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ABSTRACT Traditional optical fiber vibration signal (OFVS) recognition research focuses on signal
endpoint detection and feature extraction. These two aspects directly determine the success of OFVS
recognition. The traditional method relies on artificially designed features and has a strong pertinence to the
classification target, resulting in poor stability and flexibility. In response to the above problems, this paper
combines the traditional OFVS recognition ideas (time-frequency analysis and feature extraction) and the
characteristics of deep learning automatic learning parameters to construct an end-to-end adaptive filtering
convolutional neural network (AF-CNN), which can directly get the classification results through the iterative
update of the network. In modeling the original signal, the following steps were taken to make the network
interpretable. First, we use a one-dimensional (1-D) convolution on the original OFVS. The convolution
kernel can adaptively treat the original signal perform filtering to obtain filtered signals of different frequency
bands. Second, using a general convolutional neural network (CNN) to extract the filtered signal features.
Finally, a multi-layer perceptron (MLP) is used for classification. This paper compares the AF-CNN network
with three traditional pattern recognition methods and proves that the AF-CNN network’s accuracy is better
than traditional pattern recognition methods. The average accuracy can reach 96.7%, and it can effectively
distinguish OFVS with weaker energy and similar waveforms.

INDEX TERMS End-to-end, adaptive filtering, AF-CNN, 1-D convolution, MLP.

I. INTRODUCTION
The fiber perimeter security system mainly includes the
Mach-Zehnder (MZ) type, Michelson type, and Sagnac type.
Because it has the advantages of long transmission dis-
tance, lack of power supply requirement, strong corrosion-
resistance, anti-electromagnetic interference, and low cost,
it has been widely used in scenarios such as tunnel detection,
oil pipeline monitoring, and border security [1]–[4]. The
Sagnac type optical fiber interferometer has zero optical path
difference and will not cause additional noise when the two
sensing arms’ lengths are inconsistent. Moreover, it does not
require a reference fiber, has a simple structure, and a long
propagation distance. It is very suitable for the distributed
deployment of OFVS detection [5]–[7]. This article only
studies the vibration signal generated by the Sagnac type
optical fiber vibration sensor.

The associate editor coordinating the review of this manuscript and
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The recognition process of the OFVS is divided into
denoising, endpoint detection, feature extraction, and clas-
sification recognition [8]. In the denoising stage, Qin et al.
used a wavelet denoising method to denoise the vibra-
tion signal. The wavelet denoising method can effectively
eliminate the interference caused by excessive background
noise [9]. Subsequently, Xu et al. used spectral subtraction
to reduce broadband background noise to enhance vibra-
tion signals’ time-frequency features. The denoising effect is
better than the wavelet method [10]. In the endpoint detec-
tion stage, Wang et al. proposed a method based on the
threshold crossing rate to detect whether a vibration signal
is generated. However, the detection algorithm is too single,
and the detection rate for weak signals is low [11]. Later,
Tabi Fouda et al. used short-term energy and over-threshold
value to detect the vibration signal’s endpoint [12]. In the fea-
ture extraction stage, time-frequency analysis is performed
on the signal first, such as short-time Fourier transform,
wavelet decomposition, EMD decomposition, and other
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FIGURE 1. The overall structure of AF-CNN is divided into three parts: adaptive filter layer, feature extraction layer, and
classification recognition.

means. Then, features are extracted from the processed sig-
nal. At present, the effective features are the energy ratio,
kurtosis, skewness, and spectral entropy of the signal, etc.
The final classification and recognition usually use the SVM
classifier [10]–[17].

Traditional OFVS recognition needs to design different
features for different signals, so it has strong pertinence
for classification targets and is not universal. In denoising
and endpoint detection, it is easy to remove and ignore
vibration signals with weaker energy, and it is challeng-
ing to distinguish vibration signals with similar waveforms.
Given the problems encountered in the above traditional
OFVS recognition and the great success of deep learning in
image and speech recognition in recent years [18], [19], this
paper decided to adopt an end-to-end AF-CNN for OFVS
recognition.

Inspired by Muckenhirn et al. and Ravanelli et al. on
speaker recognition research [20], [21], this paper conducts
interpretability research on building a CNN model for OFVS
recognition.

• We use a 1-D convolution to filter the original signal.
• Using a general CNN to extract the features of the
filtered signal.

• Using MLP with a hidden layer to classify the extracted
features.

• Achieve the original signal’s end-to-end direct model-
ing.

