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ABSTRACT The introduction of mobile technologies in therapeutic exercise interventions has permitted the
collection of fine-grained objective quantified information about patients’ health. However, exercise inter-
ventions generally fail to leverage these data when personalizing the exercise needs of patients individually.
Interventions that include technology-driven personalization strategies typically rely on the use of expensive
laboratory equipment with expert supervision, or in the self-management of patients to meet the prescribed
exercise levels by an activity tracker. These methods often do not perform better than non technology-driven
methods, therefore more sophisticated strategies are required to improve the personalization process. In this
paper we present ATOPE+-, an mHealth system to support personalized exercise interventions in patients
with cancer based on workload-recovery ratio estimation. ATOPE+ enables the remote assessment of
workload-recovery ratio to provide optimal exercise dosage by means of a knowledge-based system and
by combining physiological data from heterogeneous data sources in a multilevel architecture. The results
show that ATOPE+ is a system ready to be used in the context of a clinical trial after being tested with
patients with breast cancer and conducting an usability evaluation by clinical experts.

INDEX TERMS mHealth, knowledge-based system, smartphone, app, wearable, therapeutic exercise,

physical activity, heart rate variability, cancer.

I. INTRODUCTION

Therapeutic exercise (TE) poses a means to address the short
and long-term side effects related to cancer itself and its
treatment [1], [2]. TE is a subset of physical activity (PA)
that consists of structured and repetitive planned movements
of activities with a therapeutic aim. The definition of PA is
broader, it consists of any movement produced by skeletal
muscles with an energy expenditure. Both! TE and PA had
consistently reported benefits to patients with cancer [3] and
they are generally recommended for both prevention and

The associate editor coordinating the review of this manuscript and
approving it for publication was Rajeswari Sundararajan.

1Throughout this paper, we will differentiate between PA and TE depend-
ing on the intervention methods used in the references.
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treatment purposes [4]—[6]. There is also strong evidence sup-
porting that, together with medical and surgery treatments,
TE improves survival and reduces recurrence and mortality
risks [7] due to its positive impact in factors related to quality
of life [8]-[10]. This has recently driven the research com-
munity to seek after new means to deliver TE interventions in
remote environments by leveraging mobile technology [11].
In fact, to date, the literature shows that mHealth PA inter-
ventions are a feasible, cost-effective approach to improve
overall activity levels, body composition, quality of life and
self-reported symptoms in patients with cancer [12] and
survivors [13].

The rise of mobile technologies and the Internet of Things
paradigm in healthcare has provided means to support
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personalized health interventions in remote environ-
ments [14], however, the personalization process still
presents a challenge. Personalizing (or failoring) a TE
intervention consists in fitting it to the needs, charac-
teristics or possibilities of each patient with an adapted
and evidence-based prescription following for frequency,
intensity, time and type [15]. Traditionally, personalization
strategies in remote TE interventions were overlooked. Per-
sonalization primarily relied on patients’ self-management to
meet the minimal levels of recommended PA [16], and inter-
vention materials were given as printed booklets, multimedia
content or communicated by phone calls. The broad-range
nature of these methods is still present in many mHealth
interventions [12], [13], thus hampering the introduction of
more sophisticated personalization strategies. This opens up
opportunities to introduce mobile technologies and monitor-
ing devices to gather objective, comparable and quantifiable
information about each patient’s health and performance dur-
ing the intervention process [17], [18], which can potentially
be used to tailor and adapt such process to the specific user
needs.

In order to deliver a successful personalized TE interven-
tion, it is important to assess the impact of every training
session in the patient, the training load, to avoid over-training
and optimize the prescription dosage in a flexible nonlin-
ear manner. The workload-recovery ratio is a key variable
to address this issue [19]. The balance of sympathetic and
parasympathetic outputs, typically measured using heart rate
variability (HRV), plays a key role in the workload-recovery
ratio [20]. Consequently, HRV is useful to estimate TE
load [21]. However, since HRV measurement typically
requires lab equipment, namely an ECG (electrocardiogra-
phy) [22], any personalization process often becomes tedious
and expensive. Fortunately, HRV monitoring has been consis-
tently validated in several types of remote environments with
multiple devices and participants [23]-[25], thus enabling its
use in TE interventions to estimate workload-recovery ratio.
There are also studies using HRV in patients with cancer [26],
[27], however, and to the best of our knowledge, there are no
prior works using HRV to measure training load in patients
with cancer.

Despite the potential benefits of using HRV, it must be
noted that HRV could be influenced by many other fac-
tors such as physiological and genetic conditions, diseases,
lifestyle habits and even external factors [28]. Stress, sleep
and fatigue are the factors getting more attention from the
research community [29]. Studies using HRV to measure
training load in other populations normally omit the role of
these other factors that may have high influence in patients
with cancer and survivors [22], [30]-[36]. These factors influ-
encing HRV typically need to be assessed with their gold-
standard but, fortunately, there are already successful alter-
native previous experiences when measuring these factors in
patients with cancer in remote environments [37]-[40].

In the light of these opportunities, we present ATOPE+-,
an mHealth system to support personalized therapeutic
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exercise interventions in patients with cancer. ATOPE+ rep-
resents the technological drive of the ATOPE trial [41].
The proposed system enables the remote assessment of
workload-recovery ratio to provide optimal exercise dosage
by means of a knowledge-based system. With the automatic
generation of personalized training prescriptions, ATOPE+
allows us to provide flexible nonlinear periodized exercise
prescription (as opposed to linear periodized), minimizing
the risk of over-training throughout the TE intervention. To
our knowledge, ATOPE+- is the first mHealth system com-
bining measures of exercise load (HRV), modulating fac-
tors of HRV (recovery, sleep, distress, fatigue), and daily
and training-specific physical activity levels (Fitbit activity
tracker) to personalize TE interventions in patients with can-
cer. The contributions of this paper are the following:

1) A novel concept to personalization in TE interventions
in patients with cancer by using physiological variables
related to workload-recovery ratio in a remote context.

2) A novel mHealth architecture and a description of its
implementation supporting the requirements of a TE
intervention in patients with breast cancer, consisting
of:

o Heterogeneous physiological data collection:
Bluetooth HRV for exercise load, in-app question-
naires for the modulating factors of HRV, and the
Fitbit cloud for daily and workout physical activity
levels.

o A multilevel architecture to transform physiologi-
cal data into useful knowledge: data, information
and knowledge management layers.

o An intelligent knowledge-based system to support
the automatic generation of personalized training
prescriptions.

3) An usability evaluation of ATOPE+ with experts
(physical therapists with TE experience) using the Sys-
tems Usability Scale (SUS) and a semi-structured inter-
view.

