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ABSTRACT The generalized renewal process considers repair efficiency of imperfect repair in reliability
assessment of repairable systems; therefore, its evaluation results are close to real repair circumstance than
the ordinary renewal process or the non-homogeneous Poisson process. Based on the asymptotic distribution
of maximum likelihood estimation, a calculating method of reliability indices for repairable systems with
imperfect repair is proposed. The point and approximate interval estimators of model parameters for Kijima
type Weibull generalized renewal processes Models I and II, as well as reliability indices of repairable
systems, such as reliability, cumulative failure number and failure intensity, etc., are all presented. Two real
cases are studied using generalized renewal processes Models I and II respectively to show the validity of
our method. The results show that imperfect repair makes the instantaneous failure intensity of a repairable
system discretely jump either up or down at the time of each failure, and the method proposed in this paper
agrees well with the other exiting methods, and can also reduce the complexity of calculation.

INDEX TERMS Reliability assessment, repairable system, Weibull generalized renewal process, interval
estimation, failure intensity.

I. INTRODUCTION
Repairable systems are these which can be restored to a
normal operating state by some repair actions other than
replacement of the entire systems after experiencing a failure.
Twomost widely usedmodels for analyzing failure process of
repairable systems are the ordinary renewal process (ORP)
model and the non-homogeneous Poisson process (NHPP)
model. The former assumes that a repair action brings
repairable systems to perfect repair with an as good-as-new
condition, and the latter, on the contrary, considers that
the repair brings the systems to minimal repair with an
as-bad-as-old condition. In the other words, in the case of
perfect repair, each repair renovates the system as if it was
new; whereas in the case of minimal repair, each repair leaves
the system in the same state as it was just before failure.
However, in reality most repair activities may result in an
intermediate state where the system is better than old but
worse than new. This imperfect repair restores the system’s
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operating state to somewhere between as-good-as new and
as-bad-as-old. Kijima and Sumita [1] and Kijima [2] pro-
posed two virtual age models, called the generalized renewal
process (GRP) Model I and Model II, to describe this imper-
fect repair. In Kijima’s GRP, repairs are classified in accor-
dance with a repair effectiveness parameter, which can be
used as an index of repair efficiency. Based on a reduction
of virtual age or failure intensity, Doyen and Gaudoin [3]–[6]
proposed two classes of imperfect repair models called the
ARA andARImodels. Because there is no closed-formmath-
ematical solution for Kijima’s virtual age models, Kaminskiy
and Krivtsov [7] presented an approximate solution to GRP
Model I by using Monte Carlo (MC) method. Gasmi et al. [8]
analyzed the effect of minor and major repairs to failure
intensity of repairable systems following the virtual age
process by using the GAUSS package. For practical pur-
poses, model parameter estimation can also be found via
a probabilistic optimization algorithm, such as the simu-
lated annealing algorithm, or some other numerical methods,
including the methods of Nelder-Mead simplex and nonlinear
constrained programming [9]–[11], etc. This requires an
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explicit formula for the likelihood function of each model
and an optimization algorithm to maximize the correspond-
ing log-likelihood function [12], [13]. Veber et al. [14]
used the expectation-maximization (EM) algorithm to esti-
mate the parameters in Kijima’s Model I with a Weibull
mixture distribution for the time to first failure. To estimate
the model parameters of mixed effect Kijima type, Si and
Yang [15] developed a stochastic approximation expecta-
tion maximization algorithm. Nguyen et al. [16] assumed
the failure rate of a new system follows a Weibull distri-
bution and characterized the repair efficiency by Kijima’s
Model II. Gasmi [17] developed the estimation of the parame-
ters of theWeibull intensity using the likelihood ratio statistic
method. Pan and Rigdon [18] studied imperfect repair sys-
tems using a hierarchical Bayesian method and applied the
Markov chain Monto Carlo (MCMC) algorithm to approx-
imate the properties of parameter posterior distributions.
Maximum likelihood estimation (MLE) is one of the most
used and most effective methods in reliability analysis of
repairable systems [19]–[21]. For these virtual age models,
empirical studies on MLE have also been presented in the
literature [22]–[27]. Imperfect repair is also considered in
the strategy research of preventive maintenance. Aimed at
minimizing operational costs, Finkelstein [28] studied the
expected cost of repair using the asymptotic approach to the
Kijima II type virtual age model. Zhang and Jardine [29]
proposed a system improvement model due to overhaul.
Wang et al. [30] analyzed the preventive maintenance policy
of wind turbines using general renewal processes model.
On the other hand, imperfect repair actions may be ineffective
and could cause repair error, therefore, Qiu et al. [31] investi-
gated the maintenance policy of inspected systems using the
Kijima virtual age model.

