoother and there is no large curvature. The acceleration
of the leader is shown in Fig. 8, where the curves of the
pitch channel and the yaw channel are smooth. In Fig. 7,
the curves of the two followers change rapidly in the initial
stage and reach the expected value within a limited time, then
those curves become smooth. This is reflected in Fig. 9 and
Fig. 10, where the acceleration curves of the two followers
change drastically in the initial stage, and when the formation
requirements are met, the curves become smooth.

Fig. 11 and Fig. 12 show the difference between the
actual and expected distance of the leader and each follower,

FIGURE 16. Ballistic deflection angle tracking curves of the first
follower [20].

FIGURE 17. Speed tracking curves of the second follower [20].

FIGURE 18. Ballistic inclination angle tracking curves of the second
follower [20].

respectively. The difference is named as the relative position
error. It is shown that the error of the two followers will reach
zero within a limited time. Table 2 shows that steady-state for-
mation errors of the follower are relatively small, considering
that the maximum error is 30.6m and the speed is 1000m/s.
This indicates that the formation control system designed in
this article is feasible. More importantly, the control system
does not need to control the speed of the missile, which is
more in line with practical requirements.
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FIGURE 19. Ballistic deflection angle tracking curves of the second
follower [20].

FIGURE 20. Relative position error of the leader and the first follower in
three axes [20].

FIGURE 21. Relative position error of the leader and the second follower
in three axes [20].

As shown in Fig. 13, the existing autopilot-based formation
controller design can realize and maintain the formation, and
the trajectory is smooth. It can be seen from Fig. 14 to Fig. 19
that the control input of the two followers can keep upwith the
control commandswithin a limited time tomeet the formation
requirements. As shown in Fig. 20 and Fig. 21, the relative
position error of the two followers and the leader can both
approach zero within a finite time. As it is shown in Table 2,
the maximum steady-state error of the two followers is 28m,

TABLE 3. Convergence time information.

which is relatively small. But the disadvantage of this method
is that it requires the speed of the missile to be completely
controllable in real time, which is difficult to achieve in
reality.

To analyze the convergence performance, the convergence
time of the two followers is recorded. Since the expected
position value in the x and y axis is zero, and it is inconvenient
to use them to express convergence, we take 0 − 1% of the
expected value in the z − axis as the width of convergence
zone in all three axes. The time for the two followers to reach
the convergence zone is shown in Table 3. The convergence
time of the existing method is also given in Table 3.

In Table 3, tfiT is the time used by the two followers to
reach the convergence zone using the existing method; and tfi
is the time for the ith follower to reach the convergence zone
using the method proposed in this article. It can be seen that
the maximum tfiT of two followers in three axes is 7.866s,
and the total simulation time is 23.975s. This means that both
followers can converge within 35% of the total simulation
time. And the maximum tfi is 13.936s, which means both
followers can converge within 60% of the total simulation
time. Therefore, the existing method [20] converges faster.
It must take less time to reach the convergence zone because
the speed is controllable.
Scenario 2: Considering there are measurement noises in

the system in practice, we add the measurement noise ω(t) to
system in (13), and get the new form of the system as{

Ẋ1 = X2

Ẋ2 = Au+ BX2 + D+ ω(t)
(55)

where ω(t) = diag[10rand(), 10rand(), 10rand()].
The linear sliding mode surface as shown in (16) is adopted

to design the formation controller. The final expression of the
controller is as follows:

ui = AT (AAT )−1k−12i (−εisign(si)− k4isi
− k2iD− k2iω(t)− (k1i + k3iαi ‖X1‖

αi−1 + k2iB)X2)

(56)

The same initial condition as that in scenario 1 is used,
where missiles are commanded to form a one-line formation.
The expected position difference between the leader and the
first follower is x∗1 = 0m, y∗1 = 0m, z∗1 = 8000m, and
the difference between the leader and the second follower
is x∗2 = 0m, y∗2 = 0m, z∗2 = −8000m. Simulation results
using the control law shown in (56) are shown in Figs. 22-24.
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FIGURE 22. Three missiles’ trajectory under the algorithm proposed in
this article.

FIGURE 23. Relative position error of the leader and the first follower in
three axes.

FIGURE 24. Relative position error of the leader and the second follower
in three axes.

TABLE 4. Relative position error information.

The relative position error of the leader and the followers is
shown in Table 4.

Table 2 shows the simulation results not considering mea-
surement noises, and Table 4 shows the simulation results
considering measurement noises. Comparing the results in

FIGURE 25. Three missiles’ trajectory under the algorithm proposed in
this article.

FIGURE 26. Acceleration curves of the leader.

TABLE 5. Relative position error information.

the two tables, it can be found that when the measurement
noise is added, the error in the z direction increases, but the
error in the x and y directions either increases or decreases.
So, the effect of measurement noises on the design of our
formation controller is found to be insignificant.
Scenario 3: To verify the formation adaptability of the

design method in this article, a simulation of another for-
mation is given below. It is expected that the three missiles
will form a triangular formation, that is, the expected posi-
tion difference between the leader and the first follower is
x∗1 = 0m, y∗1 = 1000m, z∗1 = 8000m, and the expected
position difference between the leader and the second fol-
lower is x∗2 = 0m, y∗2 = 1000m, z∗2 = −8000m. Using (34),
simulation results are shown in Figs. 25-30. Relative position
errors are shown in Table 5.
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FIGURE 27. Acceleration curves of the first follower.

FIGURE 28. Acceleration curves of the second follower.

FIGURE 29. Relative position error of the leader and the first follower in
three axes.