Overall, ATOPE+ allows clinical experts to simplify
knowledge management and decision-making within the con-
text of a TE intervention by integrating in one tool the process
of diagnosing and providing patients’ with their individual
exercise needs.

The rest of the paper is structured as follows.
Section 2 gathers related work to mHealth systems in general
and applied to cancer. Section 3 describes ATOPE+- in its
entirety: requirements, architecture, implementation and use.
The results of its use in patients with cancer and of an
usability evaluation are presented in Section 4 and discussed
in Section 5. Final conclusions and remarks are summarized
in Section 6.

Il. RELATED WORK

A. mHealth SYSTEMS

There are plenty of mHealth systems in the literature
with applications that range from the promotion of healthy
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lifestyles to the prevention and diagnosis of very specific
diseases [42]. Most of these mHealth systems leverage the
concept of body sensor networks (BSN), a particularization
of wireless sensor networks (WSN) in the context of body
monitoring environments. A BSN consists of interconnected
biomedical sensors that enable the monitoring of physiolog-
ical parameters to serve the basis for personalized health
applications. The literature gather many examples, like Phys-
iodroid [43], which based its health recommendations upon
ubiquitous monitoring of physical activity and vital signs;
or Mining Minds [44], which leveraged context-awareness,
knowledge bases and analytics to provide tailored health
support through a knowledge-based recommender system.

Some mHealth systems focus on primarily lever-
aging smartphone capabilities such as AWARE, [45],
MyTraces [46] or InCense [47]. AWARE [45] supports con-
text monitoring, i.e. the collection of unobtrusive passive
sensor data with the smartphone, and has highlighted the
potential of smartphone sensory data in different health appli-
cations such as affect monitoring [48] estimating symptom
severity in patients with cancer [49]. InCense [46] shares the
same approach to context monitoring and used it to assess
functional status in the elderly. MyTraces [47] focuses on
recording users’ interaction with the smartphone and their
emotional states.

Context monitoring may be complemented with physio-
logical measures too. For instance, the CASP system [50]
combines smartphone sensing with Bluetooth ECG to predict
stress via machine learning. The real-time predictions and
feedback channels of CASP enabled provide intervention
methods too.

B. mHealth IN CANCER

There are several examples of mHealth systems in can-
cer. For example, BENECA [37] monitored energy balance
and healthy lifestyle in breast cancer survivors. BENECA
reported good reliability results, however, the participants
highlighted the inconvenience of manually recording their
meals and activities every day. This is representative of why
other works aimed for unsupervised monitoring by means
of clinical-grade activity trackers. For instance, one study
used accelerometry to assess performance status and qual-
ity of life in patients with gastrointestinal cancer [51]; and
another study used accelerometry to profile physical activ-
ity behavior in cancer survivors with chronic fatigue [52].
Due to the accuracy and reliability improvements of com-
mercial activity wearables [53], other works have replaced
the clinical-grade activity tracker with more convenient and
affordable off-the-shelf options. For instance, one study [49]
successfully combined smartphone sensing, monitoring with
commercial activity tracker, and patient self-reports to pre-
dict chemotherapy-related symptom severity using machine
learning. Nonetheless, the promising yet unclear relationship
among all the variables monitored through smartphone sens-
ing and activity trackers to clinical measures such as perfor-
mance status [51], [54]-[57] or hospitalization risk [58], [59]
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reflects the need for a more thorough introduction of mobile
technology to assess patient needs.

Focusing on PA and TE interventions with patients with
cancer, just a few works leverage the mHealth paradigm.
A recent systematic review [12] identified twelve ran-
domized controlled trials meeting the characteristics of an
mHealth exercise intervention. In most cases, there was
no objectively-monitored personalization strategy. One of
the studies [60] used a smartphone app and a pedome-
ter for goal management within the context of a physical
activity intervention, however, its only purpose was moni-
toring, making the personalization strategy to still depend
entirely on the clinical experts. Another trial [61] compared
a smartphone-with-pedometer exercise intervention (inter-
vention arm) against a regular-brochure intervention (con-
trol arm) in patients with breast cancer, and they found no
significant differences between the two groups. Both groups
received personalized exercise prescriptions depending on
initial tests, but the intervention arm aimed for a better per-
sonalization strategy. The intervention arm used the activity
duration recorded by the pedometer in the previous week as a
baseline for the next prescription. Thus, the next prescription
added the normal prescription to the previous baseline. Both
interventions were successful, however, the lack of significant
differences between the two arms points out the need of more
sophisticated personalization strategies.

Ill. ATOPE+

ATOPE+- seeks to shed some light in developing novel per-
sonalization strategies for physical activity interventions in
patients with cancer. ATOPE+ focuses on retrieving relevant
information to the workload-recovery ratio of each subject,
so that the TE intervention could be optimized. This allows
providing flexible nonlinear periodized prescription of exer-
cise depending on how each patient responds to the training.
In this section, the requirements, system architecture and
system implementation of ATOPE+ are described.

A. REQUIREMENTS

The requirements of digital health systems are well-discussed
in the literature, ranging from pure technical aspects [62],
[63] to security concerns [64], or addressing what is necessary
to deliver a successful intervention [65]. The requirements of
ATOPE+ thrive on them, but more specifically on the need
to deliver personalized TE intervention in patients with breast
cancer. The definition of these requirements was conducted
through several meetings among the computer scientists,
engineers and physical therapy professionals co-authoring
this article at the beginning of the collaboration, and fur-
ther refined as the development of ATOPE+ continued. The
European General Data Protection Regulation (GDPR) is also
included in the requirements from design [66].

Patients must follow the data gathering protocol under
similar conditions every day. Patients should record their
HRYV in the morning right after waking up and emptying their
bladder. HRV must be recorded in a lying position [67], and
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a minimum of 5 minutes are required for analysis [68].
To establish a reliable baseline for HRV comparison, a mini-
mum of 5 measures are required in the previous 7 days [69].
Next, patients must record their perceived recovery sta-
tus, distress, sleep quality and fatigue using questionnaires.
Patients must also use a wearable activity tracker to collect
their overall and training-specific physical activity levels.
These data will be used in post-intervention analysis to dif-
ferentiate patients depending on the fulfillment of general
physical activity guidelines [26], and the level of agreement
between the training intensity performed and the one indi-
cated in the personalized exercise prescriptions.

First, to automatically generate the personalized exercise
prescriptions according to expert knowledge, a knowledge-
based system is required. The base of rules will determine the
frequency, intensity, time and type of the exercise prescription
depending on every day patient’s data. Nevertheless, some
rules may not always apply, so ATOPE+ must provide expert
tools to be able to check and change the exercise prescription
according to the expert’s criteria on how patient’s health is
evolving. Two interfaces must be available to address the
needs of patients and clinical personnel separately and inter-
act with the knowledge-based system.

