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ABSTRACT The detection of partial discharge (PD) is a crucial method to evaluate the insulation status of
transformers. The main difficulties of the current localization algorithms are the complexity of the solution
and sensitivity to time delay errors. This article proposes a PD localization method in transformers based
on linear conversion and density peak clustering (DPC). First, to reduce the complexity of solving the
localization equations, the nonlinear localization equations are transformed into linear localization equations
by eliminating the second-order terms. Then, to reduce the influence of time delay errors on localization
accuracy, the initial localization values are located by multiple acoustic emission (AE) sensors. Finally,
the optimal PD coordinates are determined by clustering the initial location values using density peaks
clustering algorithm with automatic finding centers (AFC-DPC). The experimental results show that the
proposed method can improve PD localization accuracy in transformers, and the average localization error
is 5.30 cm.

INDEX TERMS Partial discharge (PD), localization, time difference of arrival (TDOA), acoustic emis-
sion (AE) sensors, AFC-DPC.

I. INTRODUCTION
Most power grid failures are caused by insulation defects
[1]–[3]. Partial discharge (PD) usually occurs when electrical
equipment is defective in insulation [4]. As the primary equip-
ment in the power grid, the insulation status of the transformer
directly affects the safe operation of the power grid [5], [6].
The detection of PD is an important method to evaluate the
insulation status of transformers [7]. Determining the exact
position of the PD source can more accurately reflect the
insulation status of the transformer and help the operator to
formulate the appropriate maintenance strategies [8]–[10].

The detection of PD localization can usually be divided
into the ultra-high-frequency (UHF) method and acoustic
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emission (AE) method [11]. The UHF method has good
anti-interference and high sensitivity, but the installation of
UHF sensors still faces some challenges. The transformer
tank has an electromagnetic shielding effect, so most UHF
sensors must be preinstalled in the transformer. Once the
transformer comes into service, it is difficult to install UHF
sensors in transformer [12]. Unlike UHF sensor, AE sensor
is not affected by external electrical interference and can
be easily installed on the enclosure of transformer [13].
Therefore, the AE method has been widely applied in PD
localization [14].

When PD occurs, the AE method calculates the time
delay in arrival of the acoustic signal. Then the localization
equations are established according to the time difference
of arrival (TDOA) localization method, and the position of
PD is obtained [15]–[17]. This shows that the time delay
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is the crucial parameter in PD localization and solving the
localization equations is the key process. However, it is chal-
lenging to solve the localization equations characterized by
nonlinearity [19]. Besides, due to the interference factors such
as the noise of the detection system and the internal structure
of the transformer, the time delay data obtained are inevitably
errors [18]. These problems will reduce the accuracy of PD
localization.

In order to improve localization accuracy, many PD local-
ization algorithms have been reported. The traditionalmethod
of solving localization equations is the Newton-Raphson iter-
ative algorithm, but it is prone to local convergence [20], [21].
In addition, the algorithm requires an initial value to be
close to the actual position. If the initial value is incor-
rectly selected, the algorithm cannot converge [12], [19].
To solve the above problems, intelligent optimization algo-
rithms such as particle swarm optimization (PSO) algo-
rithm [14], [22], genetic algorithm (GA) [23], and neural
network algorithm [24] have been applied to PD localization.
However, these algorithms do not consider the effect of time
delay error on PD localization accuracy.

The inner structure of the transformer will cause refraction,
reflection and diffraction of the PD signal, thus increasing
the time delay error. Some researchers have studied ways to
improve the accuracy of time delays. A recent study [25] has
established a PD localization model that considers the errors
caused by refraction and diffraction. In [26], an improved
propagation route search (IPRS) algorithm has been pro-
posed, which can obtain the fastest propagation route of the
PD signal. In [4], the acoustic wave propagation inside the
transformer has been discussed, and a fiber-optic acoustic
sensor array has been designed for PD localization in trans-
former winding. The article [27] has studied how to locate the
PD in the transformer by the macro fiber composite sensors
(MFCS). The MFCS can be installed on uneven surfaces and
can be applied to transformers of various shapes. However,
the time delay detected by the AE sensors will inevitably have
errors.

