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ABSTRACT A parallel neural joint model algorithm is proposed for the analysis and detection of malicious
UniformResource Locator (URL). By detecting and analyzing malicious URL’s characteristics, the semantic
and visual information will be extracted. First, a visualization algorithm is used to realize the visualization
of the URL mapping to a gray image with texture characteristics. Second, the lexical feature and character
feature of URL are extracted and further processed through word vector technology. These extracted features
are transformed into lexical embedding vectors and character embedding vectors. To combine the texture
features with text features, a parallel joint neural network combining capsule network (CapsNet) and
independent recurrent neural network (IndRNN) is utilized to capture multi-modal vectors of visual and
semantic information synchronously. The last layer utilizes the attention mechanism to further filter the
deep features extracted from the overall network while concentrating on effective features improving the
classification accuracy and analyzing and detect malicious URLs. Based on the experimental results, it is
demonstrated that this algorithm has higher accuracy compared to the traditional algorithms.

INDEX TERMS Malicious URL, cybercrime, capsule network, independent recurrent neural network,
attention.

I. INTRODUCTION
Since the advent of the Internet, cyberattacks have emerged
endlessly. According to a security report released by
Microsoft in 2019 [1], phishing is still the primary method
for attackers. Furthermore, the report indicated a continual
increase in phishing attacks. In 2018, the number of phish-
ing attacks increased by 250% per month. In the foresee-
able future, phishing attacks will still be a problem. Since
people always make correct judgments and decisions when
facing the temptation of cybercriminals in every possible way,
to identify these malicious websites effectively and quickly
has been an essential issue in the security industry.

The attacker usually builds a website similar to the tar-
get or embeds the exploit code of browser vulnerabilities on
the webpage. It tricks the victim into clicking on these links to
obtain the victim’s information or control the victim’s com-
puter. There have been numerous detectionmethods proposed
for phishing websites so far. These methods are based on
certain features of the website to distinguish the website. The
features can be divided into the following categories:
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URL-based
• URL:protocol://hostname[:port]/path/[;parameters]
[?query]#fragment, the above is the structure of a stan-
dard URL. Mainly, the host, path, and parameters are
used, and there is a certain logical relationship between
the words appearing in each part and the resource repre-
sented by the URL. Kan [2] research indicated that the
URL carries rich information about the properties of the
website using URL only for website classification.

• Domain: The domain name is composed of multiple
words and period separators and can be considered as
the only mnemonic for one IP address. A normal domain
name can often represent the belonged organization.
Yadav et al. [3] calculated the distance between the URL
labels and the phishing word.

Host-based:
• Whois: Whois is a protocol used to search for informa-
tion such as domain names, IP addresses, and domain
name owner information on the Internet. For malicious
websites, the domain name is often not long registered.
Chu et al. [4] uses the domain name age as a feature for
identifying malicious websites.
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• DNS: DNS is a distributed database storing mapping
records of domain names and IP addresses. For each
record, it contains the domain name, type, value, clas-
sification, and survival period. In general, the sur-
vival period of malicious website domain names is
shorter than that of normal organization domain names.
Dahu et al. [5] extracts features from DNS requests and
responses to find malicious websites. Pereira et al. [6]
Pereira proposed a WordGraph method to extract the
word dictionary used by the DGA algorithm from DNS
traffic.

Content-based:

• HTML: HTML is a markup language consisting of a
series of tags and all the resources of a page. Li et al. [7]
uses html features such as hidden information, form, and
the number of links to achieve better detection results.

• Code: javascript originally exists for better inter-
face interaction effects, however, it can be used by
attackers to do more things. Hou et al. [8] counted
154 JavaScript functions for phishing web-page detec-
tion. Fang et al. [9] uses word vectors to map the byte-
code of the js code into a multi-dimensional digital
vector.

• Visual: It measures the similarity of two websites
by detecting the visual elements of web pages.
Wenyin et al. [10] first proposed this technique to cal-
culate the similarity of two pages by measuring web
page layout, frame, block-level, and overall style.
Dalgic et al. [11] proposed to utilize SPM to count the
features of a website screenshot.