Patients must have access to an smartphone app to gather
their data, interact with the experts, and receive the personal-
ized exercise prescriptions. The smartphone app must allow
connection to external devices, such as Bluetooth ECG, and
to ask for recovery, distress, sleep quality and fatigue percep-
tions through in-app questionnaires. Besides, the app must
collect and process the minimum amount of data required
for the intervention trial, thus meeting the GDPR minimiza-
tion principle. Patients should be able to follow the data
gathering protocol every day, thus the smartphone app must
provide a very clear and intuitive flow through it. The number
of wearable devices used must be as reduced as possible,
as well as the number of questions asked, so that the proto-
col complexity and amount of time needed to follow it are
minimized.

Clinical experts must be able to check patients’ data and
modify their exercise recommendations. A web interface
must provide meaningful visual display of data related to
the workload-recovery ratio of every patient along with the
exercise prescriptions. The same web interface must provide
means for checking and modifying the personalized exercise
prescriptions.

ATOPE+ must be able to manage the heterogeneous data
sources noted before: Bluetooth ECG, in-app questionnaires
and commercial activity tracker. Moreover, ATOPE+ should
be able to transform the raw data into useful information, that
is, the personalized exercise prescriptions. This collection of
data must be as unobtrusive as possible for the patients to
facilitate their engagement in the intervention.

Since ATOPE+- is to be used in a context of a random-
ized trial with multiple patients at the same time, it must
be able to deal with high data volumes and the structured,
semi-structured or unstructured nature of the collected data.

VOLUME 9, 2021

Consequently, data must be stored and processed efficiently
to provide agile and efficient responsiveness.

Data persistence must be carefully managed to avoid data
loss in likely deviations from the ideal scenario, like no inter-
net connection or Bluetooth ECG disconnection. Therefore,
data must be stored locally in the patients’ smartphone before
being sent to the cloud or server.

Data reliability must be ensured. Some scenarios might be
prone to error, specially those regarding HRV measurement,
such as ECG misplacement or ECG recording disruption by
external events (e.g. a loud noise, a flash light or a phone
call). ECG misplacement may be avoided displaying in-
app reminders on how to use the ECG device. Disruption risk
may be minimized by lowering notification volume levels
during the recording. Last, to ensure HRV reliably, HRV
signals must be filtered by detecting, removing and interpo-
lating outliers and ectopic beats [70], [71]. Patients should
be given the choice to record their HRV again voluntarily if
they considered the recording conditions were not to be ideal,
or if the automatic HRV processing rejects the validity of the
measures.

The vast amount of data generated may help to assess
the validity and pertinence of the training plans assigned
to each patient. Thus, this data can be used to refine the
existing expert-based rules or even create new ones. On the
one hand, unsupervised learning algorithms may reveal these
unforeseen relationships among the participants and their
recovery process using clustering, anomaly detection or rule
generation algorithms. On the other hand, supervised learn-
ing, specifically classification models combined with feature
selection, may help to highlight the most relevant features
for the recovery of patients. Building prediction models to
assess the recovery of the patients may also help experts in
deciding the best exercise prescriptions for patients when
comparing best-case vs. worst-case scenarios. Consequently,
ATOPE+ must be able to implement intelligent automatic
data-driven analysis and provide means to introduce new
rules commanding the recommendations.

Finally, it is of utmost importance to ensure the security
and privacy of the data. All online communications must be
secured and encrypted with available standards. Access to
the ATOPE+ centralized server must be protected through
firewall. All the data within the system pseudoanonymized
and encrypted. The risk for malicious data usage is increasing
as sensitive data-driven systems like ATOPE4- emerge. For-
tunately, regulatory and legal policies are already taking this
into account such as the European GDPR, which is mandatory
regulation for our system.

B. SYSTEM ARCHITECTURE

The architecture of ATOPE+ is shown in Figure 1. The
first and fundamental element of the architecture is the
smartphone app (hereafter, just app). The app is the main
communication channel with the patient, for both gathering
data and for receiving exercise prescriptions. The app col-
lects data from three sources: wearable Bluetooth ECG,
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in-app questionnaires, and a Fitbit device. ECG and question-
naire data are collected directly through the app, and stored
in a local database to ensure persistence of data. If Internet
connection is available, data are sent to the server to gen-
erate an exercise prescription. The generated prescription is
then communicated to the patient’s app almost immediately.
Last, Fitbit data collected in the Fitbit Cloud through the
Fitbit app. A description of all the data available is found in
Table 1. The ECG variables collected are the time domain,
frequency domain and poincare plot features, all of them
useful for short-HRV measurement (5-min) and to estimate
workload-recovery ratio [21]. The modulating factors of HRV
are gathered through the in-app questionnaire features [28],
already successfully measured in patients with cancer in
remote environments [37]-[40]. Fitbit’s physical activity and
sleep data are collected in its entirety as an objective and
comparable measure of the exercise load performed by the
patient during the day and within training sessions.

The second element of the system is the centralized secure
server, and it embodies the knowledge-based system and the
clinical web interface stated in the requirements. Several
modules comprise the centralized secure server. ATOPE+
downloads Fitbit data with the Fitbit querier and incorporates
it into the database with the Fitbit data adapter. The Fitbit
querier interacts directly with the Fitbit web API [72] to
download the fine-grained activity data of every participant,
while the Firbit data adapter adapts and inserts the JSON
files returned by the Fitbit API into the relational database.
A secured and authenticated RESTful API enables commu-
nications with the smartphone app to capture patient’s ECG
and questionnaire data. The API also serves as a means to
deliver the personalized exercise prescriptions, which are
stored once generated. Before building the exercise prescrip-
tions, the raw heterogeneous data needs to be processed in
order to extract meaningful information out of it. Raw data
enters the data manager to be preprocessed and time-synced.
Besides, this module cleans the ECG data by automatically
detecting, removing and interpolating outliers and ectopic
beats, required to ensure correct short-HRV analysis [71].
The information manager transforms the processed data into
useful information related to different health domains of the
patient: sleep analyzer, active and sedentary behavior ana-
lyzer, training load analyzer, fatigue analyzer and distress
analyzer (modules not shown in figure for the sake of sim-
plicity). All the information generated gets stored and serves
as input to the knowledge manager to generate the individ-
ual exercise prescriptions. This information comes through
the information adapter to feed simultaneously the feature
selector and recommendation builder. The recommendation
builder generates personalized recommendations” according
to the expert knowledge in the base of rules. The cascad-
ing feature selector and machine learning prediction model

21n the case of ATOPE+, the term recommendation matches the per-
sonalized exercise prescription. For the sake of simplicity, we will refer to
recommendations in the description of the ATOPE+ system.
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represent an active part of the data-driven knowledge by
providing recovery predictions for each patient individually.
This tool may even assist the expert in evaluating the fitness
of rules to patients individually.