However, previous studies mostly focused on parameter
estimation of imperfect repair models from failure data, only
a few articles deal with statistical inferences of reliability
indices of repairable systems. More recently, to obtain the
confidence intervals for model parameters to predict the fail-
ure process behavior of a repairable system, the likelihood
ratio statistic is employed by Ramı’rez and Utne [32]. Based
on asymptotic normal distribution theory, Toledo et al. [33]
and Oliveira et al. [34] made use of the Weibull gen-
eralized renewal processes (WGRP) power transformation
from WGRP into homogeneous Poisson process (HPP), and
obtained the confidence intervals of the parameters for the
WGRP. Their proposed approach involves the computation
of the Fisher information matrix and the covariance matrix
between the WGRP parameters estimators.

In this paper, extending the study of Wang and Yang [11],
a method of the point and interval estimates of reliability
indices for repairable systems with imperfect repair is pro-
posed. The point and approximate interval maximum like-
lihood estimates of model parameters for WGRP Models I
and II, as well as various reliability indices of repairable
systems, such as reliability at given time, cumulative num-
ber of failures, cumulative failure intensity and mean time

between failures (MTBF), are derived. Two different cases
from real repairable systems are analyzed using the WGRP
Models I and II, respectively. One can only calculate the
virtual age variance instead of calculating the variance of
repair efficiency parameter and its covariances with other
model parameters. Therefore, compared with the other exit-
ingmethod, themethod proposed in this paper can also reduce
the complexity of calculation.

II. PROPOSED METHODOLOGY
A. INTERVAL ESTIMATION FOR WGRP MODEL
PARAMETERS
Let t be the successive failure times, and x be the time
between failures (TBF). Now, consider k repairable systems,
which are observed from the start time t0 = 0 to the end time
Tj (j = 1, 2, . . . , k). The successive failure times of the jth
system are t0 < t1,j < t2,j < ... < tnj,j ≤ Tj, and the TBF of
the jth system are denoted by x0, x1,j, x2,j, . . . , xnj,j,Tj− tnj,j.
So xi,j = ti,j − ti−1,j(x0 = 0, i = 1, 2, . . . , nj). Where nj is
the number of failures of the jth system, ti,j is the failure time
of the jth system at its ith failure, xi,j is the TBF of the jth
system between its (i-1)th and ith failures. Note that in the
time truncation case, tnj,j < Tj, and in the failure truncation
case, tnj,j = Tj.
For the WGRP model, the conditional probability density

function of TBF for k repairable systems is

f
(
xi,j
∣∣vi−1,j ) = λβ (xi,j + vi−1,j)β−1

× exp
{
−λ

[(
xi,j + vi−1,j

)β
− vβi−1,j

]}
,

i = 1, 2, . . . , nj; j = 1, 2, . . . , k (1)

where λ > 0 and β> 0 are model parameters of the WGRP,
vi−1,j is virtual age of the jth system after the (i−1)th repair.
So, from (1), the conditional reliability R of k repairable

systems is

R
(
xi,j
∣∣vi−1,j ) = ∫ ∞

xi,j
f
(
xi,j
∣∣vi−1,j ) dxi,j

= exp
{
−λ

[(
xi,j + vi−1,j

)β
− vβi−1,j

]}
,

i = 1, 2, . . . , nj; j = 1, 2, . . . , k (2)

