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ABSTRACT Many process synthesis and design problems in engineering are actually mixed integer
nonlinear programming problems (MINLP), because they contain both continuous and integer variables.
These problems are generally recognized to be complex and intractable by virtue of the combinatorial
characteristic. In order to effectively solve process synthesis and design problems, a global particle swarm
optimization (GPSO) algorithm is proposed in this paper. GPSO algorithm makes two improvements on
original particle swarm optimization (PSO) algorithm: first, it introduces a global inertia weight, which
is beneficial for improving its global searching capacity during the whole optimization process; second,
it adopts a mutation operation with a small probability, which enables the GPSO algorithm to get rid of the
local optimum easily. Simulation results show that the GPSO algorithm has high efficiency on finding the
optimal solutions, and it has stronger convergence than the other four particle swarm optimization algorithms.

INDEX TERMS Process synthesis, global particle swarm optimization algorithm, global inertia weight,
mutation, convergence.

I. INTRODUCTION
In order to establish an optimal construction, the selec-
tion, arrangement, and operation should be implemented for
processing units, and this procedure is defined as process
synthesis [1]. More specifically, it does not dominate the
optimal interconnection of processing units, but also deter-
mine the optimal type and design of units in a process
system. When the system function is confirmed, the system
structure and the performance of the processing units are
still not ensured. The work is essentially combinatorial and
open-ended and has drawn much attention from researchers
recently. The process synthesis and design problem belongs
to a kind of constrained optimization problem. It has both
integer and real variables, and is associated with some equal-
ity and inequality constraints. To solve this kind of com-
plex problem, some efficient methods are needed to satisfy
all its constraints and minimize (or maximize) its objective
function. On the other hand, particle swarm optimization
algorithm (PSO) [2] is an easy and practical intelligent opti-
mization algorithm. Moreover, the PSO and its many vari-
ants have been applied into many optimization problems,
such as wastewater treatment network planning [3], image
classification [4], multi-workshop facility layout problem [5],
lipid extraction from microalgae [6], efficient object tracking
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in a video [7] and multi-compartment vehicle routing
problem [8].

The PSO has two important steps including velocity
updating and position updating, which can be expressed as
follows:

vk+1i,j = vki,j+c1 × r1× (pbi,j−x
k
i,j)+ c2 × r2× (gbj − x

k
i,j),

(1)

xk+1i,j = xki,j + v
k+1
i,j . (2)

Here, i(i = 1, . . . ,M ) is the index of a particle,
j(j = 1, . . . ,N ) is the index of a variable, k is the current
iteration number, pb is the best position of particle i, gb is
the best solution, c1 and c2 are learning factors, r1 and r2 are
random numbers uniformly generated in [0, 1]. In addition,
vki,j and x

k
i,j are the velocity component and position compo-

nent of the ith particle at generation k , vk+1i,j and xk+1i,j are the
velocity component and position component of the ith particle
at generation k + 1.

II. A GLOBAL PARTICLE SWARM OPTIMIZATION
ALGORITHM
In order to improve the performance of the PSO, a global
particle swarm optimization algorithm (GPSO) is proposed
in this paper, and the GPSO includes five steps:
Step 1 (Set Parameters): IPSO parameters include popu-

lation size PS, the maximal iteration number NI , learning
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factors c1 and c2, the minimal mutation rate pmin and the
maximal mutation rate pmax , the period of a cosine function
T which is used to generate a inertia weight.
Step 2 (Randomly Generate PS Particles): Randomly gen-

erate the jth (j = 1, . . . ,N ) variable of the ith (i = 1, . . . ,PS)
particle from a uniform distribution in the ranges [xdL , xdU ]
(j = 1, 2, . . . ,N ). Here, N is the total number of variable,
xdL(j = 1, . . . ,N ) and xdU are the lower bound and the upper
bound for the jth variable.
Step 3 (Velocity Updating and Position Updating): The

velocity updating of the GPSO is different from that of the
original PSO, and it adopts a new strategy as follows:

vt+1id = ω
tvtid + c1r1(pid − x

t
id )+ c2r2(pgd − x

t
id ). (3)

