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ABSTRACT Solving non-linear equation is perhaps one of the most difficult problems in all of numerical
computations, especially in a diverse range of engineering applications. The convergence and performance
characteristics can be highly sensitive to the initial guess of the solution for most numerical methods such
as Newton’s method. However, it is very difficult to select reasonable initial guess of the solution for most
systems of non-linear equations. Besides, the computational efficiency is not high enough. Taking this into
account, based on variational iteration technique, we develop some new iterative algorithms for solving
one-dimensional non-linear equations. The convergence criteria of these iterative algorithms has also been
discussed. The superiority of the proposed iterative algorithms is illustrated by solving some test examples
and comparing themwith other well-known existing iterative algorithms in literature. In the end, the graphical
comparison of the proposed iterative algorithms with other well-known iterative algorithms have been made
by means of polynomiographs of different complex polynomials which reflect the fractal behavior and
dynamical aspects of the proposed iterative algorithms.

INDEX TERMS Order of convergence, non-linear equations, Newton’s method, Househölder’s method,
polynomiography.

I. INTRODUCTION
Solving non-linear equations of the form f (x) = 0 is one
of the most important problems in all of numerical compu-
tations, especially in a diverse range of engineering appli-
cations. Many applied problems can be reduced to solving
systems of non-linear equations, which is one of the most
basic problems in Mathematics. This task has applications in
many scientific fields of engineering and computer sciences.

To find solution of such problems, analytical methods do
not assist us and therefore, we have to find appropriate solu-
tion of such equations by numerical methodswhich are totally
based on iterative schemes. In an iterative scheme, we start
the algorithm by choosing an inial guess x0 which is refined
step by step by means of iterations until the approximated
solution is achieved. Some basic iterative methods are given
in literature [4], [6], [9], [29], [34], [35] and the references

The associate editor coordinating the review of this manuscript and

approving it for publication was Santi C. Pavone .

therein. The most famous and well-knownmethod for finding
roots of non-linear equations is of the following form:

xn+1 = xn −
f (xn)
f ′(xn)

(1)

Which is quadratically convergent Newton’s method [35] for
the solution of non-linear equations.

For acquiring better convergence, many scholars proposed
a large number of iterative algorithms by means of of vari-
ous types of mathematical techniques. In 1970, Househölder
[13] suggested a cubically convergent method using Taylor’s
series expansion. Using the modified Adomian decomposi-
tion technique, Abbasbandy [1] proposed a single-step iter-
ative method having convergence of order three in 2003.
After that, in 2007, Kou [21] improved some third-order
modifications of Newton’s method and obtained many new
methods for solving non-linear equations. Nazeer et al. [25],
[26] in (2016), suggested some new algorithms by means
of finite difference scheme, which are free from second
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derivatives, having higher convergence orders. In the same
year, Sharma and Arora [32] proposed a simple yet efficient
family of three-point iterative methods with eighth order
of convergence for solving non-linear equations. After that,
in [30], the authors not only developed an optimal class
of three-step eighth-order methods with higher-order weight
functions employed in the second and third sub-steps, but also
investigate their dynamics underlying the purely imaginary
extraneous fixed points. In 2019, Alharbi et al. [2] suggested
some higher order algorithms by decomposition technique,
having convergence orders up to fifteen. Very recently, Behl
and Martinez [3] constructed some new high order and effi-
cient iterative techniques for solving a system of non-linear
equations whose convergence orders varied and reached up to
six. The suggested methods are the extension of the Jisheng
Kou’s method [22] for multidimensional case.

In this article, we proposed three new iterative algorithms
using variational iteration technique by considering two aux-
iliary iteration functions φ(x) and ψ(x). The first one, φ(x)
acts as a predictor function having convergence of order q
where q ≥ 1. The predictor function is used to attain iterative
methods of convergence order q + r, where r ≥ 1 is the
convergence order of second auxiliary function ψ(x). By an
iteration function, we mean a function f which is obtained by
composing the function itself for a certain number of times
and the convergence order is a quantity that shows how fast
an iterative method approaches to the required approximate
root. Mathematically, it is written as limn→∞

|en+1|
|en|p
= ν, here

p ≥ 1 is called the convergence order, the constant ν is the
rate of convergence or asymptotic error constant and en, en+1
are the errors at nth and (n+ 1)th iterations respectively.
Using variational iteration technique, we develop some

new higher order iterative algorithms with better perfor-
mance and efficiency. The variational iteration technique
was introduced by Inokuti et al. [15]. Using this technique,
Noor [27] and Noor and Shah [28] proposed some itera-
tive methods for the solution of non-linear equations. The
purpose of this technique was to solve a variety of diverse
problems [10]–[12].