The remaining modules of the system revolve around the
expert, in our case, a physiotherapist. The Web interface
allows the expert to: visualize the patient’s data gathered;
generate new recommendations or modify existing ones for
the patients through the recommendation manager; and intro-
duce, modify or remove rules in the system through the rule
editor.

C. SYSTEM IMPLEMENTATION

In this section we detail the implementation for the smart-
phone app and the centralized secured server of ATOPE+.
We also include details on the use of ATOPE+4- from the both
patients’ and experts’ perspectives.

1) SMARTPHONE APP

Taking into account the importance of cross-platform
app development (essentially Android and iOS), the ATOPE+
app was implemented using Flutter [73] and it is shown
in Figure 2. An exemplary use of the app is pictured in Fig-
ure 2a, it shows the ECG Polar H10 (Polar USA) position
(1) and the start of the HRV recording protocol (2 and 3).
Opening the app, the main view ((Figure 2b) welcomes the
patient with a message, instructions, and the option to start
the protocol. Once the protocol has started, the app scans
for available Bluetooth ECG devices to select one. Once the
ECG is connected, the view lets the patient to start recording
their HRV by pressing a Play button Figure 2c. The HRV
recording is framed in a 7 minute countdown, out of which
only the central 5 minutes are analyzed. Right after the count-
down, the app notifies the patient with sound and vibration
and the HRV data are sent to the server to be processed.
The protocol is followed by the questions for sleep quality,
recovery, fatigue and distress perception. Questions for sleep
quality, fatigue and recovery perception follow the design
pictured in Figure 2d, a continuous Likert scale ranging
0 to 10 with labels in its extreme values. The distress view
(Figure 2e) adapts the clinically validated NCCN Distress
Thermometer [74] with a continuous slider too. Once the
questions are finished, the responses are sent to the server to
join the HRV data already processed and receive an automatic
personalized exercise prescription, as shown in Figure 2f.
This last view also provides the patient with the option to
record their HRV again voluntarily, for example, if they think
the HRV recording conditions were not ideal.

The ATOPE+ app includes some mechanisms to ensure
data transfer to the server. All data are stored locally before
being sent. If connection fails at the time of sending HRV or
question data, the app will ask the patient to check the Internet
connection and try again. Once the Internet connection is
back, the data previously stored is sent to the server. This
will only happen at the end of the HRV recording or after
the last question is answered, thus avoiding disruptions of the
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TABLE 1. ATOPE+ data. All data are timestamped. ECG data are extracted from raw R-R signal with the Aura-healthcare hrvanalysis package [75]. Fitbit
data are retrieved from its Web API [72] using the python-fitbit package [76].

Source Data Type Description
hr int Heart rate (beats per minute).
T int R-R interval in milliseconds.
cvnni float Coefficient of variation equal to the ratio of sdnn divided by mean_nni.
cvsd float Coefficient of variation of successive differences (rmssd divided by mean_nni.)
cv_Inrmssd float Coefficient of variation of LnRMSSD 7-day rolling average.
hf float Variance in R-R intervals in the high frequency (0.15 to 0.40 Hz).
hfnu float Normalized hf power.
If float Variance in R-R intervals in the low frequency (0.04 to 0.15 Hz).
If_hf_ratio float 1f/hf ratio as a quantitative mirror of the sympatho/vagal balance.
Ifnu float normalized If power.
Inrmssd float Natural log of the root Mean square of the successive differences.
max_hr float Maximum heart rate.
mean_hr float Mean heart rate.
median_nni float Mean of R-R intervals.

ECG min_hr float Minimum heart rate.
nni_20 int Number of interval differences of successive R-R intervals greater than 20 ms.
nni_50 int Number of interval differences of successive R-R intervals greater than 50 ms.
Pnni_20 float Proportion of NN20 divided by the total number of NN (R-R) intervals.
Pnni_50 float Proportion of NN50 divided by the total number of NN (R-R) intervals.
range_nni float Difference between the maximum and the minimum nn_interval.
ratio_sd2_sd1 float Ratio between sd2 and sd1.
sdl float Standard deviation of Poincare plot projection on the perpendicular to the line of identity.
sd2 float Standard deviation of Poincare plot projection on the line of identity.
sdnn float Standard deviation of the NN (R-R) intervals.
sdsd float Standard deviation of differences between adjacent R-R intervals.
std_hr float Standard deviation of heart rate.
swc_Inrmssd float Smallest worthwhile change of LanRMSSD 7-day rolling average.
total_power float Total power density spectral.
vif float Variance in R-R intervals in the very low frequency (0.003 to 0.04 Hz).
sleep_satisfaction | float Sleep satisfaction in continuous Likert scale (0.0 — 10.0).

In-app sleep_time int Reported sleep time (minutes)

p . distress float Distress in continuous Likert scale (0.0 — 10.0).

questionnaires recovery float Recovery in continuous Likert scale (0.0 — 10.0).
fatigue float Fatigue in continuous Likert scale (0.0 — 10.0).
steps nt Steps count.

Fitbit’s intensity int PA level (0, sedentary; 1, lightly active; 2, fairly active; 3 very active)

activity mets int METsS (metabolic equivalents of task) expended.
calories float Calories expended.

Fitbit's sleep_level §tring Sleep stage (‘deep’, ‘light’, ‘rem’. and .‘wake’),

sleep nap int Number of sleep nap that day (0 is main sleep).
seconds int Duration in sleep stage (seconds).
name string | Name of activity.
logtype string | Type of activity (‘auto_detected’, ‘manual’, “fitstar’, ‘mobile_run’, ‘tracker’).
active_duration int Duration of physical activity during session.
duration int Duration of session.
calories nt Calories expended in session.
sed_time int Sedentary time in session.
light_time int Light intense activity time in session.
fair_time nt Fair intense activity time in session.
very_time int Very intense activity time in session.