In which, i is the particle index; j is the variable index; t is
the iteration numbers so far; pb represents the best position of
particle i so far; gb represents the best solution in the swarm so
far; c1 and c2 are acceleration constants; r1 and r2 are random
numbers between 0 and 1. In addition, ωt is inertia weight,
and it is given by

ωt = (cos(θ t)+ 1)/2. (4)

where θ is angular frequency, and θ = 2π/T . Therefore, ωt

is a periodic function with respect to the iteration numbers
t . Due to the utilization of a cosine function, ωt always
owns large values during each period, which is beneficial to
improving the global searching capacity of the GPSO.
Step 4 (Mutation): In order to improve the capacity of

escaping from the local optimums, a mutation operation is
introduced in this paper, and it is given by

x t+1i,d = pti1,d + F × rand()× (pti2,d − p
t
i3,d ). (5)

Here, F is scale factor, x t+1id is the d th (d = 1, . . . ,N )
dimension of the ith particle at the (k + 1)th iteration.
pti1,d (p

t
i2,d , p

t
i3,d ) is the d th dimension of the i1(i2, i3)th per-

sonal best particle, and i1 6= i2 6= i3. This mutation operation
is determined by a mutation rate which is given by

pt = pmin + (pmax − pmin)× t/NI . (6)

Here, pt is the mutation at the tth iteration, pmin and pmax
are the minimal mutation rate and the maximal mutation
rate, respectively. At the beginning of optimization process,
the value of pt is small, it does no harm to the convergence of
the GPSO, and it can guarantee the diversity of the swarm.
In the late optimization, the value of pt is large, which
is beneficial to avoiding the premature convergence of the
GPSO.
Step 5 (Perturbation): The history best particles can pro-

vide useful and potential reference for all the individuals of
the population, thus they are incorporated into the perturba-
tion operator. In short, the new formulation of perturbation is
given by:

x t+1i,d ← x t+1i,d + rand()× (pbtia,d − pbtib,d ). (7)

ia and ib are two randomly chosen indexes, and ia 6= ib 6= i.
The probability of perturbation is set to 1/(5N ), which only

adjusts each dimension with a very low probability. By using
Eq.(7), GPSO is able to conduct local search and gradually
improve the individuals of the population.
Step 6 (Stopping Condition): If the iteration number t

reaches the maximal iteration number NI , stop running the
GPSO procedure, otherwise, repeat steps 3 and 4.

Among the above steps, Step 3 uses a dynamic inertia
weight to balance the global search and local search, Step
4 uses mutation operator to maintain the diversity of popu-
lation, and Step 5 uses perturbation operator to improve the
exploration capacity with respect to solution space.

III. PROBLEM FORMULATION
The chemical process synthesis problem aims to choose the
optimal flowsheet structure and the parameters which charac-
terize the operation of a desired process. In order to define the
search space of candidate flowsheet alternatives, a superstruc-
ture is to be postulated based on preliminary screening. This
superstructure is a MINLP problem [13] which is given by

F = min
x,y

cTy+ f (x),

s.t. h(x) = 0,

g(x) ≤ 0,

A(x) = a,

vBy+ Cx ≤ d,

x ∈ X = {x|x ∈ Rn, xL ≤ x ≤ xU },

y ∈ Y = {y|y ∈ {0, 1}m,Ey ≤ e}. (8)

Here, x denotes the vector of continuous variables in the
set X , and y is the vector of 0 − 1 variables which must
meet linear inter constraints Ey ≤ e. f (x), h(x) = 0, and
g(x ≤ 0) represent nonlinear functions involved in the
objective function, equations, and inequalities, respectively.
Finally, Ax = a is the subset of linear equations, and
By+Cx ≤ d is linear equalities of inequalities which contain
the continuous and binary variables.

Regarding the synthesis problem, the continuous variables
x are composed of temperatures, flows, pressures, and sizes.
Moreover, the binary variables y represent the potential exis-
tence of process units which are embedded in the superstruc-
ture. The formulas h(x) = 0 and Ax = a are associated with
material and energy balances and design equations. Process
specifications are represented by g(x) ≤ 0 and by lower
and upper bounds on the variables in x. Logical constraints
that must hold for a flow sheet configuration to be chosen
from in the superstructure are denoted by By + Cx ≤ d and
Ey ≤ e. The cost function contains fixed cost charges in the
term cTy for the investment, while operating costs, revenues,
and size-dependent costs for the investment are involved in
the function f (x).