The corresponding likelihood function of TBF for k
repairable systems with time truncation can be expressed as
follows:

L
(
xi,j,Tj − tnj,j

)
=

k∏
j=1

nj∏
i=1

f
(
xi,j
∣∣ vi−1,j)R (Tj − tnj,j∣∣ vnj,j)

=

k∏
j=1

{
λnjβnj exp

[
−λ

((
Tj − tnj,j + vnj,j

)β
− vβnj,j

)]

×

nj∏
i=1

[(
xi,j + vi−1,j

)β−1 exp (−λ ((xi,j + vi−1,j)β
−vβi−1,j

))]}
(3)
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Then, the log-likelihood function is

3 = lnL =
k∑
j=1

nj (ln λ+ lnβ)

−λ

k∑
j=1

[(
Tj − tnj,j + vnj,j

)β
− vβnj,j

]

−λ

k∑
j=1

nj∑
i=1

[(
xi,j + vi−1,j

)β
− vβi−1,j

]

+ (β − 1)
k∑
j=1

nj∑
i=1

ln
(
xi,j + vi−1,j

)
(4)

Note that there are two Kijima-type virtual age models.
For Model I, virtual age is defined as

vi−1,j = qti−1,j, vnj,j = qtnj,j (v0 = 0) (5)

and for Model II, virtual age is

vi−1,j =
k∑
j=1

i−1∑
m=1

qi−mxm,j, vnj,j =
k∑
j=1

nj∑
m=1

qnj+1−mxm,j

(v0 = 0, i ≥ 2) (6)

where q (0 ≤ q ≤ 1) is repair effectiveness parameter,
and v0 = 0.
Thus, based on (4), the second partial derivatives of the

log-likelihood function with respect to parameters λ and β of
WGRP are given by

111 =
∂23

∂λ2
= −

1
λ2

k∑
j=1

nj (7)

122 =
∂23

∂β2

= −λ

k∑
j=1

[(
Tj − tnj,j + vnj,j

)β ln2 (Tj − tnj,j + vnj,j)
−vβnj,j ln

2 vnj,j
]
− λ

k∑
j=1

nj∑
i=1

[(
vi−1,j + xi,j

)β
× ln2

(
vi−1,j + xi,j

)
−vβi−1,j ln

2 vi−1,j
]
−

1
β2

k∑
j=1

nj

(8)

112 =
∂23

∂λ∂β

= −

k∑
j=1

[(
Tj − tnj,j + vnj,j

)β ln (Tj − tnj,j + vnj,j)
−vβnj,j ln vnj,j

]
−

k∑
j=1

nj∑
i=1

[(
vi−1,j + xi,j

)β
ln
(
vi−1,j + xi,j

)
−vβi−1,j ln vi−1,j

]
(9)

Therefore, the variances and covariances of model param-
eter estimators are estimated by the inverse local Fisher
matrix [35] as follows:

1 =

[
Var(λ̂) Cov(λ̂, β̂)

Cov(λ̂, β̂) Var(β̂)

]
=

[
−111 −112
−112 −122

]−1
λ=λ̂,β=β̂

(10)

where λ̂, β̂ are the point estimators of parameters λ and β,
respectively. There is no closed-form solution to these
estimations. Therefore, a numerical technique has to be
employed to obtain the point MLEs of these model param-
eters. In Ref. [11], to estimate model parameters of WGRP
with additional inequality constraints to these parameters,
the negative log-likelihood function is minimized directly by
a nonlinear programming numerical method. Depending on
the normal or lognormal asymptotic distribution of model
parameters λ and β, the estimates of model parameter are
usually assumed normally or lognormally distributed [36].
The usefulness of lognormal distributions for model param-
eters has been validated in Guo and Pan [37] by lognormal
probability plots. Dauxois and Maalouf [38] also proved that
both the estimators of the repair efficiency and the cumulative
hazard rate of initial failure time are asymptotically nor-
mal distributed. Therefore, we assume that the estimators of
model parameters λ and β are either normally or lognormally
distributed.