Usually, the victims are attacked since they clicked on
the URL of the phishing website posted by the attacker.
Therefore, it is necessary to prompt the user that the URL
points to a phishing website before the user clicks. The
URL-based method is significantly faster than other methods
because it does not require page parsing. Most companies use
Blacklist to identify malicious URLs. This technique is eas-
ily be breached by an attacker. Through continuous testing,
the attacker can find out which keywords have been black-
listed. Several URL classification studies based on machine
learning algorithms need to pass a complex feature selec-
tion process. Most of the ultimately selected features are
text information and host information. The text features are
mainly based on the researcher ‘s subjective, which is not
particularly convincing as the feature representation of the
URL. Compared to the automatic feature extraction process
of deep learning, the feature extraction process of machine
learning is a bit clumsy. In Bahnsen et al. [12] research,
first, the neural network model was utilized to classify URLs
and excellent performance was represented. In this study,
we focused on using deep learning technology and merely
the URL to classify malicious websites.

To better learn the URL’s hidden information, character
embedding technology is introduced to extract the potential
semantic information, and the URL is converted into a gray

image. The order of characters in the URL is informative.
Normally, numerous long URLs of the same class have the
same or similar character sequence. A new technique of
malware visualization based on image processing technol-
ogy was proposed by Nataraj et al. [13] indicating that the
image texture features are available. Through observation,
it can be found that the URLs used by the same organi-
zation or generated by the same phishing attack tool have
a similar structure. Thus, a parallel joint neural network
model is proposed able to capture URLs’ visual and semantic
information. We use CapsNet [14] to encode image texture
features and indRNN [15] for encoding the URL text features.
Then, we merge the two extracted features and use the atten-
tion mechanism to further filter them while focusing on the
effective features enhancing the classification accuracy.

In the present work, we make the following contributions:

• We constructed a parallel joint neural network model
simultaneously capturing the semantic and visual infor-
mation of URLs.

• Our proposed model can automatically learn the URLs’
feature representation from data and avoid the manual
work of feature engineering.

• A series of controlled experiments verified our model’s
usability and good performance.

The remaining of the paper is organized as follows.
Section II introduces the previous research on malicious
URLs. In Section III, the methodology is presented including
feature extraction and classification. Section IV explains the
results and analysis of experiments. Section V summarizes
the paper.

II. RELATED WORK
At present, the popular detection methods of malicious URLs
mainly include Blacklist, machine learning, rule matching,
and deep learning-based detection methods.

Kührer et al. [16] analyzed the IP addresses and domain
names of multiple public blacklist data sets. They found that
parked domains in the Blacklist can constitute a considerable
number of blacklist entries, hence, they developed a graph-
based approach to recognize the sinkholes within the black-
lists. To increase the detection range of blacklist technology,
the existing blacklists were expanded by some researchers.
In the PhishNet system, built by Prakash et al. [17], five
heuristics algorithms were used to list simple combinations
of known phishing sites for finding new phishing URLs. This
system first dissected known malicious URLs into multiple
components and then detected new unknownmalicious URLs
data based on the similarity. An automatic blacklist generator
(AutoBLG) was proposed by Sun et al. [18] to automatically
generate new malicious URLs based on the original blacklist
to expand the original blacklist set.

The performances of blacklist detection depend on the
size of the original list, moreover, it takes a long time to
expand the data set, therefore, some researchers have pro-
posed a rule matching-based method. Rule matching is a text
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structure analysis of known malicious URLs able to iden-
tify a new unknown malicious URL based on the matching
rule. SpyProxy [19] is a proxy-based anti-malicious website
tool. A set of matching rules was designed by Moshchuk in
the SpyProxy to match the intercepted content transmitted
from the web server to the browser. A system was pro-
posed [20] known as Cujo for automatic detection and pre-
vention of download attacks. It is embedded in a web proxy to
inspect web pages and identify malicious code in pages. Cujo
automatically establishes rules based on detection results
and matches malicious code based on the rules to prevent
malicious transmission. A content-based phishing website
detection tool Cantina was designed and implemented by
Zhang et al. [21], for the IE browser. The tool analyzes the
search results, TF-IDF values, and other statistical charac-
teristics and develops relevant rules to determine malicious
webpages.