This article proposes a novel PD localization method in
transformers based on linear conversion and density peak
clustering (DPC). First, eight AE sensors are used to detect
PD simultaneously. Then, the nonlinear localization equa-
tions are transformed into linear localization equations, and
56 initial localization values are obtained by the Gaussian
elimination method. Finally, the optimal coordinates of PD
source are determined by clustering the initial location values
by using the density peaks clustering algorithm with auto-
matic finding centers (AFC-DPC).

Overall, the main contributions of the article include:
1) Considering the difficulty in solving nonlinear localiza-

tion equations using existing algorithms, we propose
to transform nonlinear localization equations into lin-
ear localization equations by eliminating second-order
terms.

2) To reduce the impact of time delay errors on local-
ization accuracy and decrease the dependence of

algorithm on exact time delay data, PD is simultane-
ously located by multiple AE sensors. We can obtain
multiple initial localization values. Then the optimal
coordinates of the PD source are determined by clus-
tering the initial location values.

3) The DPC algorithm needs to determine the cutoff
distance manually to calculate the local density, and
according to the decision graph manually select the
cluster centers. To overcome those two limitations,
the proposed AFC-DPC algorithm applies the cutoff
distance sequence to calculate the local density. In addi-
tion, it uses the γi value to determine the cluster centers.

The remainder of this article is organized as follows.
In section II, we briefly introduce the principle of PD local-
ization. We proposed a novel localization algorithm based
on AFC-DPC in section III. In section IV, simulations and
experiments with the localization algorithm are presented.
Finally, the conclusions are shown in section V.

II. THEORY OF PD LOCALIZATION IN TRANSFORMERS
A. PRINCIPLE OF TDOA LOCALIZATION
The principle of TDOA localization method is to receive sig-
nals from the point to be located through multiple sensors and
then obtain the time delay data of the signals reaching each
sensor. The nonlinear localization equations are established
by using the coordinates and time delay data of each sensor.
Finally, the coordinates of the point to be located can be
obtained by solving the localization equations.

To determine the PD position in 3D space, at least four
or more AE sensors are needed to simultaneously detect the
PD signal. Suppose the coordinates of the PD source and AE
sensors are P (x, y, z) and Si (xi, yi, zi) (i = 1, 2, . . . , n),
respectively. According to the principle of TDOA localiza-
tion, the following localization equations are established:

(x − x1)2 + (y− y1)2 + (z− z1)2 = v2t2

(x − x2)2 + (y− y2)2 + (z− z2)2 = v2(t + τ21)2

(x − x3)2 + (y− y3)2 + (z− z3)2 = v2(t + τ31)2

(x − x4)2 + (y− y4)2 + (z− z4)2 = v2(t + τ41)2

......

(x − xn)2 + (y− yn)2 + (z− zn)2 = v2(t + τn1)2

(1)

where t is the time required for the acoustic wave to reach
the first sensor from the PD source. Here, τi1 is the time delay
between the acoustic wave from the PD source to reaching the
i th (i = 2, 3, . . . , n) sensor and the first sensor. The velocity
of the acoustic wave is v.

The coordinates of the PD source can be obtained by
solving the nonlinear localization equations (1).

B. LOCALIZATION MODEL TRANSFORMATION
It is difficult to solve complex nonlinear localization equa-
tions. To avoid the above problem, the nonlinear equations
are transformed into linear equations by eliminating the
second-order terms [28].
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Five AE sensors are needed to locate the PD to convert
the nonlinear localization equations into linear localization
equations. We can get the following equations from (1):

(x − x1)2 + (y− y1)2 + (z− z1)2 = v2t2 (2)

(x − x2)2 + (y− y2)2 + (z− z2)2 = v2 (t + τ21)2 (3)

(x − x3)2 + (y− y3)2 + (z− z3)2 = v2 (t + τ31)2 (4)

(x − x4)2 + (y− y4)2 + (z− z4)2 = v2 (t + τ41)2 (5)

(x − x5)2 + (y− y5)2 + (z− z5)2 = v2 (t + τ51)2 (6)

Expand and subtract (2) and (3) to obtain the following
equation:

(x2 − x1) x + (y2 − y1) y+ (z2 − z1) z+ v2τ21t

= 0.5×
[(
x22 + y

2
2 + z

2
2

)
−

(
x21 + y

2
1 + z

2
1

)
− v2τ 221

]
(7)

