
Received December 8, 2020, accepted December 23, 2020, date of publication January 5, 2021, date of current version February 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3049118

Feature Extraction Algorithm Using a Correlation
Coefficient Combined With the VMD and Its
Application to the GPS and GRACE
YIFAN SHEN 1,2, WEI ZHENG 1,2, WENJIE YIN2, AIGONG XU1, AND HUIZHONG ZHU1
1School of Geomatics, Liaoning Technical University, Fuxin 123000, China
2Qian Xuesen Laboratory of Technology, China Academy of Space Technology, Beijing 100094, China

Corresponding authors: Wei Zheng (zhengwei1@qxslab.cn) and Wenjie Yin (wjyin1991@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 41774014, Grant 41574014, and
Grant 41504010; in part by the Frontier Science and Technology Innovation Project under Grant 085015; in part by the Innovation
Workstation Project of the Science and Technology Commission of the Central Military Commission; and in part by the Outstanding Youth
Foundation of the China Academy of Space Technology, National Key Research and Development Program of China under
Grant 2016YFC0803102.

ABSTRACT To improve the reliability of the Global Positioning System (GPS) and Gravity Recovery
and Climate Experiment (GRACE) feature extraction, this paper uses a correlation coefficient combined
with the traditional variational mode decomposition (VMD), proposing a new correlation variational mode
decomposition (CVMD). In contrast to previous studies, the CVMD denoises the sequences before feature
extraction and it is the first time that be used in the GPS and GRACE. First, the correlation between
the intrinsic mode function (IMF) and the original sequence is obtained to denoise the original sequence.
Moreover, the algorithm reuses the VMD to obtain the IMF components with different frequencies. Then
the Lomb Scargle (L-S) spectral analysis and energy density are used to obtain the trend-, seasonal, and
residual items. Second, the features of the GPS and GRACE time series are extracted based on the CVMD
and multidimensional ensemble empirical mode decomposition (MEEMD) to verify the availability of the
CVMD. The results indicate that the CVMD is more superior to the MEEMD in feature extraction. Third,
the CVMD is used to extract the trend- and seasonal terms of GPS and GRACE in the North China Plain
(NCP). The conclusions are as follows: (1) the seasonal items of GRACE are used to correct the GPS
sequences, and the average reduction of the weighted root mean square (WRMS) of each GPS station is
0.69, which demonstrates a strong consistency between the seasonal terms of the GPS sequence and GRACE
sequence; (2) during 2003-2015, the mean slope of vertical displacements is 0.20 ± 0.07 mm / yr, and
the uplift rate increases substantially (1.66 ± 0.62 mm / yr) after 2013. Then, the temporal and spatial
relationship between rainfall and crustal load-deformation in the NCP is analyzed, and it is found that the
crustal load-deformation is primarily related to rainfall, while human activities play a leading role in the
southwestern regions where agricultural irrigation is relatively strong.

INDEX TERMS Correlation variational mode decomposition, feature extraction, GPS, GRACE, North
China Plain, vertical displacement of crust.

I. INTRODUCTION
The redistribution and interaction of water reserves causes
changes in the surface load, which can lead to a flexible
deformation of regional crust in the horizontal and vertical
directions [1]. The crustal deformation is primarily divided
into structural and non-structural deformations. The struc-
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tural deformation is caused by the internal tectonic movement
of the Earth, manifested by the linear movement of the crust
in the horizontal direction (N, E) [2]. The non-structural
deformation is produced by the atmospheric load, snow
load, soil water, and other factors [3]. The annual movement
leads to seasonal changes in the lithosphere (U) [4]. The
North China Plain (NCP) is located between the Indian
Plate, the Philippine Plate, and the Pacific Plate. The rock
structure in this region is uneven in the horizontal and vertical
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directions, which leads to an active crustal movement in
the NCP. In recent years, many environmental geological
disasters (e.g., land subsidence, seawater intrusion, water
quality deterioration) have occurred because of the effects of
agricultural irrigation, industrial water, and other activities on
water resources [5], [6]. Therefore, it is essential to analyze
the seasonal and spatio-temporal characteristics of vertical
crustal deformation over the NCP [7], [8].