The above methods cannot detect unknown malicious
URLs well since the setting of blacklist and rules is relied
on known malicious URLs and their update is difficult and
not timely enough. To solve this problem, methods have
been proposed based on machine learning and deep learning.
Vanhoenshoven et al. [22] utilized multiple machine learning
algorithms such as K-nearest neighbor, Decision Tree, Naive
Bayes, Random Forests, and Support Vector Machine to
detect malicious URLs in datasets with three different statis-
tical characteristics. Random Forest and Multi-Layer Percep-
tron perform best in this regard. Gawale et al. [23] designed
and implemented a malicious URL detection system based
on short URLs and malicious content. The system detected
malicious URLs in Twitter texts through multiple features
such as original URLs, similar texts, related URLs, and the
following rates. Daeef et al. [24] used various machine learn-
ing algorithms to classify URLs based on the n-gram features
of URLs. Jayakanthan et al. [25] proposed a malicious URL
detection method based on the combination of the EPCMU
and the Naive Bayes algorithm. Multiple URL features were
used in this method, including the number of unique charac-
ters, the number of characters ‘/’ or ‘@’, and whether they
are blacklisted, to create a feature vector. Azeez et al. [26]
utilized the naive Bayes algorithm to detect malicious URLs
based on the grammatical, lexical, host, and other of the URL
embedded in the email.

However, these traditional machine learning algorithms
need to manually extract the features of URLs. The feature
vectors extracted in this way can only express the shallow
features of the data, but not the buried features. Moreover,
the methods of manual statistical features will consume
a huge deal of time in feature extraction and selection.
Bahnsen [12] compared two techniques, the Random Forests
(RF) algorithm utilizing 14 lexical and statistical features of
URL as an input and the Recurrent Neural Network algorithm
based on character embedding. The ultimate results also indi-
cated that the RNN algorithm is more appropriate for URL
classification than RF, however, the disadvantage is that RNN
requires more data for training. A deep learning model was

proposed by Saxe et al. [27] based on multi-core convolution,
eXpose utilizing a combination of character embedding and
convolutional neural networks (CNN) to extract the mali-
cious URLs features and detect the malicious URLs. The
experimental results indicated that eXpose outperforms those
manual feature-based models. A malicious domain name
detection method was presented by Woodbridge et al. [28]
based on long short term memory network (LSTM) utilizing
the LSTMmodel to automatically extract the context features
of malicious domain names, and completed the DGAs classi-
fication. However, this LSTM model is not very effective in
discovering some families with very extraordinary structures.

In total, malicious URL detection techniques utilizing deep
learning models generally yield better results. Compared
to the above method, the feature processing part of our
technique consumes less time, which is more advantageous
in the identification of unknown malicious URLs. More-
over, the URLs’ visual semantic information is combined to
enhance predictive accuracy and obtain better performance in
identifying malicious URLs with complex structures.

III. OUR APPROACH
A. FEATURE
The accuracy of classification is directly enhanced by an
appropriate feature extraction method. As shown in Fig 1, our
feature processing has two parts in total. By character embed-
ding and word embedding components, displayable charac-
ters and words are embedded into a multidimensional feature
space encoding the original URL into a two-dimensional ten-
sor. The image component converts the URL into a grayscale
image.