Fitbit's max_hr_normal ?nt Max HR @n normal level.

training max_hr_cardio %nt Max HR in cardio level.

session max_hr_fatburn int Max HR in fatburn level.
max_hr_peak int Max HR in peak level (and in session).
mean_hr int Mean hr in session.
min_hr_cardio int Minimum HR in cardio level.
min_hr_fatburn int Minimum HR in fatburn level.
min_hr_normal int Minimum HR in normal level.
min_hr_peak int Minimum HR in peak level.
time_hr_cardio int Time in cardio zone.
time_hr_fatburn int Time in fatburn zone.
time_hr_normal int Time in normal zone.
time_hr_peak int Time in peak zone.
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FIGURE 2. ATOPE+ smartphone app. The figures show an exemplary use of the app (a), the most representative views seen throughout the
protocol (b-e), and the display of an exercise prescription once the protocol is finished (f).

protocol in the case of connection loss. Besides, if the patient To ensure data reliability, different strategies are used to
were to exit the app in the middle of the protocol, a warning handle the HRV and the questions. Regarding HRYV, if the
dialog would pop up to alert the patient they are about to exit server detects a problem while processing the HRV signal
the app, and inviting them to continue the protocol. (e.g. less than 5 minutes recorded or an excessive amount
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of outliers and/or ectopic beats), its response will trigger in
the app an error message, asking the patient again to record
their HRV. Phone notifications can be very disruptive, thus
the smartphone is automatically set up to silent mode while
recording HRV.? Volumes are brought back to the previous
state once finished. Regarding the questions, the patient is
forced to answer them before advancing to the next question.
This is done by disabling the Next buttons at the moment
questions are presented, only enabling the Next button once
the patient has actively selected a score on the slider. More-
over, the initial position of the slider is randomized for every
question, which has proven to be an effective mechanism to
mitigate anchoring in the responses [77].

Another main concern while implementing the app was
usability. We minimized the number of interactions by includ-
ing the least amount of elements in the screens (see snapshots
in Figure 2). Patients are only required to login the first time
they use the app to start using it. The protocol follows a
straightforward path in the scheme of one view, one ques-
tion, with icons to ease question identifying. There are no
preferences to configure, all are controlled from the server
side. Font and element sizes are high and controlled to avoid
disruption of accessibility options that the smartphone might
have enabled.

ATOPE+ was implemented using Flutter [73]. The
app uses SQLite for data storage and AES encryption to
secure it. The communications with the server are unam-
biguously authorized with OAuth 2.0 authorization proto-
col. OAuth 2.0 credentials are first obtained using Deep
Linking [78] in Android and Universal Links [79] in iOS. The
ATOPE+ smartphone app was tested and built for Android
versions over 4.4 (API 19) and iOS 8.0. HRV recordings
were tested with a Polar H10 (Polar USA) device over BLE
(bluetooth low energy) protocol.

2) CENTRALIZED SECURE SERVER

The centralized secure server of ATOPE+- is responsible for
storing and processing the data along with providing com-
munication means for both patients and experts. As stated
in the system architecture, the different layers conforming
the system transform the data into useful information to,
eventually, trigger the expert rules and provide the patients
with personalized exercise prescriptions.

Data processing is different for HRV and the Fitbit data.
For HRV processing, the data manager checks if its length
is a minimum of 5 minutes. If so, the data manager looks
for outliers in the HRV signal to be removed and linearly
interpolated [71]; ectopic beats are also detected [80] and
linearly interpolated. Next, the information manager extracts
time domain, frequency domain and Poincare features out
of the clean HRV signal. Relevant features for estimating
the workload-recovery ratio like the smallest worthwhile

3In order to make the app not too obtrusive, silent mode is just applied
to notifications and messages, the volume of phone calls’ ring remains
unmodified.
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change (SWC) of the natural log of the root mean square of
the successive differences (LnRMSSD) and the coefficient
of variation (CV) of the LnRMSSD are also extracted for
a 7-day time window. The minute-by-minute Fitbit data are
aggregated to match daily time windows and the training
periods to extract features referred to both time windows.

The base of rules permits defining rules depending on
thresholds referred to question responses, HRV features and
Fitbit features. For instance, an expert rule may define a high
intensity exercise prescription if SWC is negative and sleep
satisfaction value is greater or equal to 7.

The server implements a Dashboard as the expert web
interface (Figure 3). The dashboard displays patient data and
the exercise prescriptions given. The main view is shown
in Figure 3a. Data are shown in a paginated table that groups
the exercise prescriptions day by day. Data can be filtered
by patient’s name, date and the attempt to record HRV sig-
nal. The first column indicates if the exercise prescription
shown has been manually added through the modification
dialog. The second column shows the exercise descrip-
tion levels (to showcase, three different levels are defined).
The table follows with patient’s name, date and time of
the exercise prescription. LnRMSSD, SWC and CV vari-
ables follow are the HRV features presented. Last, all the
responses to the questions are presented under the wellness
heading.

A dialog to create or modify exercise prescriptions is
shown in Figure 3b. The dialog allows the expert to create
or modify the exercise prescription for the day checked,
by selecting the user and the intensity level of it. The expert
can also provide a free comment on why the modification was
necessary.

In order to ensure speed, stability, modularity and scala-
bility, the different services composing the ATOPE+ server
are implemented using Docker [81]. Docker enables the
execution of programs in isolated environments by directly
leveraging the host operating system resources. The imple-
mentation is divided in three services: relational database,
web application and reverse proxy. Each service is a Docker
container. All the containers are interconnected through a
Docker network. The relational database runs on a MySQL
5.7 container. All its ports are closed to the outside, and its
communications with the web application service are done
via a Docker network. To ensure high speed performance in
queries, data tables are partitioned to the number of partici-
pants to be enrolled in the ATOPE trial. The web application
service is built over Flask 1.0.2 in a Python 3.7 container. This
service features role-based authorization for users, an OAuth
2.0 authenticated RESTful API to connect with the ATOPE+
app, and a the ATOPE+ dashboard. Last, the reverse proxy
service exposes the web application securely to the internet
over HTTPS through an uWSGI interface [82]. The host
machine runs Ubuntu 18.04 as operating system.

Regarding data security and privacy, Patients’ data are
gathered and stored meeting the European General Data
Protection Regulation. The server is located within the
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FIGURE 3. ATOPE+ Dashboard.
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FIGURE 4. Questionnaire data from patient.

facilities of the University of Granada (Granada, Spain) and
its physical access is limited to the researchers participating
in the ATOPE project and system administrators. All the
data stored is pseudoanonymized (random UUID generation)
and encrypted (LUKS1 with aes-xts-plain64 encryption). All
online communications of the ATOPE+ system (ATOPE+
application and server) are secured via HTTPS connections
with SSL/TLS encryption. Moreover, all the communications
between the ATOPE+ smartphone app and the server are
tokenized via OAuth 2.0 authorization to provide a secure
delegated access for every patient. All communications with
the database are made locally through a secured (HTTPS)
web application. A firewall in the server limits the number of
available ports for connections, only enabling ports 22 (SSH)
and 443 (HTTPS).