The Global Positioning System (GPS) has the advantages
of high efficiency, all-weather operation, and precision in
measurement. Therefore, many scholars use the Interna-
tional Global navigation satellite system Service (IGS) and
continuous operating reference stations (CORS) to monitor
the crustal deformation in typical region, such as the Asia
Europe continent [9], the Himalayas [10] and Southwest
China [11], etc. However, the spatial resolution of GPS
stations is low, and it cannot cover all regions of the world.
In recent years, it has become a research hotspot to improve
the spatial resolution of crustal monitoring on the premise
of ensuring the accuracy. The launch of GRACE gravity
satellites in 2002 ushered in a new era of high-precision
gravity field observation [12]. Gravity Recovery and Climate
Experiment (GRACE) satellites canmonitor changes in water
reserves at all depths, including snow, surface water, soil
water, and groundwater [13]–[15]. Seasonal changes in water
reserves can cause changes in the crustal load, resulting in
crustal deformation in the U direction [16]. It is possible
to constrain the regional crustal deformation and tectonic
dynamic by reconciling the GPS and GRACE [17]–[19].
While, the sequence of GPS andGRACE contain lots of noise
signals [20]. It is important to denoise the sequences before
feature extraction [21].

To analyze the displacement sequence, the common
method is to extract the seasonal and trend-items in the
signal using the least square fitting [22], although this method
misses the hidden value of the signal. Given this short-
coming, Huang proposed the empirical mode decomposition
(EMD) [23]. Then, many scholars utilized the EMD to
analysis theU direction sequences of the crust ulteriorly [24].
This method can adaptively extract the seasonal and trend-
terms in the signal, while it produces the problems, such
as the mode-mixing and end-effect in decomposition [25].
With the optimization of the EMD, the ensemble empirical
mode decomposition (EEMD) [26], complete ensemble
empirical mode decomposition (CEEMD) [27], variational
mode decomposition (VMD) [28], multidimensional ensem-
ble empirical mode decomposition (MEEMD) [29] and other
methods are proposed. Although EEMD and CEEMD can
effectively suppress the phenomenon of mode-mixing, many
computations bring redundant information, and the VMD
decomposition method easily solves the problem of end-
effect [30]. In recent years, numerous feature extraction
methods have been proposed and are based on signal decom-
position algorithms and measuring complexity in different
fields [31], [32]. The VMD and discrete wavelet transform
are utilized to classify the signals [33]. Chen et al. proposed

a new method based on the normalized mutual information
and multiscale to extract the noise features [34]. In addition,
Zhang et al. combined the nonlocal means (NLM) method
with complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) to denoise the signals [35].
However, there are few studies on denoising the GPS and
GRACE sequences. To reduce the effect of noise on decom-
position, the new correlation variational mode decomposition
(CVMD) feature extraction algorithm is proposed according
to the traditional VMD. In this method, the correlation
coefficient between the intrinsic mode function (IMF)
and the original sequence is used to obtain the denoised
signals. It subsequently extracts the features of the denoised
secondary signal.

In contrast to previous studies, the CVMD is first proposed
and used to extract the trend- and seasonal terms from the
sequences of the GPS and GRACE, and the performance
of this method is evaluated based on the indexes of the
normalized cross-correlation (NCC) and signal noise ratio
(SNR). The seasonal consistency of the GPS and GRACE
time series is studied according to the WRMSreduction.
Moreover, the precipitation data provided by the China
Meteorological Administration (CMA) is used to analyze
the spatio-temporal characteristics between the vertical
load-displacement and rainfall. This study is significant for
the effective management of local water resources and the
lives of residents in the NCP.

II. CONSTRUCTION AND EXAMPLE OF THE CVMD
A. PRINCIPE OF VMD
Dragomiretskiy and Zosso proposed the concept of the
traditional VMD in 2014 [36], which is different from the
non-recursive solution modes such as the EMD, EEMD, and
local mean decomposition (LMD). The VMD can effectively
eliminate the envelope and over envelope problems by
recursion, while it has better adaptability to extract signal
features. In the algorithm of VMD, the IMFs are redefined
as the elementary amplitude/frequency modulated (AM/FM),
modeling the non-stationary and the nonlinearity of the
signals [36], as follows:

uk (t) = Ak (t) cos(φk (t)) (1)

where the φk (t) denotes the non-decreasing function; Ak (t)
represents the instantaneous amplitude of the uk (t); t denotes
the time of the uk (t); The uk (t) has center frequencies
and limited bandwidths. Meanwhile, on a sufficiently long
interval, the mode uk (t) can be considered a pure harmonic
signal. The IMFs can be extracted by solving the variational
problem [36], which is given by:

min
yk ,ωk

{
k∑
i=1

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ uk (t)