1) SEMANTIC FEATURE
Attackers often utilize the ‘‘domain impersonation’’ [1]
method to trick victims by replacing a letter in a domain
name with similar letters. For example, replace ‘google’ with
‘goog1e’. There are several more such deception techniques.
It is essential to find a way to express the characters and learn
hidden information better on the computer to insert the URL
into the model for training. One-hot is a basic vector method
representing the characters in the URL through a vector of
the number of characters. Only the item corresponding to
the character in the vector is 1, and all other items are zero.
Nevertheless, for one-hot, the high dimensionality of data is a
problem, and the matrix composed of vectors corresponding
to characters is too sparse. Displayable characters are embed-
ded into a s×m floating-point matrix to better get the hidden
information of the letters in URL, where s denotes the number
of displayable characters, andm refers to the dimension of the
embedded vector. This can encode characters into dense real-
valued vectors. Meaningful words are used in URL both by
a developer and an attacker. Hence, the words in the URL
are also mapped to a floating-point matrix utilizing word
embedding methods.

These two matrices of the embedded layer are also opti-
mized with the rest of the model through backpropagation.
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FIGURE 1. Overall framework of model.

Hence, the embedding vector is optimized for each charac-
ter and word leading to the semantically similar embedded
vector of letters or words being closer to each other [29]
and fully expressing the meaning of the character and the
association between the characters. Especially, through this
matrix, a URL is converted to a two-dimensional tensor.

2) VISUAL FEATURE
Vasan et al. [30] suggested that pe files of the same family
have similar texture structures. They converted the malware
into grayscale images and used it for classifying it against
the CNN network. Within malicious URLs, the URL of the
same family or the URL generated by the same tool possesses
a similar structure. Therefore, the malicious URL is also
converted into images. This method can intuitively represent
the spatial pattern and structure of URLs, moreover, it is also
easier to identify the spatial similarity of URLs generated by
the same family or the same tool.

Fig. 2 shows the process of converting the URL to a
grayscale image. First, each character in the given URL is
converted to a decimal integer (ASCII), to obtain a new dec-
imal vector representing the malware sample. Then, the dec-
imal vector is reshaped to a two-dimensional matrix and
visualized as a grayscale image. Therefore, the entire URL
can be represented by a grayscale image as an effective input
and very fast operation for the subsequent model.

B. MODEL
In this part, we introduce our model including three parts,
namely IndRNN, CapsNet, and Attention in total, for which
the overall flow is represented in Fig. 1. The embedded vector
sequence was utilized as the input of the IndRNN and the tex-
ture image was used as the input of the CapsNet. Moreover,

FIGURE 2. Visualization process.

the outputs of the two networks were entered into an attention
mechanism to extract useful valid features for classification.
Ultimately, the sigmoid classifier was used to calculate the
class probabilities based on the final feature.

1) INDEPENDENT RECURRENT NEURAL NETWORK
RNN has been extensively used in sequence learning prob-
lems such as action recognition and language processing to
achieve remarkable results. However, it is actually difficult
to build and train a deep RNN since using hyperbolic tangent
and sigmoid activation functions in LSTM and GRU will
lead to gradient decay over layers. An IndRNN model was
proposed in the literature [15] to avoid the gradient explod-
ing problem of traditional RNN and solve the problem of
gradient vanish in multi-layer LSTM and multi-layer GRU

VOLUME 9, 2021 9467



J. Yuan et al.: Malicious URL Detection Based on a Parallel Neural Joint Model

FIGURE 3. The unit structure in IndRNN.

transmission. To better learn the information from the char-
acters embedded vector sequence, the IndRNN is selected.
The IndRNN unit structure is shown in Fig. 3.

Considering an input, S = {s1, s2, . . . , st }, st represents the
embedding vector of the t-th character in a URL. The hidden
status of IndRNN is updated as:

ht = σ (Wst + U � ht−1 + b1) (1)

where W ∈ RN×M and U ∈ RN are the input weight and the
recurrent weight denotes the Hadamard product. In IndRNN,
each neuron only receives input from the current time and hid-
den state at the previous time, and each neuron independently
processes one type of spatiotemporal pattern. Normally, tra-
ditional RNN is considered as a multi-layer perceptron model
sharing parameters through time, however, IndRNN repre-
sents a new perspective of independently gathering spatial
patterns (through w) over time (through u). Each neuron in
each layer independently processes the output of all neurons
in the previous layer, hence, the difficulty of constructing a
deep network structure is reduced while enhancing the ability
to model longer sequences. Moreover, using ReLU activation
functions, IndRNN is more robust after training.