Now we apply the described technique to obtain higher
order iterative algorithms. These algorithms are very fast
using less number of iterations to reach the required solu-
tion, free from 3rd and higher derivatives with ninth order
of convergence which raises their efficiency indices. The
convergence criteria of the suggested algorithms is also dis-
cussed. Various test examples have been solved to show their
performance as compare to the other similar existing iterative
algorithms in literature.

II. CONSTRUCTION OF SOME NEW ITERATIVE
ALGORITHMS
In this section, we construct some new iterative algorithms
by means of variational iteration technique. These algorithms
are multi-step iterative methods which involve predictor and
corrector steps. The proposed iterative algorithms have higher
order of convergence than one-step algorithms. By applying

variational iteration technique, we derive some new iterative
algorithms of order q + r where q, r ≥ 1 are the orders of
convergence of the auxiliary iteration functionsφ(x) andψ(x)
respectively.

Now consider the non-linear equation of the form

f (x) = 0 (2)

Suppose that α is the simple root and γ is the initial guess
sufficiently close to α. For better understanding and to deliver
the basic idea, we suppose the approximate solution xn of (2)
such that

f (xn) 6= 0

We consider φ(x) andψ(x) as two iteration functions of order
q and r respectively. Then

xn+1 = φ(xn)+ µ[f (ψ(xn))g(ψ(xn))]t (3)

where t = q
r is a recurrence relation which generates iterative

algorithms of order q + r and g(x) is any smooth arbitrary
function which later on is converted to g(ψ(xn)) and µ is
a parameter, called the ‘‘Lagrange’s multiplier’’ and can be
determined by using the optimality criteria on (3) by setting
first derivative of (3) with respect to xn equal to zero as
follows:

dxn+1
xn
= 0 (4)

Which leads us to the following equality:

µ = −
φ′(xn)[f (ψ(xn))g(ψ(xn))]1−t

tψ ′(xn)[f ′(ψ(xn))g(ψ(xn))+ f (ψ(xn))g′(ψ(xn))]
(5)

From (3) and (5), we get

xn+1 = φ(xn)

−
φ′(xn)
tψ ′(xn)

f (ψ(xn))g(ψ(xn))
[f ′(ψ(xn))g(ψ(xn))+ f (ψ(xn))g′(ψ(xn))]

(6)

Now we are going to apply (6) for constructing a general
iterative scheme for iterative methods. For this, suppose that

ψ(xn) = yn

= xn −
f (xn)
f ′(xn)

−
f 2(xn)f ′′(xn)

2[f ′3(xn)− f (xn)f ′(xn)f ′′(xn)]
(7)

Which is well-known Golbabai and Javidi’s method with
cubic convergence [8]. With the help of (6) and (7), we can
write

xn+1 = φ(xn)−
φ′(xn)f (yn)g(yn)

ty′n[f ′(yn)g(yn)+ f (yn)g′(yn)]
(8)

Let

φ(xn) = zn = yn −
f (yn)
f ′(yn)

(9)

Which is two-step iterative method having convergence of
order six [see eq.(23)]. Differentiate eq.(9) w.r.t ‘‘x’’, we have

φ′(xn) = z′n =
f (yn)f ′′(yn)
f ′2(yn)

y′n (10)
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and from Taylor’s series, we can write

f (zn) = f (yn)+ (zn − yn)f ′(yn)+
(zn − yn)2

2
f ′′(yn)

=
f 2(yn)f ′′(yn)
2f ′2(yn)

(11)

From (10) and (11), we have

φ′(xn) =
2f (zn)
f (yn)

y′n (12)

With the help of (8), (9) and (12), we get

xn+1 = zn −
2f (zn)g(yn)

t[g(yn)f ′(yn)+ g′(yn)f (yn)]
(13)

Here t = 6
3 = 2, which is according to the above described

technique. Then eq.(13) becomes:

xn+1 = zn −
f (zn)g(yn)

[g(yn)f ′(yn)+ g′(yn)f (yn)]
(14)

Relation(14) is the main and general iterative scheme, which
we use to deduce some new iterative algorithms by consider-
ing some particular cases of the auxiliary function g.