]
∗ e−jωk t

∥∥∥∥2
2

}

s.t.
k∑
i=1

ui(t) = y(t)

(2)
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where j is the imaginary unit; δ(t) denotes the mean pulse
function; t denotes the time of the sequence; k denotes
the number of modes; uk represents the k modes that are
decomposed; and ωk denotes the center frequency of modes.
y(t) represents the sequence to be decomposed and ∂t denotes
the first partial derivative of the universal function with
respect to time t . B(t) denotes the baseband.
Aiming to solve the optimized question in equation (2),

the alternate direction method of multipliers (ADMMs) is
used to settle the saddle point. Then, the un+1k ,ωn+1k , and λn+1

are updated in the frequency domain [36], as follows:

ûn+1k (ω) =

f̂ (ω)−
k−1∑
i=1

ûn+1i (ω)-
k∑

i=k+1
ûni (ω)+

λ̂(ω)
2

1+ 2α(ω − ωk )2
(3)

ωn+1k =

∫
∞

0 ω

∣∣∣ûn+1k

∣∣∣2 dω∫
∞

0

∣∣∣ûn+1k

∣∣∣2 dω (4)

_

λ
n+1

(ω) =
_

λ
n
(ω)+ τ (

_

f (ω)−
∑
k

_u
n+1
n (ω)) (5)

where the f̂ (ω), ûi(ω), and λ̂(ω) denote the Fourier transform
of f (t), ui(t),and λ(t), respectively. Then, the n denotes the
iterations, and λ denotes the Lagrangian multiple to render
the question unconstrained. The α denotes the balancing
parameter of the data fidelity constraint.

In the algorithm of VMD, the low order IMFs denote the
slow oscillations (low-frequency modes), and the high order
IMFs denote the fast oscillations (high- frequency modes).
Therefore, the original sequence y(t) is decomposed into k
modes as follows:

y(t) = IMF1 + IMF2 + · · · + IMFk (6)

B. DEVELOPMENT OF CVMD
The traditional VMD still brings about heavy losses of
accuracy in the process of sequence feature extraction
because of the influence of high-frequency noise. Therefore,
this study combines the correlation with the traditional
VMD for the first time namely CVMD. To avoid over or
under decomposition, the CVMD determines the number of
IMFs (k) through the center frequency of the component.
The correlation between each component and the original
sequence is calculated, and the weak correlation and uncor-
related IMFs are removed. The remaining rest components
are reconstructed to produce denoised sequence. Then, this
algorithm uses the denoised sequence as the input data to
decompose and extract the feature sequence. The structure
of the CVMD is shown in Figure 1. The elaboration of the
CVMD is shown as follows.

1) OBTAIN THE DE-NOISED SEQUENCE
To reduce the influence of noise on feature extraction,
the proposed method uses the correlation coefficient between
each mode and the original sequence, and it removes the

FIGURE 1. The Flow chart of the Correlation variational mode
decomposition.

uncorrelated and weak correlation components. The process
of solving for the correlation coefficient is shown in the
following formula:

Ri =
Cov[y(t), IMFi]

√
Var[y(t)]× Var[IMFi]

i = 1, 2, · · · , k (7)

where Ri denotes the correlation coefficient; y(t) represents
the original sequence; and IMFi is the decomposed com-
ponents. According to the value of Ri, we can judge the
correlation between the mode and the original function. The
general correlation and strong correlation components are
reconstructed, while the uncorrelated and weak correlation
components should be removed. Table 1 describes the
correlation coefficient and correlation correspondence [37].

TABLE 1. The relationship between the correlation coefficient (Ri ) and
correlation.

This paper determines the threshold of cc based on the
energy spectrum index of the IMFs. The noise signals could
be removed. Meanwhile, the correlation coefficient will be
counted. Through abundant simulation experiments, the cc
threshold is fixed at 0.3 in this paper [28]. Then, the denoised
sequence is obtained, and its expression is as follows:

y(t)denoise =
∑

IMFi, (i|0.3 < Ri < 1) (8)

where y(t)denoise denotes the reconstructed sequence after
denoising; n denotes the number of satisfied sequences; and
Ri denotes the correlation coefficient between the modes and
the original sequence.
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2) THE SECOND DECOMPOSITION
After the denoised sequence is obtained, y(t)denoise is taken as
the initial input sequence. The seasonal and trend-items can
be obtained according to the above decomposition method.
Then the Lomb Scargle (L-S) spectral analysis and energy
density are used to obtain the trend-, seasonal, and residual
items [38], [39]. The extraction results are as follows:

y(t)denoise = IMFSEA + IMFTRE + ε (9)

where IMFSEA denotes the seasonal term of the series
extracted from the CVMD; IMFTRE denotes the feature of
the trend-item obtained from profit extraction; and ε is the
residual noise sequence.