2) CAPSULE NETWORK
In 2011, Hinton et al. [31] first introduced the capsule net-
work. The core idea is to use capsules to replace neurons
in RNN, hence, the network can retain spatial relationships
and detailed pose information between objects. Compared to
CNNs, the pooling layer is removed by CapsNet causing fea-
ture loss, and the spatial relationship is fully utilized between
each feature in the image to obtain the positional relationship
between high-level features and low-level features as a kind
of classification feature. Sabour et al. [14] further proposed a
dynamic routing algorithm between capsules and a capsule
neural network structure. CapsNet uses vector capsules to
replace neurons in CNNs, dynamic routing to replace pooling
operations, and Squash functions to replace ReLU activa-
tion functions. Moreover, they indicated that the multi-layer
capsule system is effective in image recognition tasks and is

FIGURE 4. The CapsNet structure.

significantly better than convolutional networks in recogniz-
ing highly overlapping objects.

The structure of the capsule network utilized in our work
is shown in Fig. 4. First, to process URL image a simple
convolutional layer is used:

ml = f (W1 ◦ Xl:l+k−1 + b1) (2)

Mk1 =
[
m1,m2, · · · ,m(L−N+1)

]
(3)

where f denotes the ReLU activation function,W1 ∈ RN×d is
the convolution filter, and b1 is the bias. By sliding the filter
on the image, the extracted local features are stitched together
into a feature map.

Then, the primary capsule layer reaches encapsulating the
features at the same position in the feature map into a corre-
sponding capsule:

pi = g(W2M i
+ b2) (4)

W2 ∈ Rk×1×l is the transformation matrix, where k denotes
the dimension of the capsule.M i is the i-th row vector of the
feature map, b2 shows the bias, and g is the squash function:

g(x) = squash(x) =
‖x‖2

1+ ‖x‖2
x
‖x‖

(5)

The digital capsule layer is the final layer, each capsule is
obtained by :

Vj = g(
∑
i=1

ci
∧
ui) (6)

where ci is the coupling coefficient updated by the dynamic
routing algorithm.

∧
ui denotes the prediction vector of the
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current output of the previous layer obtained by the linear
transformation matrix W3:

∧
ui = W3pi (7)

3) ATTENTION
The attention mechanism in deep learning is based on the
attention of human thinking. Limited attention resources
are used by humans to quickly filter out high-value infor-
mation from a huge deal of information greatly improving
the accuracy and efficiency of information processing. The
main task of the attention mechanism in deep learning is
to choose the more critical information for the current task
target from numerous input information by weighting the
target data. To combine the extracted visual and semantic
features, not all parts contribute equally to the ultimate clas-
sification. To improve the representational ability of key fea-
tures, we used the attention mechanism to fuse the networks’
outputs and model multimodal scores. First, the semantic (S)
and visual vectors (V) are inserted into the one-layer MLP to
get:

uSem,i = tanh
(
WSemSj + bSem

)
(8)

uVis,i = tanh
(
WVisVj + bVis

)
(9)

uCon = [uSem, uVis] (10)

where ui denotes the i-th hidden representation and ‘‘[]’’
represents the concatenation operation. Hence, the weight is
determined:

ai = exp
(
uTi ucon

)
/
∑
i

exp
(
uTi ucon

)
(11)

After that, the weighted sum of multimodal vectors is
calculated based on weights:

VCon =
∑
i

ai [Si,Vi] (12)

The final vector V can be utilized as the input for the
final classification. Moreover, the sigmoid function is used
to compute the class probability of each label:

y = Sigmoid(v) = 1/(1+ exp(−v)) (13)

Ultimately, URL classification is performed based on the
threshold we set:

ybinary =

{
0, y ≤ threshold
1, y ≥ threshold

(14)

IV. EXPERIMENTS AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
The experimental environment and configuration information
are as follows:

Computer configuration: Windows Server 2012 R2,
256GB of memory, CPU Intel(R) Xeon(R) gold 5117 @
2.00GHz, GPU NVIDIA Tesla V100-PCIE-16GB, 256GB
SSD + 30T HDD of hard disk;

Python version:3.6; Deep Learning Library: Keras,
Tensorflow.

