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ABSTRACT Random noise attenuation has always been an indispensable step in the seismic exploration
workflow. The quality of the results directly affects the results of subsequent inversion and migration
imaging. This paper proposes a cycle-GAN denoising framework based on the data augmentation strategy.
We introduced residual learning into the cycle-GAN to improve the training efficiency of the network.
We proposed a method for generating labeled datasets directly from unlabeled real noisy data. Then we
significantly improve the diversity of the training samples through an augmentation strategy. Through
RCGAN, we can realize intelligent seismic data denoising work, which dramatically reduces the manual
selection and intervention of denoising parameters. Finally, numerical experiments prove that our method
has a remarkably good random noise suppression ability and a minimally damaging effect on useful seismic
signals. The experiment tests on synthetic and real data also show the effectiveness and superiority of the
proposed method RCGAN compared to the state-of-the-art denoising methods.

INDEX TERMS Geophysical data, geophysics computing, generative adversarial networks, noise reduction,
residual learning.

I. INTRODUCTION
In petroleum exploration, the precise processing of seismic
data can directly affect subsequent inversion and migration
imaging accuracy. Seismic data denoising is an indispensable
step to improve the signal-to-noise ratio(SNR) of seismic
data, and the result directly affects the quality of subse-
quent data processing. High SNR is essential for many seis-
mic exploration techniques such as AVO analysis, seismic
attribute analysis, and micro-seismic monitoring. The sup-
pression of random noise is essential to improving the SNR.
For seismic data acquisition, we usually use broadband to
obtain more abundant reflected wave information. Therefore,
while acquiring significant waves, various noise interferences
are inevitably recorded, reducing the SNR of seismic data.
This will seriously affect the SNR and resolution of the
seismic migration profile (especially the deep layers), which
will cause significant difficulties in data interpretation.

Researchers have proposed many effective algorithms for
random noise suppression, mainly including widely used
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transform-domain denoising algorithms, spatial denoising
algorithms, and comprehensive denoising algorithms. The
transform domain denoising algorithms are the most widely
used and most advanced at this stage. Canales [5] proposed
an f-x deconvolution denoising algorithm according to the
seismic events’ predictability, which has become a standard
seismic signal denoising algorithm. Then, Gulunay [7] and
Hornbostel (1991) [36] further optimized the f-x deconvolu-
tion algorithm to improve random noise suppression. Fieire
and Ulrych [26] proposed a denoising algorithm based on
singular value decomposition according to the Low-rank
hypothesis. At the same time, there are a series of trans-
formation algorithms, such as curvelets transformation [6],
seislet transformation [25], and wavelet transformation algo-
rithms [22], all of which have good results. Many researchers
further proposed a lot of improved wavelet transform algo-
rithms to better random noise suppression. In recent years,
many researchers have developed an adaptive transformation
algorithm based on dictionary learning [9], [11], [13], [17],
which made full use of the characteristics of the seismic
data itself to denoise. The second is the spatial denoising
algorithms. Rudin et al. [18] proposed an adaptive denoising
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algorithm based on a partial differential equation. Bonar and
Sacchi (2012) [37] proposed a non-local mean value denois-
ing method, which can find similar structure regions in seis-
mic data, and then carry out partition denoising. The third
is the comprehensive denoising algorithms, which combined
the characteristics of spatial domain and transform domain.
This algorithm usually performs structural similarity cluster-
ing in the spatial domain and then applies transform algo-
rithms based on the clustering results to achieve a better
low-rank effect [28].

Although conventional denoising methods have been grad-
ually developed perfectly, there are still two bottlenecks.
One is that the assumptions of the algorithm are inaccu-
rate [23]. The f-x deconvolution [5] method assumed that the
random noise is unpredictable, and the coherence signal is
predictable, which is difficult to satisfy in the complex geo-
logical structure areas. The other is that the denoising process
parameters are improper due to manual intervention [23].
In the actual denoising work, selecting denoising parameters
usually requires engineers to have a deep understanding of
the work area, which significantly increases labor costs and
reduces efficiency. For seismic data denoising, can we form
a uniform framework without unnecessary assumptions and
excessive manual intervention?

Deep learning(DL) networks can help us break these bot-
tlenecks. The secret relationship between seismic data and
noise data can be extracted through many training datasets,
which does not require too much human intervention and
accuracy assumptions.