III. EXPERIMENTAL VERIFICATION OF THE CVMD
A. DATA AND MODELS
1) GPS DATA AND PREPROCESSING
There are 10 CORS stations in the NCP, which are provided
by the Crustal Movement Observation Network of China
(Figure 2a). Figure 2b manifests the relationship between
the GPS sites and GRACE grids in the NCP. The coordinate
datasets of CORS, such as the ionospheric correction,
absolute antenna phase center correction, and ocean tide
correction, are corrected by the GAMIT. The baseline among
stations is calculated based on the GLOBK. Furthermore,
the sequences’ outliers threefold larger than the standard
deviation are removed to weaken the influence of abnormal
values. Given the inconsistency of the time series span
between the GPS and GRACE, this study selects the most
extended time series of theGPS andGRACE for analysis. The
periods of the CORS stations are 2010-2015, except BJFS and
BJSH (2003-2015) [40].

2) GRACE DATA AND INVERSION MODEL
The mass changes can deform the displacement of the crust
of the Earth. The surface water, atmosphere and non-tidal
ocean loads lead to the load-deformation, and especially
contribute to the vertical crustal non-tectonic movement [41].
The load-deformation can be estimated using the GRACE
spherical harmonic (SH) coefficients based on the theory of
elastic load-deformation [42] as follows:

1h(θ, ϕ) = A×
∞∑
l=0

1∑
m=0

hl
1+ kl

×Wl × Pl,m(cos θ )

× [1Clm cos(mϕ)+1Slm sin(mϕ)] (10)

where A is the radius of the Earth (6371.393 km); hl and kl
represent the load Love number of order l; Wl denotes the
kernel function of Gaussian smoothing; Pl,m represents fully
normalized Legendre functions of degree l and orderm;1Clm
and 1Slm are the variation of spherical harmonic coefficient
of the Earth’s gravitational field.

The C20 terms are replaced by the satellite laser rang-
ing (SLR) data of the five geodetic satellites (LAGERS-1
and 2, Stella, Starlette, and Ajisai) [43]. Because the GRACE
gravity field cannot determine the degree-1 terms, this

study replaces these terms with the results derived by
Swenson et al. [44]. We use the Gaussian smoothing with
an average radius of 300 km to deduct the error of the
North-South strip. Because the influence of the non-tidal
factors of atmosphere and ocean, the GAC correction is
added to the spherical harmonic coefficient. Finally, to better
compare and analyze with the GPS sequences, first-order
correction processing should be performed for the calculation
results [45].

The GRACE observations are provided by the Center for
Space Research (CSR), Geo Forschungs Zentrum (GFZ),
and the Jet Propulsion Laboratory (JPL). The scaling factor
method is used to recover the signalized leakage generated by
filtering. The uncertainty of the GRACE signal is quantified
according to the three-cornered hat (TCH) [46], and the mean
value of the three time-series is taken as the result, as shown
in equation (9):

1h =
1hCSR +1hGFZ +1hJPL

3
(11)

B. EVALUATION INDEX
To demonstrate the superiority of the CVMD, two indicators
(i.e., NCC and SNR) are used to evaluate the similarity and
denoising effect of the extracted feature sequence and the
original sequence [47].

1) NCC
The calculation formula of NCC is as follows [48]:

NCC =
∑
n

1
σf σh

(f (n)− µf )(h(n)− µh) (12)

where f (i) and h(i) represent the original sequence and the
reconstructed sequence, respectively; i represents the number
of the sequence; n represents the number of sampling points
in the sequence; and σ and µ represent the standard deviation
and mean value of the sequences, respectively. The value
of NCC is between - 1 and 1. When the value of NCC is
equal to 1, the signals of the two sequences are identical.
Therefore, the closer the NCC value is to 1, the more similar
the information contained between the reconstructed and
original signals is [49].