Let xi1 = xi- x1, yi1 = yi - y1, zi1 = zi - z1, li = x2i +y
2
i +z

2
i ,

and i = 2, 3, . . . , 5. Then (7) can be rewritten as follows:

x21x + y21y+ z21z+ v2τ21t = 0.5
(
l2 − l1 − v2τ 221

)
(8)

Similarly, (5), (6), and (7) are expanded and subtracted
from (2), respectively, to obtain the following equations:

x31x + y31y+ z31z+ v2τ31t = 0.5
(
l3 − l1 − v2τ 231

)
(9)

x41x + y41y+ z41z+ v2τ41t = 0.5
(
l4 − l1 − v2τ 241

)
(10)

x51x + y51y+ z51z+ v2τ51t = 0.5
(
l5 − l1 − v2τ 251

)
(11)

Equations (8) - (10) can be rewritten into the localization
equations as follows:

x21 y21 z21 v2τ21
x31 y31 z31 v2τ31
x41 y41 z41 v2τ41
x51 y51 z51 v2τ51

 ·

x
y
z
t



= 0.5 ·


l2 − l1 − v2τ 221
l3 − l1 − v2τ 231
l4 − l1 − v2τ 241
l5 − l1 − v2τ 251

 (12)

where xi1 = xi- x1, yi1 = yi - y1, zi1 = zi - z1, li = x2i +y
2
i +z

2
i ,

and i = 2, 3, . . . , 5.
The Gaussian elimination algorithm can solve the linear

localization equations (12), and the coordinates of the PD
source can be obtained.

III. MULTI INITIAL LOCALIZATION VALUES CLUSTERING
METHOD BASED ON AFC-DPC
A. ACQUISITION OF INITIAL LOCALIZATION VALUES
By using the coordinates and time delay data of a set of
AE sensors, an initial localization value can be obtained and
expressed as P1. For PD source at the same position, the
coordinates and time delay data of another set of AE sensors
are used to substitute into (12). Another initial localization
value can also be obtained, expressed as P2. It can be seen

from (12) that the time delay data is the crucial parameter
in localization equations. Theoretically, if there is no error in
time delays, then P1 and P2 are identical. However, due to
interference factors such as the noise of the detection system
and the internal structure of the transformer, the measured
time delays will inevitably produce errors. This will lead to
the points P1 and P2 being noncoincidence and having some
errors with the actual PD position.
To improve the accuracy of PD localization, we use mul-

tiple AE sensors to locate PD and obtain multiple initial
localization values. Then we can determine the optimal PD
coordinates by using a clustering algorithm to reduce the
effect of the time delay on the localization accuracy.
Using too many AE sensors will increase detection costs.

On the other hand, it will increase the task of solving local-
ization equations and clustering. When too few sensors are
utilized, the few initial localization values obtained are not
conducive to clustering. Therefore, we use eight AE sen-
sors to detect PD simultaneously in this article. According
to (12), any five AE sensors form a group and establish the
corresponding localization equations.We can obtain 56 initial
localization values by solving these localization equations.

B. AFC-DPC
The DPC algorithm was first proposed by A. Rodriguez and
A. Laio. in 2014 [29]. The algorithm is based on the idea
that the density of the cluster center is greater than that
of the neighbor, and the distance from the point is higher.
The algorithm determines the cluster centers by calculating
the local densities and distances of the points and then assigns
the remaining points to the same clusters with the closest
points. As can be seen above, local density and distance
are two critical parameters in the DPC algorithm. These
two parameters and their calculation methods are described
below.
Suppose there is a data set s = {xi}Ni=1, i = 1, 2, . . . , N . For

each data point xi in the data set s, there is a corresponding
local density and distance. Let dij represents the Euclidean
distance between data points xi and xj.

dij =
∥∥xi − xj∥∥2 (13)

There are two calculation methods for the local density ρi,
(14) and (15) are the cutoff kernel method and the Gaussian
kernel method, respectively.

ρi =

n∑
j=1

χ
(
dij − dc

)
(14)

where χ (x) =
{
1, x < 0
0, x ≥ 0

, and dc >0 is the cutoff distance.