B. DATASET
The dataset includes benign and malicious instances: The
malicious dataset was collected from a well-known free anti-
phishing website PhishTank and a website malwaredomain-
list collecting a blacklist of malicious websites. The benign
dataset was collected through the Alexa website ranking and
web search. We acquired a total of 66,017 URLs, of which
32,519 were benign and 33,498 were malicious.

C. EVALUATION METRICS
For all experiments, the 5 fold cross-validation technique was
adopted and unified performance indicators such as accuracy
(15), precision (16), recall (17), and F (18) were used to assess
the performance of the model.

Acc =
TP+ TN

TP+ TN + FP+ FN
(15)

P =
TP

TP+ FP
(16)

R =
TP

TP+ FN
(17)

F =
2× P× R
P+ R

(18)

where TP indicates the number of samples correctly classi-
fied as malicious, TN denotes the number of samples cor-
rectly classified as benign, FP shows the number of samples
wrongly classified as malicious, andFN indicates the number
of samples wrongly classified as benign.

D. THE EFFECT OF MODEL PARAMETERS ON
EXPERIMENTAL RESULTS
The setting of experimental hyperparameters has great impor-
tance to the overall performance of themodel. Rational hyper-
parameter settings can utilize features more effectively and
enhance the accuracy of the ultimate URLs detection. Thus,
to optimize the experimental results, various hyperparame-
ters were tested on the same dataset to define the optimal
feature vector dimension and number of IdnRNN network
layers. Moreover, the influence of different data sizes was
also measured. To avoid the influence of other factors on
the experimental results, each experiment is carried out when
other parameters are fixed or even optimal.

In order to determine the optimal dimension of the fea-
ture vector, the dimensions of visual features and semantic
features were combined from low to high for experiments.
According to Table 1, the F-values are the two highest and are
very close when the total dimensions are 105 and 185. How-
ever, the recall rate reached 99.98% when the total dimension
is 185, which is better than the former. Although the accuracy
of the latter is not as high as that of the former, it is even more
intolerable in URL detection to remove a malicious URL.
Comprehensively, 185 is used as the optimal parameter of the
feature dimension.

When other parameters were fixed to the optimal, the effect
of different IndRNN layers on the model was explored
through experiments. According to Fig. 5, when the number
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TABLE 1. Experimental results of feature dimensions.

FIGURE 5. The experimental result of the IndRNN layers.

FIGURE 6. The experimental result of data size.

of layers is 2, the values of all indicators are greater than those
of other groups. Thus, the 2-layer IndRNN is more conducive
to extracting the semantic features of an embedded vector
sequence.

To verify the model’s reliability, we tested the effect of the
size of data on classification. Based on Fig. 6, when the data
size is only 30,000, the accuracy rate of 99.47% and other
good index values can be achieved. When the data volume
is 40,000, other indicators are reduced except for precision.
The possible reason is that the distribution of the newly added

TABLE 2. Necessity of model components.

data is inconsistent with the original data set, leading to an
increase in output entropy. By adding the data continuously,
the distribution between the data sets tends to be consistent,
and the ultimate accuracy rate reaches 99.78%.

E. THE NECESSITY OF MODEL COMPONENTS
To verify whether each component is redundant, we designed
such a set of experiments: the same training was performed
by combining different components to generate a new model.
As shown in Table 2, the corresponding network and sigmoid
classifier were used by the first three experiments directly.
To verify the effectiveness of texture features and CapsNets,
only one branch of IndRNN was used by the Attention-based
IndRNN model to learn semantic features. Attention-based
CapsNet was also amodel designed to verify the effectiveness
of text features and IndRNN. The features learned by the
two branches were merged by IndRNN+CapsNet and sent
directly to the Sigmoid classifier.