A. CASE 1
Let g(xn) = e(−βxn), then g′(xn) = −βg(xn). Using these
values in (14), we obtain the following algorithm.
Algorithm 1: For a given x0, compute the approximate

solution xn+1 by the following iterative schemes:

yn = xn −
f (xn)
f ′(xn)

−
f 2(xn)f ′′(xn)

2[f ′3(xn)− f (xn)f ′(xn)f ′′(xn)]

zn = yn −
f (yn)
f ′(yn)

xn+1 = zn −
f (zn)

[f ′(yn)− βf (yn)]

B. CASE 2
Let g(xn) = e−βf (xn), then g′(xn) = −βf ′(xn)g(xn). Using
these values in (14), we obtain the following algorithm.
Algorithm 2: For a given x0, compute the approximate

solution xn+1 by the following iterative schemes:

yn = xn −
f (xn)
f ′(xn)

−
f 2(xn)f ′′(xn)

2[f ′3(xn)− f (xn)f ′(xn)f ′′(xn)]

zn = yn −
f (yn)
f ′(yn)

xn+1 = zn −
f (zn)

[f ′(yn)− βf (yn)f ′(yn)]

C. CASE 3
Let g(xn) = e−βx

2
n , then g′(xn) = −2βxng(xn). Using these

values in (14), we obtain the following algorithm.

Algorithm 3: For a given x0, compute the approximate
solution xn+1 by the following iterative schemes:

yn = xn −
f (xn)
f ′(xn)

−
f 2(xn)f ′′(xn)

2[f ′3(xn)− f (xn)f ′(xn)f ′′(xn)]

zn = yn −
f (yn)
f ′(yn)

xn+1 = zn −
f (zn)

[f ′(yn)− 2βynf (yn)]
In all above cases, we take n = 0, 1, 2, 3, . . .
To get best results in all above defined algorithms, always

choose that values of β which makes the denominator
non-zero and largest in magnitude.

III. CONVERGENCE ANALYSIS
In this section, we discuss the convergence criteria of themain
and general iteration scheme described in relation (14).
Theorem 1: Assume that α ∈ I be the simple root of the

differentiable function f : I ⊂ R → R on an open interval
I . If the initial guess x0 is sufficiently close to α, then the
convergence order of the main and general iteration scheme
described in relation (14) is at least nine.

Proof: To prove the convergence of themain and general
iteration scheme described in relation (14), we assume that α
is the simple root of the equation f (x) = 0 and en be the error
at nth iteration, then en = xn − α and by using Taylor series
about x = α, we have

f (xn) = f ′(α)en +
1
2!
f ′′(α)e2n +

1
3!
f ′′′(α)e3n

+
1
4!
f (iv)(α)e4n + . . .+ O(e

10
n )

f (xn) = f ′(α)[en + c2e2n + c3e
3
n + c4e

4
n + . . .

+O(e10n )] (15)

where

cn =
1
n!
f (n)(α)
f ′(α)

, n = 2, 3, 4, . . .

f ′(xn) = f ′(α)[1+ 2c2en + 3c3e2n + 4c4e3n + 5c5e4n
+ . . .+ O(e10n )] (16)

f ′′(xn) = f ′(α)[2c2 + 6c3en + 12c4e2n + 20c5e3n
+30c6e4n + . . .+ O(e

10
n )] (17)

With the help of (15)− (17), we get

yn = α − c3e3n + (c32 − 3c4)e4n + . . .+ O(e
10
n ) (18)

f (yn) = f ′(α)[(yn − α)+ c2(yn − α)2 + c3(yn − α)3

+c4(yn − α)4 + . . .+ O(e10n )] (19)

f ′(yn) = f ′(α)[1+ 2c2(yn − α)+ 3c3(yn − α)2

+4c4(yn − α)3 + 5c5(yn − α)4

+ . . .+ O(e10n )] (20)
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g(yn) = g(α)+ (yn − α)g′(α)+
(yn − α)2

2!
g′′(α)

+
(yn − α)3

3!
g′′′(α)+

(yn − α)4

4!
g(iv)(α)

+ . . .+ O(e10n ) (21)

g′(yn) = g′(α)+ (yn − α)g′′(α)+
(yn − α)2

2!
g′′′(α)

+
(yn − α)3

3!
g(iv)(α)+

(yn − α)4

4!
g(v)(α)

+ . . .+ O(e10n ) (22)