ρi =

n∑
j=1

e
−

( dij
dc

)2
(15)

The distance δi is defined as follows: when the data point xi
has the largest local density, δi is the distance of the data point
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with the largest distance from xi in the data set s. Besides, for
other data points that do not have the maximum local density,
δi is the distance from the data point with the smallest distance
among all data points with a local density greater than xi. The
formula for calculating δi is as follows:

δi =

min
j

(
dij
)
, ∃j s.t.ρj > ρi

max
j

(
dij
)
, otherwise

(16)

The DPC algorithm is simple and easy to realize. The
key to the algorithm is to choose cluster centers based on
the local density and distance. Compared with other algo-
rithms, the DPC algorithm only needs to select the clus-
ter centers once, and it does not need to iterate the target
function.

However, the DPC algorithm has the following two dis-
advantages [30]. On the one hand, the cutoff distance dc
is manually selected based on empirical values [31]. The
suggestion given in reference [29] is to choose to sort the
distance between all data points in ascending order and take
the first 1% to 2% as the cutoff distance. For different sam-
ples, the clustering results produced by this general cutoff
distance selection method may have some errors from the
actual results [32], [33]. On the other hand, according to the
decision graph, the DPC algorithm manually selects cluster
centers with larger ρi and δi. In order to solve these two prob-
lems, an AFC-DPC algorithm is proposed. The AFC-DPC
algorithm uses the cutoff distance sequence to calculate the
local density to overcome pre-specified cutoff distance. Fur-
thermore, the manual selection of cluster centers based on the
decision graph is overcome by determining the cluster center
with γi value.

1) CUTOFF DISTANCE SEQUENCE AND LOCAL DENSITY
The maximum cutoff distance dmax is defined as

dmax = min
i

{
di
∣∣di = max dij, i, j = 1, 2, . . . , n

}
(17)

dmax can take all points as its neighbors and is the neighbor
radius lower bound containing all points. Therefore, the cut-
off distance sequences can be defined as follows:

Q = {dci |dci = i× h, h = dmax/n, i = 1, 2, . . . , n } (18)

The local density of xi is defined as follows:

ρi =

n∑
l=1

 n∑
j=1

χ
(
dij − dcl

)
/l

 (19)

where dij =
∥∥xi − xj∥∥2 and dcl ∈ Q.

As we can see from (19), the cutoff distance sequence can
ensure that the local density of at least one point will be
affected by all other points. When Q increases, the differ-
ence in the number of points in the neighbor of the same
cutoff distance will also be reflected in the local density.
Similar to the local density of DPC algorithm with Gaussian

FIGURE 1. Flow chart of proposed PD localization.

kernel, AFC-DPC algorithm also considers the effect of all
data points on local density. Every point contributes to the
local density. However, their contributions are different, and
the farther points have a weaker contribution to the local
density [34].

2) SELECTION OF CLUSTER CENTERS
For different data sets, the local density and distance of each
data point vary. In order to simplify the calculation, the local
density ρi and distance δi are normalized. Then define the γi
of each data point xi as follows:

γi = ρi
√
δi (20)

where i = 1, 2, . . . , n.
All data points xi are arranged in descending order accord-

ing to themagnitude of the γi values, and the first u data points
are taken as the cluster centers. We take 10% of the number
of samples as the number of cluster centers. In other words,
we take u = 6 in this article.
The DPC algorithm defines the cluster centers with large

local density ρi and distance δi,, and the anomaly points
have higher δi values and lower ρi values. Therefore, in the
AFC-DPC algorithm, we have weakened the function of
the δi value in determining the cluster centers and have
defined a quantity γi which combines the ρi and the δi.
The larger the γi, the more likely they are the cluster
centers.

C. AFC-DPC ALGORITHM FLOW
The proposedAFC-DPC algorithmflow is shown in Fig.2 and
Table 1.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
Suppose n is the number of data points in the data set,
u is the number of clusters, and h is the number of
iterations. As shown in Table 2, we choose K-Means,
DBSCAN, and DPC to compare the computational com-
plexity with the AFC-DPC algorithm proposed in this
article [31], [34].
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FIGURE 2. Steps for the proposed AFC-DPC algorithm.

TABLE 1. The Proposed AFC-DPC Algorithm Flow.