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In order to verify the performance of the GPSO, eight uncon-
strained problems are selected, and they are given by

f1(x) =
n∑
i=1

x2i ,−100 ≤ xi ≤ 100 (9)
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f2 =
n∑
i=1

(100(xi+1 − x2i )
2
+ (xi − 1)2),

−100 ≤ xi ≤ 100 (10)

f3 =
n∑
i=1

(x2i − 10 cos(2πxi)+ 10),

−10 ≤ xi ≤ 10 (11)

f4 =
1

4000

n∑
i=1

x2i −
n∏
i=1

cos(
xi
√
i
)+ 1,

−600 ≤ xi ≤ 600 (12)

f5 = 20+ e− 20 exp(−0.2

√∑N
i=1 x

2
i

N
)

− exp(

∑N
i=1 cos(2πxi)

N
),−32 ≤ xi ≤ 32 (13)

f6 =
N∑
i=1

|xi| +
N∏
i=1

|xi|,−100 ≤ xi ≤ 100 (14)

f7 = 418.9829N −
N∑
i=1

(xi sin(
√
|xi|)),

−500 ≤ xi ≤ 500 (15)

f8 =
N∑
i=1

(
i∑

j=1

xj)2,−100 ≤ xi ≤ 100 (16)

Five PSO algorithms are used to solve the above eight
unconstrained optimization problems with dimension size
N = 100, and they are PSOT7 [9], PSOT7 [9], BBPSO(Bare
bones particle swarm optimization) [10], BBPSO+GJ(Bare
bones particle swarm optimization with Gaussian jumps) [11]
and GPSO, respectively. Moreover, their parameters are set as
follows: For PSOT7, learning factors c1 = c2 = 2, population
size PS = 40, the maximal iteration number NI = 100,
the initial value of a chaotic sequence is y(0) = 0.48; For
PSOT8, c1 = c2 = 2, PS = 40, NI = 100, the initial value of
a chaotic sequence is y(0) = 0.48; For BBPSO, c1 = c2 = 2,
PS = 40, NI = 100; For BBPSO+GJ, c1 = c2 = 2,
PS = 40, NI = 100, scale parameter η = 1.1; For GPSO,
c1 = c2 = 2, PS = 40, NI = 100, the period of a cosine
function T = NI/10, the minimal mutation rate pmin = 0.01,
the maximal mutation rate pmax = 0.1, scale factor F = 2.
50 runs are carried out in each case, and the optimization
results are shown in Table 1:

Here, the terms fmin, fmax , faver and fsd are the minimal
value, maximal value, average value and standard deviation
of 50 objective function values, respectively, for each prob-
lem. According to Table 1, the GPSO is better than the other
four methods in most cases. The values of fmin, fmax , and faver
obtained by the GPSO are better than those obtained by the
other four PSO algorithms for all unconstrained optimization
problems. The values of fmin, fmax , faver and fsd obtained by
the GPSO are better than those obtained by the other four
PSO algorithms for the first six unconstrained optimization
problems. Moreover, GPSO can obtain the optimal solutions
for f1, f3, f4, f5, f6 and f8, but any of the other algorithm

fails to find an optimal solution for any problem. In addition,
a statistical analysis based on t-test is used to distinguish
whether the results of GPSO are statistically significantly
better than those of the other. The term > indicates that
GPSO is significantly better than any other PSO algorithm in
achieving optimization results. In short, the GPSO has shown
stronger convergence and stability than the other four PSO
algorithms. In order to verify and analyze the performance
of the GPSO, Figs 1-8 plot the average convergence curves
of five PSO algorithms for four unconstrained optimization
problems.

As can be seen from Figs 1-8, the convergence rates of
PSOT7 and PSOT8 are very slow, and the convergence rates
of BBPSO, BBPSO+GJ are slightly faster than PSOT7 and
PSOT8. Based on a close observation from the above eight
figures, the average convergence curves of GPSO decreases
rapidly in the early optimization process, and its convergence
rate is faster than those of the other four PSO algorithms.
Furthermore, GPSOfinally converges to a relatively low level
for any of the eight unconstrained optimization problems
compared with the the other four PSO algorithms.