According to the experimental results in Table 2, the three
single models also have excellent performance, among which
CapsNet is the best. This also indicates that texture features
are effective for URL detection. Compared to ourmethod, due
to no visual information branch in Attention-based IndRNN,
Attention-based CapsNet has no semantic information branch
and IndRNN+CapsNet possesses no attention mechanism,
therefore, they yield relatively weak experimental results.
This also proves that texture features and CapsNet, text fea-
tures and IndRnn, and attention mechanism all have a role
in our model. As we expected, our model integrates the
advantages of each component indicated by the final accuracy
rate of 99.78% and the F-value of 99.78%. Multi-modal
knowledge can be learned from URL data since semantic
embeddings and visual vectors are shared across the network.
Furthermore, the fusion of the two also results in improved
performance.

F. COMPARISON WITH METHODS
Comparative experiments with four new methods based on
different models were also conducted. We implemented the
model mentioned below and performed experiments on our
dataset. As shown in Table 3, all methods had a good per-
formance. Wei et al. [32] also utilized character embedding
technology. They utilized the character embedding sequence
of the URL as the input of the CNN network to obtain
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TABLE 3. Effect of different algorithm models on experimental results.

a reasonable accuracy. The model of Bahnsen et al. [12]
combined character embedding and LSTM network indi-
cating almost the same performance as CNN. Furthermore,
since CapsNet can learn features that are different from con-
volutional networks, a single CapsNet can perform better
with an accuracy of 99.72%. In Liang’s method [34], the
Bi-LSTM network-based model had a performance improve-
ment. In [35]’s method, through using the Bi-IndRNN model
to learn the host features and URL information features, and
finally a recall rate of 99.93% is obtained. The proposed
model [36] is somewhat similar to our model, and its per-
formance was similar to that of Bi-LSTM. It is observed that
our model has some improvements over the previous model,
moreover, the results in the table are also encouraging, with
an accuracy rate of 99.78%.

G. DISCUSSION
Considering the above experimental results, we found that
our model achieves the best performance when the feature
dimension is 185 and the number of IndRNN layers is 2.
By comparing them with the other combinations of IndRNN,
CapsNet and Attention in TABLE 2, it can be summed up
that the model proposed in this paper combines their advan-
tages and outdoes them in a variety of evaluation indicators.
And it also shows that it is feasible to obtain the semantic
information and visual information of URL at the same time.
Converting the URL to an image and the sparse vector into
a dense real number vector are simple and effective. The
experimental results in TABLE 3 also show that the CapsNet
is better than CNN in learning the texture feature of the image,
and IndRNN has better robustness than LSTM in sequence
learning problems. This proves that we are right to choose
IndRNN and CapsNet. Furthermore, the accuracy and recall
rates have reached 99.78% and 99.98%, the combination of
the two leads to achieving performance beyond traditional
models.

V. CONCLUSION
This study explored the possibility of distinguishing legit-
imate URLs from malicious URLs by combining the two
technologies of CapsNet and IndRNN. To evaluate the pro-
posedmethod, a dataset was used including over 30,000mali-
cious URLs from the PhishTank and the malwaredomainlist
and more than 30,000 legitimate URLs ranked by Alexa.

The proposed method gave a high classification accuracy
of 99.78%. Hence, word embedding technology can be used
to embed sufficient semantic knowledge in malicious URLs
into distributed vectors, then combine with gray images and
use neural network models for classification. It only requires
some simple processing of the original URL and does not rely
on any other complex or expert features. Compared to other
methods, our method has a better detection effect.

Although the proposed model performs well, further
improvement is still required along with further studies to
improve the entire system. We will try to modify our model
structure based on malicious classes to performmultiple clas-
sifications. In future work, newer better-performing versions
may be selected to replace some of these components.
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