E. DETERMINATION OF THE OPTIMAL PD SOURCE
COORDINATES
After 56 initial localization values are clustered, they will
be divided into u clusters. By averaging all the data in each

TABLE 2. Computational Complexity Comparisons.

cluster, u points can be obtained, and the coordinates of each
point is recorded as P′k

(
x ′k , y

′
k , z
′
k

)
(k = 1, 2, . . . , u).

When the number of AE sensors is eight, the nonlinear
localization equations (1) can be written as follows:

√
(x − x1)2 + (y− y1)2 + (z− z1)2 = vt√
(x − x2)2 + (y− y2)2 + (z− z2)2 = v(t + τ21)√
(x − x3)2 + (y− y3)2 + (z− z3)2 = v(t + τ31)

...√
(x − x8)2 + (y− y8)2 + (z− z8)2 = v(t + τ81)

(21)

Let ri =
√(

x ′k − xi
)2
+
(
y′k − yi

)2
+
(
z′k − zi

)2 subtract
the 2nd - 8th equation from the first equation in (21), and
the following equations can be obtained:

r2 − r1 = vτ21
r3 − r1 = vτ31
...

r8 − r1 = vτ81

(22)

Let Xk =
(
x ′k , y

′
k , z
′
k

)T, (22) can be rewritten as follows:

F (Xk) =


r2 − r1 − vτ21
r3 − r1 − vτ31

...

r8 − r1 − vτ81

 =

f1 (Xk)

f2 (Xk)
...

f8 (Xk)

 (23)

If there are no errors in the time delay data, then F(Xk ) =
0. However, there are inevitably errors in the time delay
data, so F(Xk ) 6=0. In other words, F(Xk ) can describe the
magnitude of the solution error of (22). This article takes the
1 norm of F(Xk ) as the evaluation index, and the evaluation
index Ek is defined as follows:

Ek = ‖F (Xk)‖1 (24)

Calculate the evaluation index Ek of point P′k and com-
pare their values. When there are errors in the time delays,
the smaller the value of Ek , the smaller the errors of the
solution of (21). In other words, the point where the value of
the evaluation index is the smallest is closest to the actual PD
source. Take this point as the optimal PD source coordinates.

F. STEPS OF PD LOCALIZATION METHOD PROPOSED IN
THIS PAPER
The main steps of the PD localization method in transform-
ers based on linear conversion and AFC-DPC proposed are
shown in Fig. 3.
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FIGURE 3. Steps of the PD localization method proposed in this article.

IV. SIMULATIONS AND EXPERIMENTS OF THE
ALGORITHM
A. NUMERICAL SIMULATIONS
As shown in Fig. 4, the size of the transformer is assumed to
be 150cm × 100cm × 120cm. The coordinates of PD source
are P (60, 45, 80) cm. The coordinates of the eight AE sensors
are S1 (10, 0, 10) cm, S2 (10, 100, 10) cm, S3 (140, 100,
10) cm, S4 (140, 0, 10) cm, S5 (20, 0, 110) cm, S6 (20, 100,
110) cm, S7 (130, 100, 110) cm, and S8 (130, 0, 110) cm. The
speed of acoustic wave propagating in the oil of transformer
is 1500m/s [35].

The theoretical time delays of acoustic waves from the PD
source to each sensor can be calculated using the coordinates
of each sensor and PD source. In actual detection, there are
inevitable errors in the time delays. To verify the correctness

FIGURE 4. Hardware structure of PD localization.

and feasibility of the algorithm, the time delay errors are arti-
ficially added based on the theoretical time difference data,
which is used to simulate the time delays in actual detection.
Suppose that the theoretical time delay is τ , the simulated
time delay is τ ′ after adding the error, and the defined time
delay error is e:

e =

∣∣∣∣τ ′ − ττ
∣∣∣∣ (25)

Add five types of random time delays errors within a
certain range, which are e1 ∈ (0, 2%), e2 ∈ (2%, 4%), e3 ∈
(4%, 6%), e4 ∈ (6%, 8%) and e5 ∈ (8%, 10%). The simulated
time delay data are shown in Table 3.

TABLE 3. Time Delay Data of Eight AE Sensors.

Assuming that the actual coordinates of the PD source are
(xact, yact, zact) and the coordinates obtained by the localiza-
tion algorithm are (x, y, z), then the PD localization error is
defined as follows

1R =
√
(x − xact)2 + (y− yact)2 + (z− zact)2 (26)

We define the error on each axis as follows:

1x = |x − xact| (27)

1y = |y− yact| (28)

1z = |z− zact| (29)

Then, the maximum error of coordinates is as follows:

Dmax = max {1x,1y,1z} (30)
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TABLE 4. Localization Results and Errors Before and After Clustering.