2) SNR
The calculation formula of the SNR is as follows [48]:

SNR = 10× lg

N∑
i=1

f 2(i)

N∑
i=1

[f (i)− g(i)]2
(13)

where N denotes the number of sampling points in the
sequence; f (i) denotes the sequence of the feature; and g(i)
denotes the original sequence. The more substantial SNR
value is, the less noise content is in the sequence, and themore
obvious the denoising performance is [50].
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FIGURE 2. (a) The distribution of CORS stations (green stars) and meteorological stations (green dots) in the NCP. (b) The relationship between the CORS
stations (green stars) and GRACE grids (the red ’G1-G8’), the background represents the use of land in the NCP.

C. VERIFICATION OF THE CVMD
The study verifies the validity and reliability of the CVMD
based on the time-series of theGPS andGRACE. The datasets
of the GPS and GRACE are provided at daily and monthly
resolutions, separately. Moreover, the CVMD is compared
with the MEEMD to indicate the advantages of feature
extraction.

The CVMD is used to pre-decompose the sequences,
using the BJFS station (GPS) as an example. To determine
the decomposition number k , the usual method is to adopt
different values of k to decompose the original signal. The
decomposition number k is determined by analyzing the
center frequency value of the decomposed mode. If there
are modes with similar center frequencies, then VMD over
decomposition should be considered. Therefore, we should
compare the center frequency of IMFk and IMFk−1, and
the test will be stopped when the center frequency of IMFk
approximately equal to IMFk−1 [51]. Moreover, the other
parameters of alpha, tau, DC, initialization, and tolerance are
equal to 2500, 0, 1, 1, and 1e-6, separately. The calculation
results of the center frequencies of the IMF components are
shown in Table 2.

As shown in Table 2, the center frequency of IMF5
approaches that of IMF6 when k equals 7. The center
frequencies of IMF5 and IMF6 are very close when k
equals 8. Moreover, the center frequencies of IMF7 and
IMF8 are also almost identical. These results indicate that
there is a phenomenon of a false mode when k is not less
than 7. To sum up, 6 is the most appropriate parameter in this
experiment, and the value of alpha, tau, DC, initialization, and
tolerance are equal to 2500, 0, 1, 1, and 1e-6, separately. The
result of pre-decomposition is shown in Figure 3.

FIGURE 3. The pre-decomposition effect chart based on the CVMD in
BJFS GPS station.

The correlation coefficient (Ri) between each IMF and the
original sequence is calculated. Moreover, the IMF within 0
to 0.3 is removed, and the remaining IMFs are reconstructed
to achieve the denoising effect (Figure 4).

Figure 4 shows that the correlation coefficient between
IMF1 and the original sequence is higher than 0.3. This
result shows that IMF1 has a strong correlation with the
original signal. However, the correlation coefficients between
the remaining IMF components and the original sequence
are all less than the threshold, indicating a weak correlation
attribute with original signals. Thus, IMF1 is retained as
the denoised sequence for the following decomposition. The
GPS sequence is denoised to obtain the input sequence of
the secondary decomposition based on the CVMD, and the
processing results are shown in Figure 5.
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TABLE 2. Central frequency values of IMs with different k values.

FIGURE 4. The correlation coefficients between IMF components and the
original sequence (the value of R); N denotes the number of points; the
shades of dark gray, light gray, and blue express the ranges of the
correlation coefficients, which are 0-0.3, 0.3-0.5, and 0.5-1; the red dotted
lines denotes the regression equations.

FIGURE 5. The denoising effect based on the CVMD; the grey lines denote
original GPS signals, the black I-shapes represent the error of GPS
signals, and the red lines denote the denoised GPS signals.

Figure 5 indicates that the denoised sequence is smoother
than the original sequence. Moreover, the denoised sequence

continues to be the input sequence, and the steps of
decomposition are repeated to obtain the feature components
of different frequencies. The parameters of the second
decomposition are shown in Table 3. To verify the reliability
of the CVMD, the MEEMD feature extraction method was
used as the control experiment, and NCC and SNR are used
as the evaluation indices. The feature extraction results of the
two methods for the BJFS station are shown in Figure 6 and
Figure 7.

TABLE 3. The parameters of the second VMD, it includes the alpha, k, tau,
DC, initialization, and tolerance.

FIGURE 6. Decomposed results based on the CVMD. IMF1, IMF2 - IMF4,
and IMF5 - IMF10 denote the trend-term, seasonal term, and
noise-term [52] extracted by the CVMD, respectively.