All parameters are updated iteratively through the CNN
network.

II. THE CONSTRUCTION METHOD OF AF-CNN
The overall framework of AF-CNN is shown in
Figure 1. This paper is influenced by the traditional
OFVS recognition method and combined with the ideas
proposed in the speaker recognition research in the
papers [20]–[22], an end-to-end recognition method for fiber
vibration signals is constructed. Its architecture has three
steps:

A. ADAPTIVE FILTER (AF) LAYER
In this layer, firstly, the original signal is divided into frames.
The divided signals are stacked into a two-dimensional
(2-D) matrix, facilitating 1-D convolution operation and the
extraction of frame-level features. Then the convolution fil-
tering operation is performed using 80 different convolution
kernels (convolution kernel k = 1, stride s = 1), which is
equivalent to 80 output channels. Each convolution kernel is
equivalent to a filter, through the iterative update of the neural
network to adjust the filter parameters. Finally, this layer
achieves the purpose of filtering the signal’s different fre-
quency bands, providing useful information for distinguish-
ing different OFVSs. In the following experimental section,
we will describe the role of the AF layer in detail.

B. FEATURE EXTRACTION (FE) LAYER
Before the filtered signal matrix is input to the FE layer, it is
pooled to reduce the feature dimension and the compressed
data’s parameter amount. The FE layer uses a general CNN
for convolution operation, and its internal structure has three
convolution layers and two pooling layers. The purpose is to
extract the features of the filtered signal.

C. CLASSIFICATION RECOGNITION
The output of CNN is a 2-D feature matrix. First, the 2-D
feature matrix is converted into a 1-D vector matrix. Then the
feature vector is used as the input of the MLP classifier. The
final output directly distinguishes different OFVS.

In the framework, this paper uses the cross-entropy loss
function and adaptivemoment estimation (Adam) to optimize
the network. Through several iterations to update the network
parameters, the end-to-end OFVS identification is finally
realized.

III. DATA COLLECTION AND PREPROCESSING
The experimental data comes fromXinjiangMeite Intelligent
Security Engineering Co., Ltd. The OFVS is generated by
the Sagnac interferometric perimeter security early warning
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TABLE 1. Details of the AF-CNN architecture.

system, and the vibration signal is collected by using two
layouts of hanging net and buried. The sampling frequency
of the system is 8MHz.

In practical applications, according to the preset parame-
ters of the device, 80k data points are collected in 1s, and
the duration of each sampled data is 3∼4s. The length of
the collected raw data is different, and there are many silent
signals. The signal preprocessing must be carried out before
constructing the data set.

The preprocessing steps are shown in Figure 2. First,
the system performs endpoint detection on the original
OFVS, using the fusion feature of short-term logarithmic
energy and short-term spectral entropy [23]. Second, if the
vibration signal’s starting position is detected, the data of 8w
sampling points (time is 1s) length is intercepted from the
starting position. In the selection of signal length here,
through empirical knowledge, we found that the length of 1s
can contain a complete vibration signal, and multiple short
signals of walking and running are regarded as one vibra-
tion signal. Finally, continue the endpoint detection after the
second step is completed and continuously repeat the first
and second steps.

FIGURE 2. Flow chart of data collection and preprocessing.

After preprocessing the original signal, OFVS is cut into
a signal segment with a length of 1s. The signal segment is

normalized based on the maximum value, and the four types
of OFVS preprocessed images are shown in Figure 3.

FIGURE 3. Four types of OFVSs after preprocessing: (a) Flap signal,
(b) Knock signal, (c) Run signal, (d) Walk signal.

IV. EXPERIMENT AND ANALYSIS
A. NETWORK TRAINING AND TESTING
This article first preprocesses the signal, as shown in Figure 3.
After signal preprocessing, a total of 1212 signal fragments
were obtained, including 283 flaps, 304 knocks, 300 walks,
and 325 runs. This article uses 80% of the data for training
the network and 20% for testing.