The scatter plots and clustering results of 56 initial local-
ization values under five different time delay errors are shown
in Fig. 5. With the increase of time delay errors, the initial
localization values are gradually discrete. The 56 initial local-
ization values are clustered by using theAFC-DPC algorithm.
A few cluster points are far beyond the scope of the trans-
former set up by the simulation, so they are not shown. Then,
the points in the 6 clusters are averaged, and the optimal PD
source coordinates are determined according to the evaluation
index Ek .

To compare the localization results and errors before and
after clustering, we take an average of 56 initial localization
values as the localization results before clustering. At the
same time, we compared the localization errors of K-Means,
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), DPC, and the proposed AFC-DPC algorithm.
The number of clusters in the K-Means algorithm is 6, and
the cluster centers are randomly selected. In the DBSCAN
algorithm, the radius of the neighborhood is 3, and the core
object contains at least 5 samples. The DPC algorithm uses
the Gaussian kernel to calculate the local density, chooses to
sort the distances between all data points in ascending order
and takes the first 2% as the cutoff distance.

The localization results and errors are shown in Fig. 6 and
Table 4. We can see that when the time delay error is tiny (for
example, the time delay error is e1), the localization errors
before and after clustering are not much different. When
the time delay error is e2, the localization error after using
the clustering algorithm is smaller except for the K-Means
algorithm. When the time difference error reaches e3 (that is,
the time difference error is greater than 4%), with the time

delay error increasing, the localization error after clustering is
smaller than before clustering. However, only the AFC-DPC
algorithm has the smallest localization errors and highest
stability.

The results show that PD localization is very sensitive to
the time delay parameter, and the clustering algorithm can
effectively reduce the effect of the time delay error. How-
ever, compared with other clustering algorithms, only the
AFC-DPC algorithm proposed in this article can keep the
localization error minimum.

The following takes the data set with time delay error e5
as an example to analyze the process of the method in this
article. First, 56 initial localization values are calculated by
Gaussian elimination. The specific data are shown in Table 5.
The errors of 56 initial localization values are shown in Fig. 7.
There are some errors in time delays, which result in a large
dispersion of initial localization values. Besides, the errors of
some initial localization values are large, and the PD position
cannot be accurately found. The average location result for
these 56 initial location values are (65.7,46.4,71.1) cm, and
the localization error is 10.7 cm. Then, we use the AFC-DPC
algorithm to cluster the 56 initial localization values. Accord-
ing to (19), the local density ρi of each data point can be
calculated. Then calculate the distance δi of each data point
according to (16). Finally, the γi value of each data point is
obtained according to (20). Table 5 shows the local density
ρi, distance δi and γi value of each data point. We sort the γ i
values in descending order and use the first 6 data points as
cluster centers. All data in each cluster are averaged, and the
evaluation parameter Ek are calculated. As can be seen from
Table 6, the evaluation index value corresponding to cluster
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FIGURE 5. The distribution of 56 initial localization clustering results with different time delay errors where (a) time delay error is
e1, (b) time delay error is e2, (c) time delay error is e3, (d) time delay error is e4, and (e) time delay error is e5.

3 is minimal, which means that the final localization result is
(60.0,44.1,81.5) cm and the localization error is 1.7 cm.

B. EXPERIMENTS IN LABORATORY
To verify the effectiveness of the proposed method, we con-
ducted PD localization experiments in the laboratory.
As shown in the Fig. 8, the experimental system is composed

of a transformer box model, PD generator, AE sensors,
and oscilloscope. The size of the transformer tank model is
120cm × 160cm × 105cm. The transformer tank model is
made of stainless steel with good electromagnetic shielding
performance. The coordinates of the eight AE sensors are S1
(20, 0, 20) cm, S2 (20, 160, 20) cm, S3 (100, 160, 20) cm,
S4 (100, 0, 20) cm, S5 (30, 0, 80) cm, S6 (30, 160, 180) cm,
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TABLE 5. 56 Initial Localization Values When the Time Delay Error is e5.