To testify the performance of GPSO on solving process
synthesis and design problems, four examples are considered,
and they are explained as follows:
Example 1: Example 1 has one nonlinear constraint,

and researchers have used different methods to solve this
problem. Costa and Oliviera [14] used an evolution algo-
rithm (EA) to solve Example 1. EA simulates the evolution
process of natural system, and it only needs the information of
objective functions and constraints. Cardoso et al. [15] used
simulated annealing algorithm (SA) to solve Example. SA is
a powerful tool, it summarizes the similarities of optimization
problems and physical process of annealing. The mathemati-
cal model of Example 1 is given by

Min f (x, y) = 2x + y

s.t. 1.25− x2 − y ≤ 0,

x + y ≤ 1.6,

0 ≤ x ≤ 1.6,

y ∈ {0, 1}. (17)

The best solution is located at (x, y) = (0.5, 1), and the
corresponding objective function value is equal to f = 2.
Example 2: Example 2 contains a nonlinear constraint.

This problem was firstly proposed by Kocis and Grossmann
[16], and it was solved by Costa and Oliviera [14] and Car-
doso et al. [15]. The mathematical model of Example 2 is
given by

Min f (x1, x2, y) = −y+ 2x1 + x2
s.t. x1 − 2 exp(−x2) = 0,

−x1 + x2 + y ≤ 0,

0.5 ≤ x1 ≤ 1.4,

y ∈ {0, 1}. (18)
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TABLE 1. Comparison of PSOT7, PSOT8, BBPSO, BBPSO+GJ and GPSO on four unconstrained problems.
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FIGURE 1. The average convergence curves of five PSO algorithms for f1.

FIGURE 2. The average convergence curves of five PSO algorithms for f2.

FIGURE 3. The average convergence curves of five PSO algorithms for f3.

The best solution is located at (x1, x2, y) = (1.375, 0.375, 1),
and the corresponding objective function value is equal to
f = 2.124.
Example 2∗: By eliminating a nonlinear equality

constraint, Example 2 can be simplified as follows:

Min f (x1, y) = −y+ 2x1 − ln(x1/2)

s.t. − x1 − ln(x1/2)+ y ≤ 0,

0.5 ≤ x1 ≤ 1.4,

y ∈ {0, 1}. (19)

FIGURE 4. The average convergence curves of five PSO algorithms for f4.

FIGURE 5. The average convergence curves of five PSO algorithms for f5.

FIGURE 6. The average convergence curves of five PSO algorithms for f6.

The best solution of Example 2∗ is exactly the same as that
of Example 2.
Example 3: Example 3 was firstly proposed by Kocis and

Grossmann [17]. This problem aims to select one between
two candidate reactors so as to minimize the operating
cost. In addition, this problem was solved by Diwekar and
Rubin [18], Costa and Oliviera [14] and Cardoso et al. [15].
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FIGURE 7. The average convergence curves of five PSO algorithms for f7.

The mathematical model of Example 3 is given by

Min f (x, y1, y2, v1, v2) = 7.5y1 + 5.5y2 + 7v1 + 6v2 + 5x

s.t. y1 + y2 = 1,

z1 = 0.9[1− exp(−0.5v1)]x1,

z2 = 0.8[1− exp(−0.4v2)]x2,

z1 + z2 = 10,

x1 + x2 = x,

z1y1 + z2y2 = 10,

v1 ≤ 10y1,

v2 ≤ 10y2,

x1 ≤ 20y1,

x2 ≤ 20y2,

x1, x2, z1, z2, v1, v2 ≥ 0,

y1, y2 ∈ {0, 1}. (20)

The best solution is located at (x, y1, y2, v1, v2) =

(13.36227, 1, 0, 3.514237, 0), and the corresponding
objective function value is equal to f = 99.245209.
Example 3∗:By eliminating nonlinear equality constraints,

Example 3 can be simplified as follows:

Min f (y1, v1, v2) = 7.5y1 + 5.5(1− y1)+ 7v1 + 6v2

+ 50
1− y1

0.8[1− exp(−0.4v2)]
+ 50

y1
0.9[1− exp(−0.5v1)]

s.t. 0.9[1− exp(−0.5v1)]− 2y1 ≤ 0,

0.8[1− exp(−0.4v2)]− 2(1− y1) ≤ 0,

v1 ≤ 10y1,

v2 ≤ 10(1− y1),

v1, v2 ≥ 0,

y1 ∈ {0, 1}. (21)

The best solution of Example 3∗ is exactly the same as that of
Example 3. The schematic diagram of Example 3∗ is shown
in Fig. 9
Example 4: Example 4 is a maximization problem, and it

was solved by Costa andOliviera [14] and Cardoso et al. [15].