TABLE 1 is detailed information on AF-CNN architecture.
First, the signal is divided into frames (the frame length
is 15ms, the frameshift is 2.5ms), and the divided signals
are stacked to form a 2-D matrix. Then 1-D convolution is
performed on the framed matrix (convolution kernel k = 1,
stride s = 1), and 80 different convolution kernels are used
to filter the original signal. The number of output channels
is 80. Next, the general CNN network is used to extract the
filtered signal features, and three pooling layers are used in
the middle to reduce the complexity of the matrix and avoid
overfitting. In order to improve the ability of the network to
extract features, this paper appropriately increases the num-
ber of channels. Finally, the 2-D feature matrix output by the
CNN is converted into a 1-D feature vector, and the feature
vector is input into the two fully connected (FC) layers for
classification. The two FC layers are equivalent to an MLP
using a hidden layer. The output of the FC1 layer adds a
Dropout layer to avoid data overfitting. The network uses the
cross-entropy loss function and Adam optimizer to update.
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FIGURE 4. The loss value and accuracy curve of AF-CNN.

In this experiment, we build the AF-CNN network to use
the PyTorch platform, which has a rich neural network func-
tion interface and realizes its rapid construction. The convo-
lutional layer’s output and the FC layer (MLP) in the network
use the Rectified Linear Unit (ReLU) activation function, the
learning rate is adjusted to 10−4, and 64 iteration epochs are
performed. Obtain the loss value curve and accuracy curve of
the AF-CNN network, as shown in Figure 4.

It can be seen from Figure 4(a) that as the number of
iterations increases, the loss values of the test set and training
set are slowly decreasing. In about 40 iterations, the neural
network gradually converges, the loss value of the training
set drops to about 0.02, and the test set’s loss value drops
to about 0.17. As the loss value of the AF-CNN network
decreases, the classification accuracy is gradually increasing.
As shown in Figure 4(b), it can be seen that the accuracy
has stabilized after 40 iteration epochs, and the network has
indeed converged. At this time, the accuracy of the training
set is close to 99%, and the accuracy of the test set is stable
at around 95%.

In this paper, test samples are used to verify the classifi-
cation accuracy of AF-CNN. The test sample classification
result is made into a confusion matrix, as shown in Figure 5.
It can be found from Figure 5 that there are 56 flap samples,
of which 53 are classified correctly, one is classified as a
knock, and two are classified as run, with a recognition accu-
racy of 94.64%. Among 61 knocking samples, 57 were clas-
sified correctly, two were classified as flapping, and two were
classified as running, with a recognition accuracy of 93.44%.
A total of 60 walking samples, all classified as correct. There
are 65 running samples, of which 64 are classified correctly,
and one is classified as flapping, with a recognition accuracy
of 98.46%. From the confusion matrix, the average accuracy
of AF-CNN is 96.69%, which can effectively distinguish four
types of OFVSs.

B. AF LAYER
When the traditional pattern recognition classifies the OFVS,
the first step is to perform a time-frequency analysis on

FIGURE 5. The confusion matrix of AF-CNN.

the signal, and then the feature parameters can be designed
according to the features of the time-frequency signal.

Typical time-frequency analysis is a short-time Fourier
transform (STFT) and wavelet decomposition. STFT needs
to be windowed in the time-domain; The narrow window has
high time resolution and low frequency resolution; The wide
window has low time resolution and high frequency resolu-
tion. For time-varying unsteady signals, high frequencies are
suitable for small windows, and low frequencies are suitable
for large windows. However, the window width of the STFT
is fixed, and the window width will not change in an STFT,
so the STFT cannot meet the demand for analyzing the time-
varying frequency of the unsteady signal.

Wavelet decomposition changes the basis function, replac-
ing the infinite trigonometric function basis with a finite
length wavelet basis, and its energy decays in the time-
domain. Compared with the fixed-window STFT, the wavelet
base’s size can be scaled, which solves inconsistent reso-
lution in the time-domain and frequency-domain. Besides,
the wavelet decomposition can also be seen as filtering dif-
ferent frequency bands of the signal. Wavelet decomposition
solves low resolution of STFT, but when performing wavelet
decomposition, once the wavelet base is determined, only a
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fixed bandwidth can be filtered, and the bandwidth cannot be
adjusted at any time to deal with different types of vibration
signals.

We hope to use a basis function that adjusts the frequency
band at any time to filter the signal and only filter the band-
width that is useful for classification. In other words, it can
adjust the filter frequency band adaptively. In response to
this problem, inspired by papers [20], [21], we propose an
AF-CNN network with an AF layer. Because it combines the
CNN neural network, it can realize the automatic update and
optimization of the parameters.