With the help of (18)− (20), we have

zn = α + c2c23e
6
n + . . .+ O(e

10
n ) (23)

f (zn) = f ′(α)[(zn − α)+ c2(zn − α)2 + c3(zn − α)3

+c4(zn − α)4 + . . .+ O(e10n )] (24)

Using equations (15) − (24) in general iteration
scheme(14), we get the same result as given below

xn+1 = α − 2c22c
3
3e

9
n + O(e

10
n )

Which implies that

en+1 = −2c22c
3
3e

9
n + O(e

10
n )

Which shows that the main and general iteration scheme(14)
is of ninth order of convergence and all iterative algorithms
deduced from it have also the same order of convergence. �

IV. NUMERICAL RESULTS
In this section, we include some non-linear functions to
demonstrate the performance of newly proposed iterative
algorithms (for β = 1). We compare these algorithms with
Newton’s method (NM) [35], Golbabai and Javidi’s method
(JM) [8], Househölder’s method (HHM) [13] and modified
Halley’s method (MHM) [14]. For this purpose, following
test examples have been solved:

f1(x) = (ex
2
+ x − 20)20, x0 = 2.00,

f2(x) = π − 2x sin
π

x
, x0 = 2.50,

f3(x) = x3 + ln x + 0.15 cos 5x, x0 = 2.20,

f4(x) = x3 + 4x2 − 10, x0 = −0.30,

f5(x) = (x − 1)3 − 1, x0 = 1.30,

f6(x) = x2 − ex − 3x + 2, x0 = 2.50,

f7(x) = x3 − x2 + 3x cos x − 1, x0 = 1.00,

f8(x) = 0.986x3 − 5.181x2 + 9.067x − 5.289, x0 = 3.10,

f9(x) =
x

1− x
− ln

[
0.4(1− x)
0.4− 0.5x

]5
+ 4.45977, x0 = 0.78.

The last two numerical examples namely; f8 and f9 are actu-
ally the conversion of Engineering problems to the non-linear
equations. The first one is the the van der Waal’s equation
for interpreting the real and ideal gas behavior [36] that has
been converted to the non-linear form after choosing the
appropriate values of the parameters. The variable x denotes

the volume of the gas which is being under consideration.
The second numerical example is related to the fractional
transformation in a chemical reactor [31] which we converted
to the non-linear problem. In this problem, x represents a frac-
tional transformation of a particular species in the chemical
reactor problem. For the negative values of x, the expression
f9 has no physical meaning and has the bounded region [0, 1]
beyond which its derivative vanishes. That’s why, we have to
choose the initial guess carefully within the bounded region
to approximate the real root of f9. The numerical results of the
above described test examples have been shown in Table 1.

Here, we take the accuracy ε = 10−15 in the following
stopping criteria

|xn+1 − xn| < ε (25)

Table 1 shows the numerical comparisons of our developed
iterative algorithms (for β = 1), with Newton’s method
(NM), Golbabai and Javidi’s method (JM), Househölder’s
method (HHM) and modified Halley’s method (MHM). The
columns represent the number of iterations N , the magnitude
|f (x)| of f (x) at the final estimate xn+1, the approximate root
xn+1, the difference between two consecutive approximations
|xn+1 − xn|, the computational order of convergence (COC)
which can be approximated using the following formula:

COC ≈
ln |xn+1−α|
|xn−α|

ln |xn−α|
|xn−1−α|

which was introduced by Weerakoon and Fernando in (2000)
[37] and the last column represents CPU time consumption
in seconds, taken by different algorithms to approximate the
required solution.

From the over all obtained results of the Table 1, we can
clearly see that the suggested algorithms approximated the
solutions of different test problems with the great accuracy
than the estimations gained through the other four itera-
tion schemes. These results also show that the suggested
algorithms consumed less number of iteration to meet the
stopping criteria (25) with high computational order of con-
vergence as compared to the other comparable methods.
It should also be noted that the presented algorithms take
less CPU time in seconds to achieve the stopping criteria for
approximating different test problems. In short, we can say
that the suggested algorithms perform faster and are more
accurate to the exact solutions in comparison with the other
compared methods.

We solved all test problems and calculated the CPU time
consumption in seconds with the aid of the computer program
Maple 13.