As shown in Fig. 25, the leader’s overall trajectory is
smooth. Observing the acceleration curves of the leader
shown in Fig. 26, the pitch channel and yaw channel curves
are smooth. The curves of the two followers change rapidly
at the initial stage and reach the expected value within a
limited time, then become smooth. Corresponding features
can be found in the acceleration curves of the two followers
in Fig. 27 and Fig. 28. The curves change drastically in the
initial stage, and become smooth when the formation require-
ments are met.

FIGURE 30. Relative position error of the leader and the second follower
in three axes.

TABLE 6. Convergence time information.

TABLE 7. Relative position error information.

Fig. 29 and Fig. 30 show the relative position error between
the leader and each follower, respectively. It can be found that
both followers can reach zero errors within a limited time.
Table 5 shows that the tracking errors of the two followers are
relatively small, considering that the maximum error is 30.6m
and the speed is 1000m/s. This indicates that the formation
controller designed in this article has good precision. Com-
pared with the one-line simulation, the error did not increase,
indicating the method has good formation adaptability.

In this Scenario, the expected value of 0− 5% in the x and
y axis and 0−1% in the z−axis are taken as the convergence
zone in the axis, respectively. The time for the two followers
to reach the convergence zone is shown in Table 6.

It can be seen from Table 6 that the maximum convergence
time is 13.936s, and the total simulation time is 23.975s.
So the convergence of the two followers happens within 60%
of the total time.
Scenario 4: To verify the anti-disturbance ability of the

design method in this article, another simulation is done.
Based on the formation in Scenario 3, we add a distur-
bance item F(t) =

(
sin(0.5t) sin(0.5t) sin(0.5t)

)T into
the model. Using (54), the simulation results are shown in
Figs. 31-38. The relative position error is shown in Table 7.

Comparing Fig. 31 with Fig. 25, it can be found that for
the two conditions, the trajectories of the three missiles do
not change much. Comparing Figs. 32-34 with Figs. 26-28,
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FIGURE 31. Three missiles’ trajectory under the algorithm proposed in
this article.

FIGURE 32. Acceleration curves of the leader.

FIGURE 33. Acceleration curves of the first follower.

we know that the acceleration curves of the three missiles
show some fluctuations, but all within an acceptable range.
Observing Fig. 35 and Fig. 36, it can be found that the
observation error of disturbances in the two followers will
converge to zero within a limited time. By combining Fig. 37
and Fig. 38 with Table 7, it can be found that the tracking
error of the two followers is not much different from that in
Scenario 3.

FIGURE 34. Acceleration curves of the second follower.

FIGURE 35. Observation error of disturbances of the first follower.

FIGURE 36. Observation error of disturbances of the second follower.

The above analysis shows that the formation control sys-
tem designed in this article can cope with external distur-
bances and linearization errors.
Note: Based on the four Scenarios above, we compare the

formation control system from [20] and the formation control
system of this article. The details are shown in Table 8.

From Table 8, the existing method considers the real-time
controllability of speed, but this article does not consider it,
which is more in line with realistic requirements. The two
methods both have a small maximum formation error, and
the absolute value is close. On model complexity, in the
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FIGURE 37. Relative position error of the leader and the first follower in
three axes.

FIGURE 38. Relative position error of the leader and the second follower
in three axes.

TABLE 8. Comparison of two formation control systems.

method from [20], the expected relative position is expressed
under the relative coordinate system between the leader and
the follower. So it requires the second-order derivative of
the product of the coordinate transformation matrix and the
expected relative position, which is complex. Instead, using
the inertial coordinate system for expression, the method in
this article does not need to take the derivative, which can
simplify the computation. And the most important is that
the anti-disturbance ability of this method is better than the
existing method. This is because the existing method is based
on the back-stepping method, but our method adopts the slid-
ing mode variable structure control theory which is superior
in the anti-disturbance ability. Verified by the two different
formations in simulation, our method has good formation

adaptability. At last, simulation results verify the strong anti-
measurement-noise ability of our method.

In summary, the formation control system proposed in
this article has better versatility, lower complexity, stronger
robustness and formation adaptability, according to the theo-
retical analysis and simulations.

V. CONCLUSION
Under the premise that the speed of the missile is not con-
trollable, we adopt the Leader-Follower formation mode to
design the formation control system.

First, the model of the formation control problem is con-
structed in Section 2. We describe the expected relative
position in the inertial coordinate system; then we design
the model of the problem in the inertial coordinate system;
then we transform the model into the ballistic coordinate
system, and by reasoning and conversion, the model needed
is obtained.

Next, in Section 3, for the different cases where distur-
bances are ignored or considered, the formation controller of
the leader and the follower is designed based on the sliding
mode variable structure control theory, and the stability of the
controller is proved by the Lyapunov stability theory.

Finally, four simulation experiments are done in Section 4.
Without considering the disturbances, we design a one-line
formation in Scenario 1 and Scenario 2, and a triangular for-
mation in Scenario 3. In Scenario 1, we compare our method
with an existing method [20]. In Scenario 2, the ability of
our method to overcome measurement noises is verified.
Considering the disturbances, we design Scenario 4 using the
same formation as that of Scenario 3. Simulation results show
that the formation control system proposed in this article has
better versatility, easier computation, stronger robustness and
stronger formation adaptability.Moreover, the formation con-
troller proposed in this article does not require controllable
speed, which is more convenient to be applied in practice.

VI. FUTURE RECOMMENDATION
According to the control system design process in this article
and the control system designed in an existing literature,
we present that the research direction to further improve the
work mainly includes:
(1) In the design ofmulti-missile formation control system,

communication delay and other practical factors should
be considered;

(2) The way to further reduce the complexity of algorithm
design;

(3) The way to further improve the convergence speed and
accuracy of the control algorithm.
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