B. APPROXIMATE ASSESSMENT FOR RELIABILITY
INDICES OF REPAIRABLE SYSTEMS
Assume that model parameters λ and β are independent with
system virtual age vi−1. This assumption can be established
because that model parameters λ and β are intrinsic parame-
ters for one system and repair activities do not change them,
while virtual age vi−1 only has relationship with repair effec-
tiveness and time. Thus, the variance Var

(
θ̂
)
of a reliability

index estimator, θ̂ , can be obtained approximately as follows:

Var
(
θ̂ (x; λ, β, vi−1)

)
=

(
∂ θ̂ (x)
∂λ

)2

Var
(
λ̂
)

+

(
∂ θ̂ (x)
∂β

)2

Var
(
β̂
)

+2

(
∂ θ̂ (x)
∂λ

)(
∂ θ̂ (x)
∂β

)
Cov

(
λ̂, β̂

)
+

(
∂ θ̂ (x)
∂vi−1

)2

Var
(
v̂i−1

)
(11)

The first three terms account for the uncertainty of parame-
ter estimation, while the last term considers the uncertainty
caused by the virtual age process even when model parame-
ters are fixed. Reducing the computational burden, one only
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needs to calculate the virtual age variance instead of calculat-
ing the variance of parameter q and its covariances with the
other two parameters λ and β.
Once the variances Var

(
θ̂
)
of model parameters or relia-

bility indices θ̂ have been obtained using (10) or (11), the con-
fidence bounds can be found by

CBθ = θ̂ exp

(
±zα/2

√
Var

(
θ̂
)/

θ̂

)
(12)

if θ̂ is assumed to be lognormally distributed; or

CBθ = θ̂ ± zα/2

√
Var

(
θ̂
)

(13)

if θ̂ is assumed to be normally distributed. Here, α is a
given confidence level and za/2 is the percentile of a standard
normal distribution.

1) RELIABILITY AND WARRANTY TIME
According to (2), the conditional reliability of system after the
(i−1)th repair and before the ith repair can be calculated by:

R (x |vi−1 ) = exp
{
−λ

[
(x + vi−1)β − v

β

i−1

]}
,

0 < x < ti − ti−1 (14)

So, from (14), the warranty time for a given reliability can be
obtained by

x (R| vi−1) =
(
vβi−1 −

lnR
λ

)1/β
− vi−1, 0 < x < ti − ti−1

(15)

Based on (11), the corresponding variances can be obtained
according to (14) and (15), respectively, as follows:

Var
(
R̂ (x)

)
= exp

{
−2λ

[
(x + vi−1)β − v

β

i−1

]}
×

{[
(x + vi−1)β − v

β

i−1

]2
Var

(
λ̂
)

+λ2
[
(x + vi−1)β ln (x + vi−1)− v

β

i−1 ln vi−1
]2
Var

(
β̂
)

+2λ
[
(x + vi−1)β − v

β

i−1

] [
(x + vi−1)β ln (x + vi−1)

−vβi−1 ln vi−1
]
Cov

(
λ̂, β̂

)
+ (λβ)2

[
(x + vi−1)β−1 − v

β−1
i−1

]2
Var

(
v̂i−1

)}
(16)

and

Var
(
x̂ (R)

)
=

1
β2

(
vβi−1 −

lnR
λ

)2
(
1
β
−1
) {(

lnR
λ2

)2

Var
(
λ̂
)

+

[
1
β
vβi−1

(
vβi−1 −

lnR
λ

)
× ln vi−1 ln

(
vβi−1 −

lnR
λ

)]2
Var

(
β̂
)

−2
lnR
λ2β

vβi−1

(
vβi−1 −

lnR
λ

)
× ln vi−1 ln

(
vβi−1 −

lnR
λ

)
Cov

(
λ̂, β̂

)
−

(
βvβ−1i−1 − 1

)2
Var

(
v̂i−1

)}
(17)

Thus, the bounds of system reliability can be obtained by

CBR = R̂ exp

[
±zα/2

√
Var

(
R̂
)/

R̂

]
(18)

or

CBR = R̂± zα/2

√
Var

(
R̂
)

(19)

Same as system reliability, using (12), (13) and (17), the
interval estimator of warranty time given reliability can also
be obtained.