The characteristics of the sequence are distinguished
using L-S spectrum analysis and the energy density of the
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FIGURE 7. Decomposed results based on the MEEMD. IMF1-IMF4, IMF5-
IMF8, and IMF9 representing the residual, seasonal and trend-items
extracted from the MEEMD, respectively.

components [53]. Figure 6 shows the result of sequence
feature extraction by the CVMD. A small amount of noise
remains in the second decomposition, but the amplitude of
the noise is far smaller than that of the original sequence.
This result indicates that the noise has a slight effect on
the sequence currently. Figure 7 indicates that the MEEMD
also has the ability of sequence feature extraction. However,
the amplitude of its noise part is large, indicating that the
noise has a greater effect on the sequence feature extraction
process through the MEEMD. With regard to distinguishing
the abilities of the two feature extraction methods, this paper
compares the trend -term and seasonal term of the extraction
results.

1) COMPARISON OF TREND-CHARACTERISTICS
In this section, the CVMD is used to extract the trend-terms
of the GPS and GRACE sequences, and the slope values of
the trend -sequences are shown in Table 4. The slope values
of the trend -terms and original sequences are compared
to express the advantage of trend-term extraction. If the
trend-term is closer to the slope value of the original
sequence, the extraction result is more reliable.

Table 4 indicates that the CVMD ismore reliable and stable
than the MEEMD. After statistical analysis, the accuracy of
the CVMD method is 84.41% in the trend extraction of the
GRACE sequence, higher than that of theMEEMD (74.12%).
In terms of the trend-feature extraction of the GPS sequence,
the accuracy of the CVMDmethod is 97.87%,which is higher
than 92.39% for the MEEMD. The above observations show
that the CVMD outperforms the method of MEEMD.

2) COMPARISON OF SEASONAL CHARACTERISTICS
The performance of the CVMD and MEEMD are com-
pared regarding extracting the seasonal terms. The original
sequence is compared from the frequency domain by drawing
the superposed power spectrum. This comparison adequately
explains the relationship between the reconstructed sequence
and the original sequence obtained by these two decomposi-
tion methods [54]. The BJFS station is chosen as an example
to show the superimposed power spectrum of the seasonal
characteristics (Figure 8).

FIGURE 8. The seasonal superposed power spectrum of the BJFS station
based on the CVMD (blue line) and MEEMD (red line). The black line
denotes the power spectral density of the original data.

Figure 8 shows that the seasonal term of the CVMD agree
with the original sequence, while the MEEMD extraction
result differs from the original sequence. The sequence sepa-
rated by the CVMD in the high-frequency part is different
from the original sequence. Moreover, the result of the
MEEMD is different from the original sequence. The CVMD
effectively extracts the seasonal terms in the sequence. The
NCC and SNR are used to demonstrate the superiority of the
CVMD, the results are shown in Table 5 [48].

Table 5 shows that the results of the CVMD are substan-
tially better than those of the MEEMD. Further statistical
results for Table 5 are as follows: (1) In the seasonal term
extraction of the GRACE, the average NCC value of the
CVMD is 0.79, while that of MEEMD is 0.62, an average
increase of 27.42%. Moreover, the mean the SNR of CVMD
and MEEMD are 6.96 and 3.83, respectively. (2) In the
seasonal term extraction of the GPS, the mean NCC value
of the CVMD is 0.86, while that of the MEEMD is 0.64,
an average increase of 34.38%. Moreover, the mean SNR
result of the CVMD and MEEMD are 16.56 and 10.13,
respectively. The above statistical results show that the
CVMD is more accurate than the MEEMD in the extraction
of seasonal term.

3) THE ROBUSTNESS TEST
In order to text the robustness of the threshold, this study has
calculated the correlations between the IMFs and the original
signals. the results are shown in the Table 6.

Table 6 shows that the value 0.3 is enough to denoised the
noisy IMFs. However, if the threshold is 2.9, the robustness
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TABLE 4. The results of sequence trend-feature extraction based on the CVMD and EMD, Ori-seq denotes the original sequence.

TABLE 5. Sequence seasonal feature similarity and signal-to-noise ratio based on the CVMD and MEEMD.