Since AlexNet [1] won the ImageNet Large-Scale Visual
Recognition Challenge(ILSVRC) competition, neural net-
work research has gradually become the mainstream research
direction of computer science. In this booming environment,
various efficient network structures have been proposed,
such as VGGNet (Simonyan and Zisserman, 2014 [43]),
U-Net (Ronneberger, 2015 [44]), FCN (Shelhamer et al.,
2014 [45]), and CNN [16], etc. These network structures
have been widely used in image denoising, face recognition,
speech recognition, etc. Hinton et al. [6] proposed a deep
belief network, and Vincent et al. [21] presented a stacked
auto-encoder, among others. Lecun et al. [16] demonstrated
that CNN has fewer parameters and provides superior classi-
fication results on the MNIST. Zhang et al. [14] proposed a
CNN with 17 layers, named DnCNN, for noise attenuation
of images. Zhang et al. [15] developed a fast and flexible
denoised convolutional neural network, FFDNet, to further
improve the denoising capability and flexibility of DL net-
works.

Generative Adversarial Networks (GANs) have achieved
impressive image generation results, image editing, and rep-
resentation learning. GANs have the characteristics of strong
parallel processing ability, intense adaptive energy, and good
fault tolerance. Generating adversarial networks (GANs)
have been called the most exciting idea in machine learning
over the past decade by Yann LeCun. GANs are state-of-
the-art deep learning neural networks at this stage, so it is

meaningful to explore their seismic exploration applications.
GANs do not ignore the structure of the input datasets. Due
to the seismic data’s strong local structure, the application of
GANs in seismic exploration has more advantages.

In recent years, neural networks have also been widely
used in seismic signal research, such as seismic inversion
(Das et al., 2018 [38] and Yang and Ma, 2019 [39]),
fault detection (Xiong et al., 2018 [40]), and interpolation
(Wang et al., 2018 [41]). In the field of seismic data denois-
ing, neural networks also have good applicability results.
Liu et al. [17] proposed a data augmentation and U-Net based
seismic random noise suppression method using a small
amount of synthetic seismic data to perform augmentation
and generate labeled datasets to train the network. Yu et al.
[23] introduced DnCNN in image denoising into seismic data
denoising and achieved good results. Zhang et al. (2020) [42]
used the trained neural network learning from natural image
denoising to realize seismic data interpolation.

This paper proposed a cycle-GAN based on residual learn-
ing (RCGAN) and achieved noise suppression work for
real and synthetic seismic data. Firstly, we introduce the
cycle-GAN into the seismic denoising domain and greatly
improved the network’s training efficiency by employing
residual learning. Besides, this paper applied an effective
data generation and augmentation method so that the trained
network can be better adapted to real seismic data denoising
work. Finally, the effectiveness of the method is proved by
numerical tests.

II. METHODOLOGY
From seismic data processing, the raw seismic data can
be regarded as the sum of signal and noise, which can be
expressed as :

Y = X + N . (1)

It can be expressed as: Where X is the clean data, Y is the
collected raw seismic data, and N is the noise data.

A. RCGAN DENOISING WORKFLOW
In this section, we first introduce the workflow of this paper
so that the reader can get a better understanding of our meth-
ods and the denoising process based on neural networks. Fig.1
shows the diagram of denoising workflow. It is apparent from
FIGURE 1. that the raw training and test datasets in this paper
are composed of synthetic and real seismic data.

In the process of neural network training (the flow indi-
cated by the orange arrows in FIGURE 1.), we first added
random noise to the clean datasets to obtain the synthetic
datasets. Next, we performed data augmentation by a data
augmentation strategy proposed in this paper and finally
formed the augmentation dataset. We perform a patch sam-
pling operation on the augmentation dataset to obtain the
training dataset, which can be expressed as :

y∗ = P [Y ] (2)

where P [·] is the patch sampling operator.
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FIGURE 1. The diagram of denoising workflow.