IV. RESULTS

A. DATA SHOWCASE

In order to showcase the possibilities of ATOPE+,
we describe some of the data gathered in tests in the fol-
lowing. The data proceeds from two testing scenarios with
a total of 16 participants enrolled in TE intervention, out of
which 11 were patients recently diagnosed with breast cancer.
(Patients: 11 female, age (mean =+ std) 48.36 + 12.95 years
old, range 27 — 73. Non-patients: 4 female, 1 male, age 28.20
=+ 6.01 years old, range 24 — 40). All the participants recorded
their HRV and answered the questions for a duration between
5 and 14 days. All the patients wore a Fitbit Inspire HR
during the intervention, out of which seven actually recorded
a significant amount of data.

Individual questionnaire and HRV data of a patient are
shown in Figure 4 and Figure 5, respectively. These data
were obtained through the ATOPE+ app by following the
protocol in 5 out of 6 days. A clearly decreasing trend can
be seen in the reported fatigue variable throughout the days
(see Figure 4), which can be related to having finished her last
exercise intervention the day before. The rest of the variables
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FIGURE 5. HRV data from patient.

(recovery, distress and sleep satisfaction) oscillate around
minimal variation. HRV is pictured in Figure 5 through the
LnRMSSD variable, presenting a growing trend. Repeated
daily measures of HRV may allow finding if a smallest
worthwhile change (SWC) occurs, like the present in day 6.
That day, the HRV measure scores out of the SWC threshold,
which, for the sake of the example, are defined as SWCy, =
mean(LnRMSSD) %+ 0.5 - std(LnRMSSD).

Physical activity data of other patient are pictured
in Figure 6 and Figure 7. Fitbit physical activity can be
represented by METs, steps count (Figure 6) or the time at
determined intensity levels (Figure 7). Sleep data are shown
in Figure 8 and Figure 9. Total sleep time in a day can be
measured (Figure 8), even differentiating categories for the
sleep stages (Figure 9). Fitbit sleep detection requires a few
days to adequately differentiate among the sleep stages (wake,
light, deep and rem), that is why, in the first four nights
(days 1, 2, 4 and 6), sleep stages are labeled more ambigu-
ously as restless, asleep and awake. Noticing the complete
physical activity data collection against the missing sleep
data, we may assert that the patient wore the Fitbit activity
tracker during her daily activities, but remove it for the nights
of days 3, 5 and 10 of her intervention.

Exercise sessions are also recorded during TE interven-
tion. The number of training sessions recorded by five of
the patients are shown in Figure 10. Patients like #4 were
enrolled in the TE intervention longer, taking up 18 ses-
sions of exercise, whereas others like #2 reached up to 3.
This situation happened because patients were enrolled in
pre-surgery TE intervention, so its duration could be short-
ened due to changes in surgery appointments. The distribution
of the duration of the intervention can be seen in Figure 11.
The duration of the intervention for each participant may
vary depending on the intensities and exercises prescribed,
therefore slight differences in the distributions can be seen
from patient to patient. Since the exercises are timestamped,
the physical activity measures shown in Figure 6 and Figure 7
can be directly related to the intervention.
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FIGURE 6. Patient steps count data. The levels of physical activity intensity are 0, sedentary; 1, lightly active; 2, fairly active; and 3, very active.

B. USABILITY EVALUATION
Eight experts (6 female, 2 male, age (mean = std) 34.00+7.03
years old), physiotherapists with TE experience in patients
with cancer and survivors, used the ATOPE+ app and dash-
board for seven days to test the whole system. Usability was
evaluated using the Systems Usability Scale (SUS) [83]) and
conducting a semi-structured interview [84]. The purpose of
using these two methods was to provide a comprehensive
vision of the usability of ATOPE+: an objective and com-
parable result with the SUS, and a less constrained and more
descriptive result the semi-structured interview. The usability
of the app and the web dashboard were addressed separately.
The SUS scale is a ten-item Likert scale that gives a global
view of subjective assessments of usability. Each item of
the scale is scored from 1, strongly disagree, to 5, strongly
agree, and the total SUS score is computed out of them, ulti-
mately ranging from 0 to 100. The SUS is easy to administer,
performs reliably on small sample sizes, and can effectively
differentiate between usable and unusable systems. The SUS
allows for usability comparison among systems in research
and industry (ISO 9241-11). Sixty-eight points represent the
average score [85]. The SUS questions are as follows:

QI. I think that I would like to use this system fre-
quently.

Q2. Ifound the system unnecessarily complex.

Q3. Ithought the system was easy to use.
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Q4. I think that I would need the support of a technical
person to be able to use this system.

Q5. I found the various functions in this system were
well integrated.

Q6. I thought there was too much inconsistency in this
system.

Q7. I'would imagine that most people would learn to use
this system very quickly.

Q8. I found the system very cumbersome to use.

Q9. Ifelt very confident using the system.

Q10. I needed to learn a lot of things before I could get
going with this system.

All the experts filled the SUS individually (Figure 12).
The scores were computed and averaged for the app and
the dashboard of ATOPE+-. Both scored A, excellent, that is,
over 80.3 points, 90th percentile. The app scored 91.6 £ 7.8
points (average =+ standard deviation) and the web dashboard
85.6 £20.9.

The answers to the app SUS are shown in Figure 13. All the
experts found the app likely to be used frequently (Q1), did
not find it unnecessarily complex (Q2) and thought of it easy
to use (Q3). Six of the experts did not consider the support of
a technical person necessary to use the app (Q4). Every expert
considered the functions of the app were well integrated (Q5)
and that there was no inconsistency (Q6). Seven out of the
eight experts imagined most people could learn to use the
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FIGURE 7. Patient PA time data. The levels of physical activity intensity are 0, sedentary; 1, lightly active; 2, fairly active; and 3, very active.

system very quickly (Q7). None of the experts found the
app cumbersome to use (Q8), all of them were confident using
it (Q9) and did not need to learn many things before using the
system (Q10).

The results to the dashboard SUS evaluation are shown
in Figure 14. Seven of the experts found the dashboard likely
to be used frequently (Q1), did not find it unnecessarily
complex (Q2) and thought of it easy to use (Q3). Six of the
experts did not consider necessary the support of a technical
person to use the dashboard (Q4). Seven out of the eight
experts considered the functions of the dashboard were well
integrated (QY), that there was no inconsistency (Q6), and that
most people could learn to use the system very quickly (Q7).
One of the experts found the dashboard cumbersome to use
(Q8). Seven experts were confident when using the dashboard
(Q9) and five did not need to learn many things before using
the system (Q10).