2) INSTANTANEOUS FAILURE INTENSITY AND
INSTANTANEOUS MTBF
Based on (14), the instantaneous failure intensity function of
system after the (i-1)th repair can be obtained by

h (x)=−
d lnR (x)

dx
=λβ (x + vi−1)β−1 , 0 < x < ti − ti−1

(20)

The variance of the instantaneous failure intensity is then
calculated by:

Var
(
ĥ (x)

)
= (x + vi−1)2(β−1)

{
β2Var

(
λ̂
)

+λ2 [1+ β ln (x + vi−1)]2 Var
(
β̂
)

+2λβ [1+ β ln (x + vi−1)]Cov
(
λ̂, β̂

)
+

[
λβ (β − 1)
x + vi−1

]2
Var

(
v̂i−1

)}
(21)

For a given time t , according to reliability engineering
definition [25], the expected value of instantaneousMTBF is:

m̂ (x) = 1
/
ĥ (x) (22)

So, once the bounds of instantaneous failure intensity h(x)
have been given using (12), (13) and (21), the upper and lower
bounds of instantaneous MTBF m(x) can be easily obtained
respectively from the corresponding bounds as follows:

m̂ (x)U = 1
/
ĥ (x)L , m̂ (x)L = 1

/
ĥ (x)U (23)

3) CUMULATIVE NUMBER OF FAILURES, CUMULATIVE
FAILURE INTENSITY AND CUMULATIVE MTBF
For a given time t , according to Guo et al. [25], the cumu-
lative number of failures N (t) can be calculated by using the
following equation:

N (t) =
n∑
i=1

∫ xi

0
λβ (x + vi−1)β−1dx

+

∫ t−tn

0
λβ (x + vn)β−1dx
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= λ

{
n∑
i=1

[
(xi + vi−1)β − v

β

i−1

]
+
[
(t − tn + vn)β − vβn

] }
(24)

Then, the corresponding variance is approximated by:

Var
[
N̂ (t)

]
=
{[
(t − tn+vn)β − vβn

]
+

n∑
i=1

[
(xi+vi−1)β − v

β

i−1

]}2

Var
(
λ̂
)

+λ2
{[
(t − tn+vn)β ln(t − tn+vn)− vβn ln vn

]
+

n∑
i=1

[
(xi+vi−1)β ln (xi+vi−1)− v

β

i−1 ln vi−1
]}2

Var
(
β̂
)

+2λ

{[
(t − tn+vn)β − vβn

]
+

n∑
i=1

[
(xi+vi−1)β − v

β

i−1

]}
×
{[
(t − tn+vn)β ln(t − tn+vn)− vβn ln vn

]
+

n∑
i=1

[
(xi+vi−1)β ln (xi+vi−1)−v

β

i−1 ln vi−1
]}
Cov

(
λ̂, β̂

)
+(λβ)2

{[
(t − tn+vn)β−1 − vβ−1n

]
+

n∑
i=1

[
(xi+vi−1)β−1 − v

β−1
i−1

]}2

Var
(
v̂t
)

(25)

and its bounds can also be obtained by (12), (13) and (25).
At time t , cumulative failure intensity ĥc (t) and the

expected value of cumulative MTBF m̂c (t) can be calculated
using the following equations [24, 25]:

ĥc (t) = N̂ (t)
/
t, m̂c (t) = t

/
N̂ (t) (26)

The bounds can be easily obtained from the corresponding
bounds of N̂ (t).