TABLE 6. The results of the correlations between the IMFs and the
original signals, the Purple row is the name of the GPS signal, the Blue
row is the denoised part (as the input data for the second VMD) of the
IMFs, and the Grey rows represent the noisy IMFs of the original signals
(distinguished by the energy density).

of the threshold is 50% (BJFS, HETS, TJBD, TJSH, and
TJWQ signals are not satisfy the 0.29). When the threshold
equals 0.31, the robustness also can denoised the noisy IMF.
If the threshold over 0.3, it may remove the useful IMFs

(high-correlation). However, there are quite different for the
thresholds of the useful and noisy IMFs.

Aiming to verify the robustness of the threshold (0.3),
we have simulated 100 signals according to the real GPS
signals. We have calculated the robustness of the threshold;
it shows that the threshold (0.3) is enough to denoised the
signals. Meanwhile, the robustness of the 0.29 is 84%.

IV. APPLICATION OF THE CVMD
A. COMPARATIVE ANALYSIS OF GPS AND GRACE
MONITORING RESULTS
The CVMD is used to separate the trend-term and seasonal
terms of the GPS and GRACE time-series. Table 4 and
Figure 9 describe the trend- and seasonal items, respectively.

Figure 9 shows that there are differences between the
phase and amplitude of crustal deformation (GPS) and crustal
load-deformation (GRACE) in the NCP. The amplitude of
the crustal deformation sequence is between 2.3 mm and
9.8 mm, while the load-deformation ranges from 2.1 mm to
5.2 mm. Above all, the amplitudes of the GPS are larger than
those of the GRACE. The crustal load-deformation shows
a substantial seasonal change, and groundwater is primarily
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FIGURE 9. The seasonal term extraction effect of the GPS (yellow lines)
and GRACE vertical series (blue points) in the NCP based on the CVMD.
The red points represent the GPS data that de-trended.

used for agricultural irrigation at the end of the spring and
summer. The remaining rainwater is stored in the spring of
the second year except for evaporation and runoff. Therefore,
the crustal load -deformation in the spring shows a negative
state.

To verify the consistency of the GPS and GRACE in
seasonal terms, the quantitative analysis of the weighted root
mean square (WRMS) is used as follows [55]:

WRMSGPS =

√√√√1
n
×

n∑
i=1

1
σ 2 × ci (14)

WRMSGPS-GRACE =

√√√√1
n
×

n∑
i=1

1

σ 2
i + σ

2
Gi

× (ci −1hGi )
2

(15)

where n denotes the number of solutions per -day; ci denotes
the sequence after the detrend -item; σ denotes the standard
deviation; and 1hGi denotes the time series of removing the
GRACE by the GPS.

After calculating the WRMS based on the above formula,
the experiment calculates the GPS sequences after deducting
the self-fitting WRMSGPS−GPSfit. Moreover, the following
formula is used to quantitatively evaluate the percentage
reductionWRMS of the GPS station [56]:

WRMSreduction =
WRMSGPS −WRMSGPS-GRACE
WRMSGPS −WRMSGPS-GPSfit

(16)

where WRMSreduction shows the relationship among
sequences in terms of the period, amplitude, and phase.When

the value of WRMSreduction equals 1, the seasonal parameters
of the two fitting methods are coincident. Figure 10 shows
the value of each station calculated using the above formula.

FIGURE 10. WRMS correction value after the GRACE corrected GPS
sequence (the points).

Figure 10 shows that each value ofWRMSreduction is above
0.5, and the average corrected value in 10 GPS stations is
0.69. Moreover, the WRMS corrections of BJFS, TJWQ and
HELY are more than 0.7. This result shows that the seasonal
characteristics of the GPS match well with the GRACE, and
using GRACE is effective for correcting the GPS.

B. TEMPORAL AND SPATIAL FEATURE OF CRUSTAL
LOAD-DEFORMATION IN THE NCP
The vertical load-deformation of the crust is primarily related
to the water resource reserves. When the amount of water
increases, the crust produces vertical deformation downward.
In contrast, it leads to the crustal rebound. The precipitation
product is used to analyze the cause of load-deformation in
the NCP. The trend-signals of crustal deformation in various
periods are retrieved via GRACE using the CVMD, and the
results are shown in Figure 11.

Figure 11 shows that the crustal load -deformation
increased at the rate of 0.20 ± 0.07 mm/yr during the
13 years study period. The seasonal fluctuation of crustal
deformation is closely related to the rainfall. When there is
more rainfall in the summer, the deformation of the Earth’s
crust is in a trough. The deformation gradually rebounds with
a decrease in rainfall, and there is a lag of 2 months in phase.
During 2013-2015, the crustal load-deformation showed an
obvious uplift trend, with a slope of 1.66 ± 0.62 mm/yr. The
rainfall was substantially lower than average for many years,
indicating that the variation of rainfall has an essential effect
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FIGURE 11. Time series of crustal non-structural deformation (red line)
and monthly precipitation (green column) in the NCP.

on the crustal deformation of the NCP. The findings of this
study show good consistency with previous research [57].