FIGURE 6. Localization errors before and after clustering.

TABLE 6. Clustering Results When the Time Delay Error is e5.

S7 (90, 160, 80) cm, and S8 (90, 0, 80) cm, respectively. The
diameter of the AE sensor is 25mm, the center frequency is
40kHz, and the receiving sensitivity is greater than -68dB.
The PD sources are set at PD1 (80, 60, 40) cm and PD2

FIGURE 7. The localization errors of 56 initial localization values when
time delay error is e5.

(50, 120, 50) cm, respectively. The PD generating device is
composed of a boosting transformer and a protrusion defect
model. The oscilloscope sampling rate is set at 250ks/s. The
inside of the transformer tank model is not filled with oil,
so the speed of acoustic wave in the air is 340 m/s. The
time-domain waveforms of PD signals are shown in Figure 9,
and the time delay data are shown in Table 7.

We use the localization method proposed in this article
to locate two PD sources. The clustering distribution of the
initial localization values obtained is shown in Fig. 10. Some
points outside the transformer range are not plotted in Fig. 10.
The clustering results are shown in Table 8 and Table 9.
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FIGURE 8. PD localization experiments in a laboratory where (a) is a
boosting transformer, (b) is a protrusion defect model, and (c) is the PD
localization system.

TABLE 7. Time Delay Data of Eight Sensors for PD 1 and PD 2.

According to the evaluation parameter Ek , the optimal
PD source coordinates are finally determined. As shown
in Table 10, the localization errors of PD1 and PD2 are 2.4cm
and 8.2cm, respectively. The average localization error of the
two PD sources is 5.3cm.

FIGURE 9. The time-domain waveforms of the PD signals where (a) is
PD1 signal and (b) is PD2 signal.

To compare the localization results and errors before and
after clustering, we take an average of 56 initial local-
ization values as the localization results before clustering.
Table 10 shows that the localization errors after clustering
using the AFC-DPC algorithm are smaller than before.

In [12], methods such as the Newton-Raphson algorithm,
Chan algorithm, genetic algorithm (GA), and imperialist
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FIGURE 10. The distribution of 56 initial localization clustering results
where (a) is the results of PD1 and (b) is the results of PD2.

TABLE 8. Clustering Results for PD1.

TABLE 9. Clustering Results for PD2.

competitive algorithm (ICA) are used for PD localization in
transformer. We take average errors as the errors of these
methods. The comparison results are shown in Table 11.

TABLE 10. Localization Results and Errors Before and After Clustering for
PD1 and PD2.

TABLE 11. Error Analysis and Comparison of Localization Results of
Various Methods.

As can be seen from Table 11, the errors of the method
proposed in this article are smaller than other methods. The
results show that the proposed method can accurately locate
PD in transformers.

V. CONCLUSION AND FUTURE WORKS
This article proposes a novel PD localization method in
transformers based on linear conversion and AFC-DPC. The
nonlinear localization equations are transformed into linear
localization equations. Multiple initial localization values are
obtained by simultaneous detection of PD by multiple AE
sensors. The AFC-DPC algorithm is used to perform cluster
optimization on multiple initial localization values to deter-
mine the optimal coordinates of the PD source.

1) To reduce the difficulty of solving the localization
equations, we transform the nonlinear localization
equations into linear localization equations by elimi-
nating the second-order terms.

2) To decrease the influence of the time delay errors on
the localization accuracy, the initial localization values
are clustered by using the AFC-DPC algorithm.

3) The AFC-DPC algorithm uses the cutoff distance
sequence to calculate the local density and uses the γi
to determine the clustering centers, which overcomes
the limitations of the DPC algorithm and improves the
clustering performance of the algorithm.

The effectiveness and accuracy of the method are verified
by simulation and experiments. Simulation results show that
when the time delay error is 8%-10%, the localization error
is 1.7cm. The experiment results show that the average local-
ization error is 5.3cm. Compared with the errors of other
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localization methods, the method proposed in this article has
the advantages of the low localization error.

In future work, we will undertake the following two
studies:

1) We will study methods for extracting precise time
delays. The influence of the inner structure of the trans-
former on the refraction and diffraction of the PD signal
can be reduced.

2) To improve the precision of PD localization in trans-
formers, we will further study the new localization
algorithm.
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