Table 2 shows the comparison of the number of iterations
required for different iterative methods with our developed
iterative algorithms (for β = 1) to approximate the root of the
given non-linear function for the stopping criteria (25) with
the accuracy ε = 10−100. The columns represent the number
of iterations for different functions along with initial guess x0.
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TABLE 1. Comparison of NM, JM, HHM, MHM, Algorithm 1, Algorithm 2 & Algorithm 3.
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TABLE 2. Comparison of number of iterations required for different iterative methods for ε = 10−100.

The numerical results of Table 2 again certified the fast
and best performance of the proposed algorithms in terms of
number of iterations even though the accuracy has been raised
to 10−100. All calculations have been carried out using the
computer program Maple 13.

V. GRAPHICAL COMPARISON BY MEANS OF
POLYNOMIOGRAPHS
The problems related to finding the roots of polynomials have
played a vital role in engineering and mathematical sciences.
It is one of the oldest and most deeply studied mathematical
problems as one can study the history of Mathematics that
the ancient Greeks and Sumerians considered such practical
problems in 3000B.C, that can now be stated as a root-finding
problems using modern mathematical language. In the seven-
teenth century, Newton suggested an algorithm for approxi-
mating roots of polynomials. After that Cayley [5] studied
the chaotic and strange behavior while applying Newton’s
method on cubic polynomial x3 − 1 in complex plane. The
problem arisen by Calay was explained by Julia in 1919.
The Julia sets bought many new discoveries i.e., Mandelbrot
set and Fractal in 1970 [24]. The term ‘‘Polynomiography’’
was first introduced in 2005 by Kalantari [16], [17]. He
defined polynomiography as the combination of both science
and art related to visualization of the root-finding process
for a polynomial in complex plane. The individual image
produced as a result of polynomiography is thus called a
‘‘Polynomiograph’’. The polynomiographs can be generated
by any iterative scheme i.e., Newton’s method, Halley’s
method etc. In the last few years, many researchers worked
on polynomiography and generated new and nice looking
images through different algorithms. Soleimani et al. [33],
suggested some new iterative methods free from derivatives
and then presented their fractal behaviors by means of their
basins of attraction. In [20], the authors generated beautiful
polynomiographs using Ishikawa and Mann iterations that
were quite new and looked aesthetically pleasing compar-
ing to the ones from standard Picard iteration. In 2016,
the authors modified the Abbasbandy’s method and then
presented polynomiographs through the modified method
[19]. Gdawiec [7] in 2017, used three different approaches,
i.e., affine and s-convex combination, the use of iteration pro-
cesses from fixed point theory and multi-step polynomiogra-
phy and obtained new and diverse fractal patterns that have

many applications in textile and ceramics patterns. In [23],
the authors presented some new graphical objects obtained
by the use of escape time algorithm and the derived criteria.
They presented graphical examples by means of Jungck-CR
iteration process with s-convexity. In 2019, Kalantari and
Hans Lee [18] introduced new ways of creating mathematical
art through a novel Newton-Ellipsoid method for solving
polynomial equations. The nature of polynomiographs under
Newton-Ellipsoid seems to be very different from the other
images, which opens the possibility of generating novel artis-
tic images.

To generate a polynomiograph via computer program,
we have to select an initial rectangle R containing the roots of
the polynomial. Then for each point z0 in the region, we run
an iterative method, and then color the point corresponding
to z0 is depended upon the approximate convergence of the
truncated orbit to a root, or lack thereof. The resolution of
the image depends on our discretization of the rectangle
R. For example, discretizing R into a 2000 by 2000 grid
yields a high-resolution image. Polynomiography has vast
applications in many fields of science and art.

According to Fundamental Theorem of Algebra, any com-
plex polynomial with complex coefficients {an, an−1, . . . , a1,
a0}:

p(z) = anzn + an−1zn−1 + . . .+ a1z+ a0 (26)

or by its zeros (roots) {r1, r2, . . . , rn−1, rn} :

p(z) = (z− r1)(z− r2) . . . (z− rn) (27)

of degree n has n roots (zeros) which may or may not
be distinct. The degree of polynomial describes the num-
ber of basins of attraction and localization of basins can
be controlled by placing roots on the complex plane
manually.

Usually, the polynomiographs are colored and their color-
ing depends upon the number of iterations needed to approxi-
mate the roots of some polynomial with a given accuracy and
a chosen iterative scheme. The general and base algorithm
for the generation of polynomiograph is presented in the
following Algorithm 4.