ĥc (t)L = N̂ (t)L
/
t, ĥc (t)U = N̂ (t)U

/
t (27)

m̂c (t)L = t
/
N̂ (t)U , m̂c (t)U = t

/
N̂ (t)L (28)

III. NUMERICAL EXAMPLE
Case 1: Wang and Yang [11] analyzed 29 field failure data
with time truncation for an NCmachine tool using the numer-
ical method of nonlinear constrained programming, as shown
in Table 1, and considered that the WGRPModel I is the best
model for these failure data.
Using the method proposed in this study, one can get the

interval estimates of model parameters, as well as the point
and interval estimates of reliability indices. The variance-
covariance matrix of the model parameters λ and β is

1 =

[
2.832× 10−3 −1.339× 10−2

−1.339× 10−2 6.639× 10−2

]

TABLE 1. Failure times of NC machine tool with time truncation.

The corresponding variances of reliability indices at the trun-
cated time are calculated as follows:

Var
(
R̂ (t = 4152.00)

)
= 8.439× 10−3,

Var
(
t̂ (R = 0.7)

)
= 868.346,

Var
(
ĥ (t = 4152.00)

)
= 2.476× 10−6,

Var
(
N̂ (t = 4152.00)

)
= 71.153.

Table 2 is the point and interval estimates of model param-
eters and reliability indices with 5% significance level. The
warranty time for a given reliability, such as R = 0.7, 0.8,
0.9, etc., can be obtained by using the proposed method in
this paper. As an example, we give the warranty time with
R = 0.7 in Table 2.

TABLE 2. Point and interval estimators of model parameters and
reliability indices with 5% significance level for case I.

Figure 1 is the plot of instantaneous failure intensity of
this NC machine tool with three different models including
minimal repair, perfect repair and imperfect repair.

It can be seen that the failure intensity decreases as the
operational time increases in the models of imperfect repair
and minimal repair. However, the perfect repair model gives
a different description, its failure intensity increases slowly
from the initial time to 1000 hours or so, and afterwards it
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FIGURE 1. Failure intensity of NC machine tool.

tends to a constant value 7× 10−3 h−1. In this case, the GRP
model parameter β < 1 indicating the machine tool is in an
early failure period before it reaches its useful life or steady
state condition. So, its failure intensity should decrease as
the operational time increases. From this point view, both the
hypotheses of imperfect repair and minimal repair describe
correctly failure characteristics of the machine tool. On the
other hand, compared with minimal repair model, imperfect
repair model gives a decreasing failure intensity along with
an upward jump at each failure.

The reason for this is that in each instantaneous imperfect
repair, the equipment’s effective age reduces to a certain value
rather than zero, which makes the system much younger than
before repair. Since the failure intensity is a function of the
effective age and its shape remains unchanged, so the failure
intensity value right after each instantaneous repair is not
zero, but greater than just before failure in early failure stage,
while smaller if it is in a wear-out failure stage. So, in the early
failure stage, the failure intensity at each repair time does not
decrease, on the contrary, it increases after each instantaneous
repair, but the total trend of failure intensity decrease along
with the operational time.

As Dijoux and Idée [39] pointed out that the jump dis-
continuity of the failure intensity after a repair means that
the repair action is efficient. However, in an early failure
period, repair can be harmful to the overall condition of the
system, though necessary for its continued operation. In this
situation, a widely accepted procedure is to apply ‘‘burn in’’
techniques to screen out defective items and thus improve the
performance of the surviving items. This approach reduces
the burn-in period and extends the useful life of the system.

Figure 2 is the corresponding reliability plot for this NC
machine tool, it shows that at 1000 hours or so, the reliability
given by the models of perfect repair and minimal repair
is close to zero, but in fact through a repair, this machine
tool is still work with a higher reliability. So, if one chooses
the model of perfect repair or minimal repair to assess the
machine tool’s reliability, an incorrect result will be produced.

FIGURE 2. Reliability of NC machine tool.