We can split the input into small patches for patch size
choice instead of directly using the entire section as the patch
size. The most significant advantage of this choice is that
it can save memory, and it is feasible because there is no
coherence between seismic data and random noise. However,
this does not mean that the network testing process’s input is
still the same patch size. On the contrary, the input size can
be selected arbitrarily. Then we performed a normalization
operation to make the dataset better adapt to the RCGAN,
which can be expressed as :

y =
y∗ − min
max − min

(3)

The process indicated by the blue arrow in FIGURE 1.
is the network testing process. The test dataset also requires
normalization operation compared to the training process,
but it does not need patch sampling. After the network
results are obtained from RCGAN, an inverse normal-
ization operation is required to get the final denoising
seismic data.

B. NETWORK ARCHITECTURE AND THEORY
Generative Adversarial Networks (GANs) have achieved
impressive image generation results, image editing, and rep-
resentation learning. Besides, GAN is also very well-suited
for predictions between unpaired data. We usually consider
the seismic signal and random noise to be typically unpaired
data. Our objective is to find a mapping to connect the raw
seismic data to the useful seismic signal through a neural net-
work (Cycle-GAN proposed by Zhu et al. [11]) for denoising.
Besides, we improved the training efficiency by introducing
residual learning (Kai et al., 2017 [15]) for the slow training
of GAN networks. So the mapping established through our
method Residual-Cycle-GAN(RCGAN) is from raw seismic
data to random noise.

FIGURE 2. shows the internal architecture of the RCGAN,
which contains two mapping functions. We took the raw
seismic data as the inputs and the random noise data as the

network outputs. The first mapping function is INPUT ∼
FG(INPUT ), which is based on the forward generator. There
must be a reverse mapping function based on backward
generator can translate FG(INPUT ) to BG(FG(INPUT )).
RCGAN’s cycle consistency means that if we can find a
forward mapping, there must also be a reverse mapping. Just
like we can translate a sentence from English to French and
then translate it back [11]. In addition to the training of two
generators in the network, two discriminators are also needed
to be trained, as shown in FIGURE 2.
RCGAN contains two generators and two discrimina-

tors, respectively. The internal structure of two generators
(as shown in FIGURE 3.) is consistent with that proposed
by Johnson et al. [12], which has four convolution layers
and nine residual blocks. For residual blocks, it includes
convolution layers, Batch normalization, and ReLU.
Similar to Johnson et al. [12], we ignore the pooling layer
to hold the data size. For discriminators, we adopt the
PatchGANs (Li et al., 2016 [46]) with a size of 70 × 70,
which are trained to distinguish between generative data and
training data.

C. LOSS FUNCTION AND SOME TRAINING DETAILS
Our goal is to learn mapping functions between two domains
INPUT and OUTPUT given training samples {xi}Ni=1 and
{yi}Ni=1 where N is the sampling numbers. We generated the
data distribution as INPUT ∼ {yi}Ni=1 ∈ I and OUTPUT ∼
{ri}Ni=1 = {yi − xi}

N
i=1 ∈ Owhere yi, xi and ri denoted the raw

seismic data, clean seismic data and noise data, respectively.
For RCGAN of this paper which includes two mappings FG :
I → O and BG : O → I will be introduced two adversarial
discriminators Df and Db.

Our objective loss function contains two types of terms:
adversarial losses for matching the I to O; and cycle
consistency loss (Zhu and Alexel, 2017 [11]) to prevent
the two learned mappings FG and BG from contradicting
each other. Then we will introduce each of the two losses
functions.
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FIGURE 2. The architecture of the RCGAN.

FIGURE 3. The architecture of generators.

1) ADVERSARIAL LOSS
The adversarial losses, which are composed of two parts,
are applied to both mapping functions. The first part is the
mapping function FG : I → O which objective loss function
can be expressed as:

LRCGAN
(
FG,Df , I ,O

)
= Eri∈O

[
logDf (ri)

]
+Eyi∈I

[
log(1− Df (FG(yi))

]
(4)

where FG denoting the forward generator can translated
{yi}Ni=1 to the similar data from domain O, while Df can dis-

tinguish between generated data FG (yi) and real samples ri.
The generator FG aims to minimize the objective against
while discriminator Df are the inverse process, which means
minFGmaxDf LRCGAN

(
FG,Df , I ,O

)
.