The first step of AF-CNN is to perform a 1-D convolution
operation on the original waveform, equivalent to filtering
the original signal. Here, 80 different convolution kernels are
used for filtering. These convolution kernels are equivalent
to some finite impulse responses (FIR) filter [24], where each
filter will select the frequency band of interest. The definition
of each convolution is as follows:

yk [n] = x[n] ∗ hk [n] =
L−1∑
l=0

x[l] · hk [n− l],

k = 1, 2, 3, . . . 80. (1)

x[n] is the original OFVS input; hk [n] is the k-th filter of
length L; yk [n] is the k-th filter’s output. The above formula
is the convolution operation of the adaptive filter in the time-
domain. According to the time-domain convolution formula,
the frequency-domain convolution formula is derived:

Yk [ω] = X [ω] · Hk [ω], k = 1, 2, 3, . . . , 80. (2)

X [ω] is the frequency-domain form of the input signal;
Hk [ω] is the filter’s frequency response function; Yk [ω] is
the frequency-domain form of the filter output. The time-
domain convolution corresponds to the frequency-domain is
the product. Its purpose is bandpass filtering the different
frequencies of the signal.

The structure of the AF layer is shown in Figure 6. The
first step is to frame the original signal. The frame length

FIGURE 6. In the structure diagram of the AF layer, the upper half is the
actual structure of the network, and the lower half is the equivalent
structure of the network.

is 1200 sampling points, and the frameshift is 200 sampling
points. After framing, the stack forms a 2-D matrix of 395×
1200 and then uses a 1-D convolution operation to output a
395 × 80 matrix. As shown in the second box in Figure 6,
the AF layer essentially uses FIR filtering on the original
signal, and framing the original signal is entirely for the
convenience of subsequent 1-D convolution operations. The
length of the filter is 1200, which corresponds to the frame
length of the framing step, and the number of filters is 80,
which corresponds to the number of 1D convolution output
channels.

This paper extracts 80 different convolution kernels from
the first layer of the trained AF-CNN neural network and ana-
lyzes their filtering features. In the research of this paper, it is
found that the trained adaptive filter has a different sensitivity
to different frequencies. Eighty different filters are numbered,
K = 1, 2. . . . . . 80, and the frequency response of some filters
is shown in Figure 7. Through the analysis of 80 different
filters, it can be found that the filters are mainly sensitive
to the frequency range of 0∼5kHz, the center frequencies of
different filters are very different, and the center frequencies
of some filters are as high as 36kHz. The results show that the
feature parameters of high frequency and low frequency can
affect the classification results.

C. FE LAYER
After the AF layer of the AF-CNN neural network filters the
signal, the output is 80 filtered signals of different frequency
bands. The output matrix of the AF layer size of 395× 80 is
used as the FE layer input. As shown in the Part1 of Figure 8,
a general CNN is used to extract features of the filtered signal.
There are three convolutional layers inside the CNN, and
two pooling layers are used to reduce network complexity.
Two FC layers are used after feature extraction, equivalent
to an MLP with a hidden layer to classify and recognize
the extracted features. The structure is shown in the Part2 of
Figure 8.

In the experiment, the general CNN network is used
to extract the features of OFVS. In order to observe
the effect of network feature extraction, this paper
extracts the output of four OFVS signals after passing
CNN.

As shown in Figure 9, this paper compares the features
extracted from four different OFVSs through the CNN net-
work. From the feature curves, it can be found that the feature
curves of signals with similar energy and similar waveform
are very close, such as run and walk signal, flap and knock
signal. The original walk and run signals have low energy,
so the feature curve graph’s amplitude is low. On the contrary,
the feature curve amplitude of the flap and knock signals
is higher. From the amplitudes of the four OFVSs’ feature
curves, it can be found that the feature of the four signals
has a high degree of discrimination, and even signals with
similar waveforms can be clearly distinguished in the feature
diagram.
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FIGURE 7. This is a partial waveform diagram of the adaptive filter (convolution kernel)
frequency-domain.

FIGURE 8. Schematic diagram of the FE layer and classification layer
structure.

FIGURE 9. Comparison of features extracted from four different OFVSs
after passing through the CNN network.

D. EXPERIMENTAL COMPARISON
The three most popular traditional OFVS recognition meth-
ods are used to compare with the AF-CNN network; they
are wavelet decomposition method, EMD decomposition
method, and VMD [23] decomposition method. They all use
features such as the kurtosis, skewness, and energy ratio of
the decomposed signal, and finally, they combine multiple
features and use SVM for classification.

For the experiment’s fairness, the traditional SVM classifi-
cation uses the same training set and test set as the AF-CNN.
Since SVM classification does not require many samples,
the number of samples here is reduced to half of the original.
A total of 600 samples were used, 150 samples of each type,
and training and testing were randomly allocated at a ratio
of 8:2.