Figure 3 is the plot of the cumulative number of failures
versus time for this NCmachine tool, it shows that theWGRP
model gives a best fitting for failure data than the ORP and
NHPP models. The root mean squared errors of fitting for
WGRP, ORP and NHPP models are 1.162, 1.871 and 1.184,
respectively. The fitting accuracy of WGRP model is also the
best, and the ORP model is the worst. This result agrees well
with that of the ref. [11].

FIGURE 3. Cumulative number of failures versus time for NC machine
tool.

Case 2: Mettas and Zhao [24] analyzed 33 time truncated
failure data using the GRP Model II, as shown in Table 3.

The variance-covariance matrix of model parameters
λ and β can be obtained as follows:

1 =

[
1.476× 10−8 −2.771× 10−5

−2.771× 10−5 5.309× 10−2

]
The corresponding variances of reliability indices at the max-
imum truncated time are

Var
(
R̂ (t = 8760)

)
= 3.858× 10−3,

Var
(
t̂ (R = 0.7)

)
= 10523.268,

Var
(
ĥ (t = 8760)

)
= 2.819× 10−7,

Var
(
N̂ (t = 8760)

)
= 0.3048
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TABLE 3. Failure times of 6 same type repairable systems with time
truncation.

TABLE 4. Point and interval estimators of model parameters and
reliability indices with 5% significance level for case 2.

Table 4 is the point and interval estimates of model parame-
ters and reliability indices with 5% significance level.

Unlike Case 1 with an early failure stage, the repairable
system of Case 2 with β> 1 indicating it is in a wear-out
stage and has an increasing failure intensity. Failure inten-
sity for these 6 same type repairable systems is shown
in Figure 4, we can see that all three models possess this
characteristic, but the model of imperfect repair gives a
more reasonable description for system failure after repair,
where its failure intensity jumps down and decreases to a
lower value after each instantaneous repair, but the over-
all failure intensity is increasing with the operational time
increases.

The reliability of system in Figure 5 is similar to Case 1,
it decreases to a lower value before repair, but just after each
instantaneous repair, it jumps up to 1.0 again, and then decays
slowly until the next repair, and so on.

Figure 6 is the plot of the cumulative number of failures
versus time for 6 same type repairable systems in case 2.
In the end of the maximum truncated time 8760h, the cumu-
lative number of failures estimated by the WGRP, ORP and
NHPP models are 8.007, 8.795 and 10.242, respectively.

FIGURE 4. Failure intensity for 6 same type repairable systems.

FIGURE 5. Reliability for 6 same type repairable systems.

FIGURE 6. Cumulative number of failures versus time for 6 same type
repairable systems.

In this time, the real cumulative number of failures is 8,
so we can say that the WGRP model gives a best fitting for
failure data than the ORP and NHPP models. The root mean
squared errors of fitting for WGRP, ORP and NHPP models
are 3.227, 3.748 and 4.370, respectively. The fitting accuracy
of WGRP model is still the best, and the NHPP model is the
worst. This result agrees well with the result of Mettas and
Zhao [24]. Based on the value of log-likelihood for failure
data, they considered that the WGRP model is the best fit for
this failure data.
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IV. CONCLUSION
Based on the asymptotic distribution of the MLE, the point
and interval estimators of model parameters for the Kijima’s
WGRP Models I and II, as well as reliability indices of
these repairable systems, including reliability at given time
and warranty time given reliability, instantaneous failure
intensity and instantaneous MTBF, cumulative failure inten-
sity and cumulative MTBF, are all given. Two different
cases are studied to show the validity of our method. The
results show that the method proposed in this paper agrees
well with the other exiting methods, our method also can
reduce the complexity of calculation, it is efficient and
powerful.

Imperfect repair makes the instantaneous failure intensity
of a repairable system discretely jump either up or down at the
time of each failure. In early failure stage, the failure intensity
jumps up after repair, and the MTBF will increase. But in
wear out stage, the failure intensity jumps down after repair,
while still having a decreasing MTBF.
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