The second part is the mapping BG : O → I , which
objective loss function is similar to the FG : I → O,
we express it as:

LRCGAN (BG,Db,O, I ) = Eyi∈I
[
logDb(yi)

]
+Eri∈O

[
log(1− Db(BG(FG(yi)))

]
(5)

where BG is a backward process to FG, it can trans-
late the previously generated result FG (yi) to the sim-
ilar data from domain I . The adversarial process of
backward generator BG with discriminator Db means
minBGmaxDbLRCGAN (BG,Db,O, I ).

2) CYCLE CONSISTENCY LOSS
In the network training process, we cannot guarantee that the
learned function can map individual input yi to the desired
output ri by only using the adversarial losses alone. We intro-
duced the cycle consistency loss using L1 norm (Zhu and
Alexel, 2017 [11]) to prevent the two learned mappings FG
and BG from contradicting each other. We modified the cycle
consistency loss to equation 6. As shown in FIGURE 4, for
each data yi from domain I , the cycle-consistency should be
able to bring it back to the similarly original state.

Lcyc (FG,BG) = Eyi∈I
[
‖BG (FG (yi))− yi‖1

]
(6)

11588 VOLUME 9, 2021



W. Li, J. Wang: Residual Learning of Cycle-GAN for Seismic Data Denoising

FIGURE 4. The diagram of cycle-consistency loss.

3) FULL OBJECTIVE LOSS FUNCTION
Our full objective loss function is expressed as:

L
(
FG,BG,Df ,Db

)
= LRCGAN

(
FG,Df , I ,O

)
+LRCGAN (BG,Db,O, I )+ Lcyc (FG,BG) (7)

where Equation 7 is the combination of Equation 4, 5 and
Equation 6.

4) SOME TRAINING DETAILS
The RCGAN for seismic data denoising in this paper is based
on the open-source machine learning framework PyTorch
(https://pytorch.org). Based on the Ubuntu operating system,
PyTorch 1.0 version, and Python 3.7 version. The network in
this paper is trained on workstations with two GTX960 GPU,
Inter(R) i7-4790k @4GHZ CPU,64GB RAM, and uses
GPU (graphics processor units) as an acceleration means.
The GPU model is GTX960, which has 4GB VRAM and
192 computing cores.

In this paper, we applied two techniques to make our
model training process more stable. The first technique [30]
is aiming at LRCGAN (Equation 4, 5) by replacing the nega-
tive log-likelihood objective by a least-squares loss. Second,
we applied Shrivastava et al.’s strategy (2016) to reduce the
model oscillation.

This section will also introduce the selection of some
essential parameters in the network training process. We set
the patch size to 70 × 70 in that we can split the input into
small patches instead of directly using the entire section as
the patch size, which can greatly save the computingmemory.
For the choice of batch size, we set it to 128 according to
Bengio’s (2012) study that the sweet region of the batch size
is between 1 and a few hundred. At last, We set the learning
rate to 10−3.

D. DATA AUGMENTATION STRATEGY
A qualified deep learning training data set should contain
the following three characteristicslarge of numbers, diverse
and well-labeled. For the preparation of the dataset for the
denoising work of GAN, it should not only contain synthetic

seismic data with diversity. Still, it should also include a
training dataset of real seismic data, which can significantly
improve real data denoising work adaptability.

1) AUGMENTATION STRATEGY OF SYNTHETIC DATASET
For synthetic data, we can add random noise generated by
computer simulations to the clean data. To make the network
more tolerant to noise variance, we add Gaussian noise with
different levels of variance to the training set. Since the
signal intensity varies in different regions on the same data,
the local SNR of the synthetic data will be various. Therefore,
the Gaussian noise added in this paper is additive Gaussian
noise with the corresponding variance level added according
to the signal intensity in the local region. If we take the mean
value of zero, the standard deviation is calculated as follows.

σ = γ · mean(abs(xpart )), γ ∈ [0.1, 4] (8)

where σ is the noise standard deviation, abs(·) means to
obtain the absolute value of area xpart point-by-point, and
mean(·) is to obtain the average value. The value range of
γ is obtained based on experience.

The synthetic datasets are downloaded from SEG
(Society of Exploration Geophysicists) open datasets
(https://wiki.seg.org). In this paper, the training sets are
obtained from the following URL. http://s3.amazonaws.com
/open.source.geoscience/opendata. If readers need to train the
network, they can download the following data for testing.