The accuracy of traditional OFVS recognition is affected
by multiple factors, such as denoising, endpoint detection,
and feature selection, all affecting classification accuracy.
Because denoising and endpoint detection maybe eliminate
weaker energy vibration signals, it will affect the comparison
results of the two identification methods on the effectiveness
of features. The traditional pattern recognition here refers to
the signal after denoising and endpoint detection, and its clas-
sification accuracy is mainly affected by feature parameters.

The comparison experiment of the four OFVS classifica-
tion methods is shown in Table 2. The experiment shows
that the three traditional recognition methods have higher
accuracy for flapping and knocking signals. In recognition
of flapping signs, the wavelet and VMD decomposition
method’s accuracy can get 93.3%. When recognizing knock-
ing signs, the accuracy of the three conventional recogni-
tion methods can reach over 97%. However, the traditional
three methods have low recognition accuracy for walking
and running signals. Among them, the recognition accuracy

TABLE 2. Recognition accuracy comparison.
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of walking signals is the worst. The EMD decomposition
method and VMD decomposition method can only reach
76.7% and 86.9%. In recognition of running signs, the VMD
decomposition method with the highest accuracy can only
reach 92.9%.

This paper uses the AF-CNN network to identify the four
OFVS. The flap signal’s recognition accuracy is slightly
higher than the traditional three methods, which is 94.6%.
However, the knock signal’s recognition accuracy is lower
than the traditional three methods, which is 93.4%. This
network is more sensitive to walking and running signals, and
the recognition accuracy is much higher than the traditional
three methods, which are 100.0% and 98.5%. Overall, the
average accuracy of the AF-CNN network is 96.7%, and
the accuracy of the traditional three methods can only reach
92.2%. Among the four types of OFVS recognition, the tra-
ditional three methods have higher recognition accuracy for
flapping and knocking signals. The AF-CNN network used
in this article not only has a higher recognition accuracy for
walking and running signals but also has a higher average
recognition accuracy than three traditional methods.

V. CONCLUSION
The recognition accuracy of weak signals, such as walking
signals, is usually low in traditional pattern recognition. It is
because traditional pattern recognition needs to detect the
endpoints of the original vibration signal first and then divide
it into very short vibration signal fragments, which duration
is about 0.25s. In a very short time scale, it is difficult to
distinguish the feature parameters of walking and running
signals. Although signals like flapping and knocking are
also cut into vibration signal fragments, the vibration signals
can be effectively distinguished by using the fusion features,
that is because their vibration energy is high, and vibration
duration is relatively long, which is about 1s.

The deep learning method is very different from the tradi-
tional pattern recognition method. The deep learning method
uses equal-length data, where the length is 1s. Through the
constructed AF-CNN network, the signal’s vibration infor-
mation can be effectively extracted from these equal length
data, and various types of OFVS can be distinguished. The
main work of this paper is summarized as follows:

• In terms of data acquisition, this article first detects the
starting position of the vibration signal, then intercepts
the signal of equal length, and finally continues to per-
form endpoint detection, looping the first and second
steps. After the above method processing, the original
OFVS is cut into signal fragments with a length of 1s,
where the length is determined by empirical knowledge.
Each signal segment contains a type of OFVS, and these
signal segments are used to form a data set.

• When recognizing OFVS, this article constructs an end-
to-end AF-CNN network based on deep learning and
explains this network. The AF-CNN network refers
to the traditional methods of time-frequency analysis,

feature extraction, and classification. First, an adaptive
filter layer is constructed for signal time-frequency anal-
ysis, then a general CNN network is used to extract
features, and finally, MLP is used for classification.
Since all the parameters of AF-CNN are automatically
updated through the network’s iteration, there is no
need to manually set the filter bandwidth and feature
parameters, which avoids human errors and enhances the
adaptability to different environments.

• In the experimental section, this article trains and tests
the AF-CNN network. By analyzing the network’s loss
curve and accuracy curve, it is found that its average
accuracy on the test set can reach 96.7%. Using three tra-
ditional pattern recognition methods and AF-CNN com-
parison, the method proposed in this paper is higher than
the traditional method in average accuracy, an increase
of 4.5%.

The above experimental analysis and comparison show that
the AF-CNN network can effectively recognize four common
OFVSs of flapping, knocking, walking, and running, which
exceeds the traditional pattern recognition methods.
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