FIGURE 8. The average convergence curves of five PSO algorithms for f8.

FIGURE 9. Superstructure for two-reactor problem.

TABLE 2. Coefficients for Example 4.

The mathematical model is given by
Max f (x1, x2, x3, y1, y2) = −5.357854x21

− 0.835689y1x3 − 37.29329y1 + 40792.141

s.t. a1 + a2y2x3 + a3y1x2 − a4x1x3 ≤ 92,

a5 + a6y2x3 + a7y1y2 + a8x21 − 90 ≤ 20,

a9 + a10x1x3 + a11y1x1 + a12x1x2 − 20 ≤ 5,

27 ≤ x1, x2, x3 ≤ 45,

y1 ∈ {78, . . . , 102}, integer,

y2 ∈ {33, . . . , 45}, integer. (22)

The coefficients ai(i = 1, . . . , 12) can be obtained
from Table 2. The global best solution of Example 4 is
(x1, x3, y1) = (27, 27, 78), and the other variables x2 and y2
can combine optionally. The optimal objective function value
is equal to f = 32217.4.
Five PSO algorithms are used to solve the above process

synthesis and design problems, and their parameters settings
are the same as those of f1 − f8. Only the population size PS
is reset to 80. 50 runs are conducted in each case, and the
optimization results are shown in Table 3:
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TABLE 3. The optimization results obtained by five PSO algorithms for four problems.

FIGURE 10. The average convergence curves of five PSO algorithms for
Case 1.

According to Table 3, all the five PSO algorithms can find
the best solutions for all four process synthesis and design
problems. For Case 4, they find the optimumwith the success
rate 100%. For Case 1, GPSO, BBPSO and BBPSO+GJ can
find the optimum with the success rate 100%, but PSOT7 and
PSOT8 fail. For Case 2∗, only GPSO can find the optimum
with the success rate 100%. For Case 3∗, GPSO, PSOT7 and
PSOT8 can find the optimum with the success rate 100%, and
the faver of GPSO is slightly smaller than those of PSOT7

and PSOT8. In all, GPSO has exhibited stronger convergence
and stability than the other four PSO algorithms.

FIGURE 11. The average convergence curves of five PSO algorithms for
Case 2.

Figs.10-13 depict the average convergence curves of
five PSO algorithms for Cases 1, 2, 3 and 4. For the
first three cases, GPSO can converge to the lowest levels
at the end of generation. For Case 4, all five PSO
algorithms can achieve the highest level at the end of
generation.

By introducing a dynamic inertia weight, a new muta-
tion operator and a novel perturbation operator, GPSO has
stronger convergence and stability than the other four PSO
algorithms, and is able to obtain the optimal solutions for
most of the above problems.
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FIGURE 12. The average convergence curves of five PSO algorithms for
Case 3.

FIGURE 13. The average convergence curves of five PSO algorithms for
Case 4.

V. CONCLUSION
In this paper, a global particle swarm optimization algo-
rithm (GPSO) is designed to solve process synthesis and
design problems. The GPSO introduces an inertia weight
based on cosine function, and adds a mutation operation
after position updating. The former enables the GPSO has
strong global searching capacity over the whole optimiza-
tion process; The latter can not only keep the diversity of
the swarm, but also prevent the GPSO from trapping into
the local optimums. Simulation results demonstrate that the
GPSO has strong convergence and stability on solving most
optimization problems, and it has higher efficiency of find-
ing the global optimums. Compared to the other four PSO
algorithms, the GPSO is more competent for process syn-
thesis and design problems. Our further work will focus on
the applications of the other metaheuristic algorithms [19]
to process synthesis and design problems, such as chaotic
krill herd algorithm [20], differential evolution algorithm
[21]–[24] and monarch butterfly optimization [25].
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