The inputs can be split into small patches size of 70 × 70
rather than using the whole sections directly for saving com-
puting memory because random noises are locally incoherent
with useful data. But this does not mean that the input size we
choose when we use the trained network model for denoising
work is still 70 × 70. Even the input size of the network
for testing processing can be any of the sizes. We chose the
2-D and 3-D, pre-stack data, and post-data as the datasets
to guarantee the diversity of the training sets. Owing to the
data of adjacent shots are very similar, we usually choose
the data with a large interval. Finally, we generated a training
set contains nearly 25000 samples through the Monte Carlo
strategy [24], which can eliminate useless seismic data that
are almost all zeros and not helpful for our training.

For the preparation of the dataset, this paper also intro-
duced a data augmentation strategy, which further enhanced
the diversity of the dataset by performing the following oper-
ations such as rotation transformation, mirror transformation,
space-time downsampling, and intensity transformation on
synthetic seismic data. As the FIGURE 5 shows, (a) and (e)
are the clean synthetic data ∼ xi and contaminated seismic
data ∼ yi by random noise, respectively. (b), (c) and (d) are
the clean synthetic data augmented from (a) by the rotation+
mirror transformation, rotation transformation, and mirror
transformation, respectively. (f), (g) and (h) are the corre-
sponding contaminated seismic data.

With the data augmentation method proposed in this paper,
the final synthetic data training set of 100,000 samples is
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FIGURE 5. The diagram of data augmentation strategy. (a) and (e) are the original synthetic data. (b), (c), (d) and (f), (g),
(h) are the augmentation synthetic data.

formed. It can be seen that the data augmentation strategy can
effectively enhance the diversity of the training dataset.

2) AUGMENTATION STRATEGY OF REAL DATASET
If the trained denoising neural network does not have good
adaptability to real seismic data, it will be useless for actual
exploration work. So it is essential to add real seismic data
samples to the training dataset to improve its adaptability.
However, a big problem here is that there is no clean data in
the real seismic data for us to label. Therefore, we applied an
existing state-of-the-art denoising algorithm to the real data
to get clean data for labeling.

FIGURE 6 shows the denoising results of real seismic data
by the f-x adaptive prediction filter(APF) method (Liu et al.,
2015 [31]). (a), (b) and (c) are the real seismic data, denoised
signal data, and removed noise data, respectively. In this way,
we get the data available for labeling.

FIGURE 6. The diagram of the real seismic data pre-processing. (a) Real
seismic data. (b) Denoised Signal data. (c) Removed noise data.

The augmentation strategy of the synthetic dataset can also
be used to increase the diversity of the sample for the clean
real seismic data obtained above, such as the rotation trans-
formation, mirror transformation, space-time downsampling,
and intensity transformation.

III. NUMERICAL RESULTS
In this section, we will test the denoising performance of
the RCGAN on synthetic data and real seismic data. The
traditional industrial algorithm f-x deconvolution method [5]
(FXDM) and well-known denoising neural network DnCNN
are used for comparative experiments. The signal-to-noise
ratio (SNR) is used to qualitatively measure the quality of the
different algorithms denoised results, which can be expressed
as equation 9.

SNR = 10log10
‖x‖22∥∥x − x̂∥∥22 (9)

where x and x̂ stand for the clean seismic data and denoised
data, respectively, the SNR unit is Decibel(dB).

A. SYNTHETIC DATA TESTING
In this section, we first evaluate the denoising performance
of RCGAN in synthetic data and compare it with the results
of both DnCNN and FXDM algorithms. Yu et al. [23]
introduced DnCNN in image denoising into seismic data
denoising and achieved good results. To compare our method
with DnCNN, we proposed training this model consistent
with the RCGAN training dataset with 100,000 augmenta-
tion training samples. The training parameters of DnCNN
refer to the paper [23] for the best denoising results, which
are patch size of 70 × 70, batch size of 128, the convo-
lutional kernel of 70 × 70 and epoch of 50, respectively.
For the FXDM, we tested different denoising parameters
and finally chose the best denoising results as a comparison.
After the network training is completed, we do not need to
adjust the network parameters for the testing data-sets to be
competent for denoising work. This means that compared
to traditional industrial algorithms, AI-based algorithms can
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FIGURE 7. Complex synthetic example. (a) Clean seismic data. (b) Contaminated seismic data.