The semi-structured interview was conducted to show-
case the impressions of the experts from a more qualitative
perspective. Regarding the app, all experts reported from
“good” to “very good sensation using the app.” For exam-
ple, expert #2 said, “The overall sensation was very good,
very intuitive to follow and with a very good connection to
the Polar (ECG device), and expert #8 said, “Quite a good
sensation. Very simple to use, clean, with no (unnecessary)
ornaments and very intuitive.” All the experts highlighted
the straightforwardness in the use of the app during the
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interviews. Experts also contemplated the need for training
on how to use the app for some of the less skilled patients.
As expert #2 reported, “It is plenty accessible. It will always
depend a little on the technological skills of the patient, but
they can always receive training during the first and second
week of the intervention.”

To further detail the impressions on the use of the app,
the experts were asked about protocol complexity, the clarity
of the instructions given and the perspective of the patients
using the app during the entire TE intervention. They all
agreed on the simplicity of the protocol, the clarity of the in-
app instructions and the ease for patients to use it daily.

Some of the experts underlined the importance of deliver-
ing and adequate feedback. Quoting expert #4, “The app may
foster patient’s autonomy and adherence thanks to the per-
sonalized feedback, thus improving her results at the end of
intervention.”” Expert #6 reported, *“Patients can learn to use
this app easily and engage well, specially if the feedback
presented to them is realistic and useful, and they actually
see it translated into the (TE) intervention.”

Taking into account the use of monitoring devices such
as the wearable ECG (Polar H10), expert #3 said, “It is
not complicated (to attach the Polar HI10), it may be even
preferable to sleeping with the wristband (the Fitbit). For
patients with breast cancer before surgery this would not
be a problem. For those after surgery, they may need some
extra attention and be carefully trained on how to use
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t.” Conversely, expert #4 addressed, “ATOPE+ needs to
be careful in the number of elements participating within
the measures, since each one represents a higher grade
of complexity, thus rising the probability of errors,” right
after highlighting the potential of using portable monitoring
devices.

Along with the positive feedback, there was place to
express concerns, constructive critiques and suggestions.
Expert #1 was “worried if patients could maintain the daily
use of the app.” ““They can just forget, specially once you are
in the middle of the treatment and stressed,” she continued.
Next, the expert suggested, ““A daily notification in the morn-
ing could help to remind the patients to start the protocol right
after waking-up.” Expert #4 was concerned about the validity
of the HRV measures, since measuring conditions can be crit-
ical. He proposed, aside from the technical issues of filtering
and processing the HRV signal, *“You can ask the participant,
right at the start of the protocol, if the environment conditions
are actually ideal, in the form of a checklist: 1) did you empty
your bladder? 2) did you drink coffee/tea? 3) are you in a
calm settled environment?.”” Most of the experts agreed that a
chat/video-chat with the participant would be also very useful
to establish a more solid communication, and the feedback
messages could be improved just by mentioning the patient’s
name. Expert #6 even contemplated the idea of including
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“gamification elements to foster patient’s engagement, with
very visual feedback.”

Regarding the web dashboard, all experts reported a good
experience while using it and that it was useful to check
patients’ assessment and make quick decisions on their TE
intervention. They all found the option to modify the exercise
prescription very intuitive. Expert #3 said, “The dashboard
is pretty intuitive, you can easily take a quick look at the
evaluations of each patient.” Some of them requested some
features such as the display of data in graphics with trends
and visual alerts of anomalies or values out of range.

All the experts agreed on the potential of ATOPE+ to
improve the TE intervention process compared to the tra-
ditional treatment. In words of expert #7, “ATOPE+ may
provide a further objective and personalized assessment.”
Expert #4 said, “ATOPE+ addresses the personalization and
monitoring process in a new and unprecedented way.”” Expert
#1 added that using ATOPE+ would mean an optimization of
resources for both patients and medical personnel:

The dashboard is very convenient, it saves a lot of
time. The remote personalized assessment allevi-
ates a lot of evaluation tasks from the experts and
saves unnecessary journeys from the patients at the
medical center to be assessed, thus saving time and
resources for us all. Patients could be sent home
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FIGURE 10. Number of training sessions by patient.

again due to not being in optimal conditions to
perform TE that day. (Expert #1)

All the experts acknowledged the possibility of using
ATOPE+- in a 100% remote environment such as the COVID-
19 pandemic context. They also agreed on the need to
make some minor adjustments. Expert #7 commented, ““Since
ATOPE+ is focused mainly now in (workload-recovery

16892

1

sleep level
I asleep
[ restless
[ awake
[ deep
[ light
B rem
[ wake
13
day
Training session duration
250 ¢
m
£ 200
>
£
E
= 150
Re]
[
S 100
©
()
=
© 50
©
— == I ==
0
patient

FIGURE 11. Duration of training sessions by patient.

ratio) assessment, it would be necessary to provide more
material to complete the TE program.” Expert #6 added,
“The engagement with the program would need to be
carefully studied. It is not trivial, maybe via technical
means such as gamification and/or available communica-
tion channels, and also individual supervision by medical
personnel.”
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FIGURE 13. App SUS answers. Each bar shows the score count for each of
the ten SUS questions. Each color represents the type of answer from 1
(strongly disagree) to 5 (strongly agree).

The experts also foresaw the possibility of extrapolating
the use of ATOPE+- to other kinds of patients. Quoting expert
#5, “This methodology could be used with patients with other
types of cancer (different to breast cancer), cardiopathy or
neurological conditions.”

V. DISCUSSION

In this paper we presented ATOPE+, an mHealth system
to support personalized therapeutic exercise interventions in
patients with cancer. The system architecture and imple-
mentation were thoroughly described. A data showcase was
shown to picture the data gathered by ATOPE+, and an
usability evaluation was conducted by clinical experts to
show the potential of the system and the usability of its
elements. The system, the results obtained, implications and
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FIGURE 14. Dashboard SUS answers. Each bar shows the score count for
each of the ten SUS questions. Each color represents the type of answer
from 1 (strongly disagree) to 5 (strongly agree).

recommendations for future studies are further discussed in
this section.

A system like ATOPE+ can only emerge from the interdis-
ciplinary cooperation among the physical therapy, medical,
engineering and computer science fields. On the clinical side,
the relevance of ATOPE+4- is rooted in enabling individual
remote monitoring of key variables to workload-recovery in
patients with cancer. On the technological side, the relevance
of ATOPE+ is drawn from the integration of commercial
wearable monitoring devices, a data processing pipeline and
clinical expert knowledge into a knowledge-based system to
automatically provide personalized prescriptions of exercise
dosage. Overall, ATOPE+ allows clinical experts to simplify
knowledge management and decision-making within the con-
text of a TE intervention by integrating in one tool the process
of diagnosing and providing patients’ with their individual
exercise needs.