In the Algorithm 4, the convergence test (zn + 1, zn, ε)
returns TRUE if the appliedmethod has converged to the root,
and FALSE otherwise. The most common and widely used
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Algorithm 4 Polynomiograph’s Generation
Input: p ∈ C— polynomial, A ⊂ C— area, k —

maximum number of iterations, I — iteration
method, β — parameter for the iteration, ε —
accuracy, colormap [0 . . .C − 1] — colormap
with C colors.

Output: Polynomiograph for the complex polynomial p
in area A.

for z0 ∈ A do
i = 0
while i ≤ k do

zn+1 = I (zn)
if |zn+1 − zn| < ε then

break
i = i+ 1

color z0 by means of colormap.

convergence test has the following standard form:

|zn+1 − zn| < ε, (28)

where zn+1 and zn are two consecutive points in an iteration
process and ε > 0 is a given accuracy. In this article we also
use the stopping criteria (28).

Using newly developed iterative algorithms (for β = 1),
we present polynomiographs of the following complex poly-
nomials and comparing them with other well-known existing
iterative algorithms.

p1(z) = z3 − 1, p2(z) = (z3 − 1)2

The colormap used for the coloring of iterations in the genera-
tion of polynomiographs is presented in the following figure:

FIGURE 1. The colormap used for generating polynomiographs.

Example 1: Polynomiographs for the Polynomial p1(z) by
Means of Different Iterative Methods

FIGURE 2. Polynomiograph for p1(z) using (NM).

FIGURE 3. Polynomiograph for p1(z) using (JM).

FIGURE 4. Polynomiograph for p1(z) using (HHM).

FIGURE 5. Polynomiograph for p1(z) using (MHM).

FIGURE 6. Polynomiograph for p1(z) using Algorithm 1.
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FIGURE 7. Polynomiograph for p1(z) using Algorithm 2.

FIGURE 8. Polynomiograph for p1(z) using Algorithm 3.

Example 2: Polynomiographs for the Polynomial p2(z) by
Means of Different Iterative Methods

FIGURE 9. Polynomiograph for p2(z) using (NM).

FIGURE 10. Polynomiograph for p2(z) using (JM).

FIGURE 11. Polynomiograph for p2(z) using (HHM).

FIGURE 12. Polynomiograph for p2(z) using (MHM).

FIGURE 13. Polynomiograph for p2(z) using Algorithm 1.

FIGURE 14. Polynomiograph for p2(z) using Algorithm 2.
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FIGURE 15. Polynomiograph for p2(z) using Algorithm 3.

In examples(1 − 2), which include figures(2 − 15), Poly-
nomiographs of different complex polynomials for Newton’s
method (NM), Golbabai and Javidi’s method (JM), House-
hölder’s method (HHM), modified Halley’s method (MHM)
and our developed iterative algorithms (for β = 1) have
been shown. When we look at the generated images, we can
read two important characteristics. The first one is the speed
of convergence of the iterative scheme, i.e., the color of
each point gives us information on how many iterations
were performed by the iterative scheme to reach the root.
The second characteristic is the dynamics of the adopted
iterative scheme. Low dynamics are in those areas where the
variation of colors is small, whereas in areas with a large
variation of colors the dynamics are much high.

The black color in images locates those places where the
solution cannot be achieved for the given number of itera-
tions and one can observe that the images generated through
proposed iterative algorithms scarcely find such places which
prove their best performance. The areas of the same colors in
above figures indicate the same number of iterations required
to determine the solution and they look similar to the contour
lines on the map.

All these figures have been generated using the computer
program Mathematica 10.0 by taking ε = 0.01 and k = 15
where ε shows the accuracy of the given root and k represents
the upper bound of the number of iterations.

VI. CONCLUDING REMARKS
Based on variational iteration technique, some new iterative
algorithms for the solution of one dimensional non-linear
equations have been established, having ninth order of con-
vergence. By using some test examples, the performance and
efficiency of the proposed iterative algorithms have been ana-
lyzed. Tables 1–2 show the best performance of the proposed
iterative algorithms as compare to other well-known existing
iterative algorithms in terms of accuracy, speed, time, number
of iterations and computational order of convergence. We
have also presented the graphical comparison of the proposed
iterative algorithms with other well-known iterative algo-
rithms by means of polynomiographs of some complex poly-
nomials which describe the fractal behavior and dynamical
aspects of the proposed iterative algorithms. The variational
iteration technique can be applied to derive a broad range

of new algorithms for solving one dimensional non-linear
equations.
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