FIGURE 8. The comparison of three methods denoised results and removed noise. (a) and (b) FXDM
denoised result and removed noise. (c) and (d) DnCNN denoised result and removed noise. (e) and
(f) RCGAN denoised result and removed noise.

eliminate the tedious work of denoising parameter selection
and significantly reduce manual intervention in denoising
work.

FIGURE 7(a) shows the synthetic data model borrow-
ing from Claerbout (2009) [47]: A synthetic seismic image
containing dipping beds, an unconformity, and a fault.

We added incoherent noise to the clean raw data and
obtained FIGURE 7(b).

FIGURE 8 shows the comparison of the denoising results
of RCGAN, DnCNN, and FXDM. FIGURE 8(a), (c), and (e)
are the denoised results by FXMD, DnCNN method, and
RCGAN method, respectively. We can easily find that the
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FIGURE 9. The denoised 50th trace (a) and the difference (b) with respect to the
original trace.

denoising effect of the f-x deconvolution method commonly
used in the industry is not very satisfactory, and there is still
much noise remaining. In addition, it even cannot escape too
much manual intervention and excellent denoising param-
eter settings. The DnCNN denoising method implemented
by Yu and Ma (2018) [23] can achieve a good intelligent
denoising effect without a manual set of denoising parame-
ters, as shown in FIGURE 8 (c). Nevertheless, we can still
notice some residual noise. The RCGAN method in this
paper can also realize the intelligent denoising of seismic
data and further improve the ability to suppress random noise,
as shown in FIGURE 8(e).We can find that through RCGAN,
the slight noise pointed by the red arrows in FIGURE 7(b) is
well removed, which demonstrated that our RCGAN has bet-
ter denoising performance than previous CNN-based denois-
ing methods.

To better compare the differences in the three methods’
denoising performance, we give the three removed noise data
images. FIGURE 8 (b) is the noise data removed by the clas-
sical FXDM, which contains too many useful seismic data,
such as geologic folds, faults, and unconformities. For the
DnCNN method, as shown in FIGURE 8 (d), the noised data
removed contains a small amount of useful seismic data such
as faults information, folds, and unconformities information.

FIGURE 8 (f) is the noise data that hardly contains useful
geological data. This means that our method has a strong
ability to retain details.

For better quantitative observation of the denoised results,
we extracted the traces of several methods to compare the
denoised ability further. FIGURE 9(a) shows the 50th traces
from the denoised results and (b) shows the corresponding
difference concerning the original trace. From top to bottom
are noisy data, original data, RCGAN, DnCNN, and FXDM.
We can see that the trace of RCGAN is not only the closest
to the original data, with the smallest differences from the
original data.

Then, we increased the randomnoise level tomore compre-
hensively test the RCGAN’s denoising ability. FIGURE 10
shows the denoising results of FXDM (b), DnCNN (c), and
RCGAN (d). We can see that our method still obtained a
very good denoising result. However, the denoising ability of
the DnCNNmethod decreases significantly as the noise level
increases.

To qualitatively measure the quality of the different algo-
rithms denoised results, we compared the SNR variations
with regard to the noise level in FIGURE 11. The green, Sky
blue, and magenta lines represent the SNR values of denoised
results via RCGAN proposed in this paper, DnCNN, and
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FIGURE 10. The comparison of three methods denoised results. (a) Contaminated seismic data. (b) FXDM denoised result.
(c) DnCNN denoised result. (d) RCGAN denoised result.

FIGURE 11. The SNR comparison of three methods with regard to the
noise level.

FXDM, respectively. For eachmethod, the SNRwill decrease
as the noise level increases. We can significantly find that
the SNR of our method is remarkably greater than the other
two methods for the same noise level, which proves the
remarkable denoising performance of our method RCGAN.

B. REAL DATA TESTING
In this section, We applied the RCGAN of this paper to test
its applicability in real seismic data denoising work. We have
found that our method’s denoising results are much better
than FXDM in testing synthetic data, so we will no longer
compare it with the traditional denoising algorithm(FXDM)

in real data testing. We applied the APFmethod for denoising
when constructing the real data training set. So, when testing
the trained neural network’s denoising ability, we will com-
pare it with the APF method.