ATOPE+ is heavily inspired by the systems pre-
sented in the Related work section. The multilevel
architecture present in most of the mHealth systems
referenced [44]-[47], [50] demonstrated its added value
handling knowledge, specially after being tested in differ-
ent health applications such as promoting physical activity,
general wellbeing and mental health. The small presence of
similar approaches with patients with cancer in TE inter-
ventions served as a major impulse for this work, specially
noting the lack of sophisticated personalization strategies.
Most of the personalization strategies found were based on
self-management and/or self-monitoring of physical activ-
ity with wearable devices [12]. ATOPE+ takes a differ-
ent approach by rooting its personalization strategy in the
physiological foundations of workload-recovery ratio assess-
ment by means of HRV (and its most relevant modulating
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factors: sleep satisfaction, distress, recovery perception and
fatige.)

The data showcase presented a sample of the data to
be gathered in a TE intervention. The continuous and
fine-grained nature of the data may enable the individual
analysis of the impact of training sessions in each participant
depending on their reported health status and the HRV mea-
sured. These data may be analyzed in groups too, allowing to
cluster the analysis depending on determined conditions such
as meeting the daily minimum amount of sleep or the daily
minimum physical activity levels, for instance. Future work
will address the estimation of the workload-recovery ratio in
the context of a clinical trial, by testing expert rules built out
of expert knowledge. These expert rules will be constructed
over all the health variables obtained by ATOPE+-.

Usability results were consistent and promising for
ATOPE+. The overall good scores in the SUS scale matched
the answers to the semi-structured interview, for both the
app and the dashboard. All the experts agreed on the potential
of ATOPE+ to improve the personalization process in a
TE intervention with patients with cancer. Moreover, whilst
there was some critique pointing out possible improvements
for ATOPE+, none of the commentaries or suggestions
were deemed as major issues. This allows us to present
ATOPE+ as ready to be used in the context of a clinical
trial.

All experts agreed on the ease of use of the ATOPE+
app and the straightforwardness of the data collection proto-
col. The experts also reported that there was no need for the
support of a technical person, that patients would only require
a training period to use the app. This is an important result
for ATOPE+, since providing an intuitive app experience is
imperative to make the system accessible to all the patients,
specially those with less technology skills such as the elder
generations.

The experts agreed on the possibility of using ATOPE+ in
a fully remote environment, only requiring some adjustments
on the intervention protocol. This is particularly relevant now
in a COVID-19 pandemic context. The immunosuppression
often related to cancer treatment may put patients at the
very high risk of getting infected with COVID-19. Patients
with cancer appear to have an estimated twofold increased
risk of contracting SARS-CoV-2 (severe acute respiratory
syndrome coronavirus-2) than the general population [86].
Recent literature already recommended reducing this risk by
minimizing exposure and prioritizing individualized assis-
tance, suggesting the inclusion of telemedicine strategies as a
means to do so [87]. Hence, a tool like ATOPE+ may become
of interest in the uncertainty of the following times until the
COVID-19 disease is set under control.

The experts shared their ideas on the need for provid-
ing objective feedback to patients on their performance.
On the one hand, some of the experts were reluctant to
include more information than the daily exercise prescription.
These experts were concerned about patients becoming too
self-aware on their performance and even trying to figure out
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the inner logic of ATOPE+-. On the other hand, other experts
were supportive of providing the maximum amount of feed-
back by wrapping it in a game-based context. These experts
considered that a gamification strategy might provide them
with tools to promote the fulfillment of the exercise prescrip-
tions. Nevertheless, they also acknowledged that gamification
strategies might need to be as tailored as the exercise pre-
scription to become effective [88]. Since ATOPE+- is not a
system that focuses on patient’s self-regulation, future use of
ATOPE+ will limit its feedback to the one provided by the
commercial wearable used and the daily exercise prescrip-
tions in the near term.

The SUS dashboard evaluation by expert #5 stands out
in Figure 12. This expert was particularly interested in the
visual display of data, its trends, the presence of outliers
and alerts. Future efforts will focus on providing these tools
effectively. The rest of the experts considered that these extra
tools would be valuable, but also that the information dis-
played was sufficient to evaluate the adequacy of the exercise
prescriptions.

Our usability results present some limitations since they
were performed by eight clinical experts and one patient
with breast cancer. We acknowledge that the presented and
discussed outcomes may not extrapolate in the context of a
complete TE intervention. Despite replication studies were
programmed for the preliminary evaluation with patients,
this is currently on hold due to the constraints posed by
the COVID-19 situation. Future work will adapt the use of
ATOPE+ to the current COVID-19 scenario in the context of
a clinical trial with patients with breast cancer [41]. Future
work will not limit to patients with breast cancer. All the
experts foresaw extending the use of ATOPE+- to other types
of cancer and diseases, thus opening other lines of work such
as lung or colorectum cancer.

VI. CONCLUSION
This paper describes ATOPE+, an mHealth system to
support personalized therapeutic exercise interventions in
patients with cancer. ATOPE+ enables the remote assess-
ment of workload-recovery ratio to provide optimal exer-
cise dosage by means of a knowledge-based system. Thus,
ATOPE+ allows for flexible nonlinear periodized prescrip-
tion (as opposed to linear periodized), minimizing the risk
of over-training throughout the TE intervention. To our
knowledge, ATOPE+ is the first mHealth system com-
bining measures of exercise load (HRV), modulating fac-
tors of HRV (recovery, sleep, distress, fatigue), and daily
and training-specific physical activity levels (Fitbit activ-
ity tracker) to personalize therapeutic exercise interven-
tions in patients with cancer. Overall, ATOPE+ allows
clinical experts to simplify knowledge management and
decision-making within the context of a TE intervention.
ATOPE+- presents a novel concept to personalization in
TE interventions in patients with cancer, by using physi-
ological variables related to workload-recovery ratio in a
remote context. The architecture of ATOPE+4 is designed
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to collect physiological data from heterogeneous sources
(wearable ECG, in-app questionnaires, Fitbit cloud), trans-
form the data into useful information, and provide individ-
ual exercise prescriptions by means of an knowledge-based
system.

Multiple tests with patients with breast cancer in TE inter-
vention were conducted successfully. An usability evalua-
tion was conducted to determine how medical personnel
and patients would receive ATOPE+. Results showed good
satisfaction with the tool as simple, straightforward and easy
to use. The experts perceived ATOPE+ as a promising tool
to improve therapeutic exercise evaluations. Future work will
include the use and validation of ATOPE+ in the context of
the ATOPE clinical trial with patients with breast cancer. Our
long-term research will also aim to develop and describe the
most relevant variables related to the workload-recovery ratio
that influence the decision making when prescribing exercise
dosage in patients with cancer.
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