FIGURE 12 (a) shows the real seismic data.
FIGURE 12 (b), (c), and (d) display the denoised results of
DnCNN, APF method, and RCGAN, respectively. We can
find that the DnCNN method has a good random noise
suppression ability, but there are still several random noise
remaining in the denoised result. The APF method and
RCGAN will be significantly better at suppressing random
noise than DnCNN. The APF method contains very slight
noise in the denoised result, while random noise is almost
invisible in the RCGAN denoised result. As indicated by
the red arrows in the FIGURE 12, we can see that the APF
method and the RCGAN method can preserve the continuity
of the axis significantly better.

FIGURE 13 (a), (b), (c), and (d) are the results of a partial
enlargement of the red box section in FIGURE 12. We can
find more clearly that the latter two methods will have much
better reflection signal continuity than the DnCNN method,
which indicates that the signals are not seriously damaged
during the denoising process. Since the denoised results are
zoomed-in partially, the differences between the three meth-
ods can be observed more clearly. In FIGURE 13 (c), we can
still find very subtle random noise. The RCGAN method
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FIGURE 12. The comparison of three methods denoised results in real seismic data. (a) The raw real seismic data.
(b) Denoised result using DnCNN. (c) Denoised result using APF. (d) Denoised result using RCGAN.

is perfect for removing random noise and maintaining the
continuity of the reflection signal.

We use the APF method for denoising the real seis-
mic data to construct the training set, but why does
our RCGAN method have better denoising performance
than the APF method? We consider that the main rea-
son is that this paper adopted a real data augmentation
strategy, which greatly expanded the training set of real

data and thus improved the denoising capability of the
network.

FIGURE 13 (a), (b), and (c) shows the removed noise
of the above three methods DnCNN, APF method, and
RCGAN, respectively. We can see that the continuous
reflected signal is apparent in FIGURE 13 (a), while the
FIGURE 13 (b) and (c) have very slight damage to the
effective signal. Therefore, compared with the DnCNN and
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FIGURE 13. Zoomed denoised results test on the real seismic data. (a) The raw real
seismic data. (b) Denoised result using DnCNN. (c) Denoised result using APF.
(d)Denoised result using RCGAN.

FIGURE 14. The comparison of three methods removed noise in real seismic data. (a) Removed noise using DnCNN. (b) Removed
noise using APF. (c) Removed noise using RCGAN.

APF method, the proposed method can effectively attenuate
the noise and fully protect the effective signals.

Compared to the APF method, our RCGAN can
significantly reduce manual intervention and accuracy
assumptions while maintaining noise suppression capability.
Moreover, compared to DnCNN, our proposed method can
improve denoising performance while retaining the advan-

tages of neural networks. It means that our approach is very
advantageous in the work of suppressing random noise.

IV. CONCLUSION
Seismic data denoising has always been an indispensable
step in the seismic exploration workflow. The quality of the
results directly affects the results of subsequent inversion

VOLUME 9, 2021 11595



W. Li, J. Wang: Residual Learning of Cycle-GAN for Seismic Data Denoising

and migration imaging. The traditional denoising methods
require a lot of complicated denoising parameters selection
work. An experienced data processor must make appropriate
parameter selection according to the work area’s geological
conditions. A large number of manual interventions are not
only time-consuming and labor-intensive but also add much
uncertainty to the denoising results.

This paper proposed an RCGAN method based on a data
augmentation strategy for seismic data noise suppression
work. Firstly, we introduce the cycle-GAN into the seismic
denoising domain and greatly improved the network’s train-
ing efficiency by employing residual learning. Besides, this
paper applied an effective data generation and augmentation
method so that the trained network can be better adapted to
real seismic data denoising work.

Compared to FXDM and DnCNN, our method has a bet-
ter ability to remove random noise and retain data details
in synthetic data testing. Our RCGAN method will be bet-
ter adapted to real seismic data denoising work due to
introducing a data augmentation strategy. Besides, the lack
of real data training samples faced in network training
can also be effectively overcome by the real data aug-
mentation strategy. Compared to DnCNN, our proposed
method can improve denoising performance while maintain-
ing the advantages of neural networks. Furthermore, com-
pared to the APF method, our RCGAN can significantly
reduce manual intervention and accuracy assumptions while
maintaining noise suppression capability. Experiments with
synthetic and real seismic data confirm that the RCGAN
method performs superior to other state-of-the-art denoising
algorithms.
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