In practice, the real land water reserves are difficult to
obtain, and organizations adopt different data processing
strategies and background models [58]. There are some
differences in the phase, amplitude and period characteristics
of inversion shape variables [59]. Therefore, it is difficult
to evaluate the uncertainty of the inversion results of the
GRACE. Unlike the traditional error estimation method,
the TCH used in this paper can evaluate the uncertainty
of more than three sets of observation sequences ( 1hCSR,
1hGFZ, 1hJPL, and 1h) without knowing the real reference
field [60]. The error of the crustal deformation is estimated as
∼0.71 mm in the entire NCP, as shown in the shaded region
of Figure 11.

FIGURE 12. Long-term trends of (a) monthly precipitation and
(b) load-deformation from 2003 to 2015 in the NCP.

Figure 12 represents the temporal and spatial relationship
between rainfall and load-deformation in the NCP from
2003 to 2015. Over this period, the rainfall increased
substantially in the northern regions in the southern regions
(Figure 12a). The decrease in the water supply leads to the
apparent vertical uplift of the crust (Figure 12b), indicating
that rainfall has a substantially contribution to the crustal
load-deformation. However, the lowest point of the rainfall
decreasing trend appears over the southern region of the NCP
(Central of Shandong Province), while the region with the
fastest rate of crustal uplift is the southwest region over the
NCP (Henan Province). The difference between Figure 12a
and Figure 12b shows that agricultural irrigation may play a
leading role in the vertical displacement of the southwest.

V. DISCUSSION
Because of the influence of various factors on the crustal
deformation (GPS and GRACE), the crustal deformation
sequence is full of noises. These noises have a certain effect
on the feature extraction of the crustal deformation sequence,
so it is necessary to remove them before feature extraction.
The correlation coefficient is used to remove the noise
components based on the traditional VMD to obtain the clean
sequence. Finally, the denoised sequence is decomposed
twice to obtain the characteristic sequence of the sequence,
which is discussed in Section II.

The crustal displacements are calculated based on the
data of the GPS signals (Figure 2) and the data of the
GRACE. Equation (10) estimates the load- deformation
based on the GRACE spherical harmonic coefficients. The
CVMD is used to extract the features of the GPS and
GRACE sequences and compare them with the MEEMD
(Section 3.3). The results show that the slope of the
trend-feature extracted by the CVMD is closer to the original
sequence than that of the MEEMD (Table 4), and the
seasonal feature is better than that of the MEEMD in
NCC and SNR (Table 5). This study uses the CVMD to
decompose the GPS and GRACE signals (Figure 9) in the
NCP, and the consistent characteristics between the GPS and
GRACE are calculated using Equations (15) and (16). Finally,
the temporal and spatial variation between load -deformation
and rainfall is analyzed. The results play an important role
in the effective management of water resources in this
region (Section IV).

One may wonder why the CVMD is proposed when the
EMD, EEMD, MEEMD, and other methods can decompose
the sequence to obtain the characteristic components of
different frequencies. First and foremost, a single traditional
method cannot avoid the effect of sequence noise on feature
extraction. In addition, the method can also make the
sequence smoother and can show the trend, amplitude, and
phase of the sequence more clearly. However, there remain
some shortcomings in this method, such as the small amount
of high-frequency noise in the high-frequency part of the
result of the secondary decomposition of the sequence.
The amplitude of these noises is smaller than the original
sequence, but it will also have a certain effect. Therefore,
in the follow-up study, the high-frequency of the sequence
component will be added. After the threshold is set, the noise
is extracted more thoroughly.

VI. CONCLUSION
It is important to improve the reliability of the feature extrac-
tion of the GPS and GRACE nonlinear discrete sequences.
The accuracy of the extraction determines the reliability of the
geophysical analysis. Aiming at the shortcomings of existing
feature extraction methods, the correlation coefficient is used
to weaken the effect of noise in the CVMD.

1) This study considers the correlation coefficient
between the IMF and the original sequence based on
the traditional VMD to remove the noise component.
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The denoised sequence is decomposed and recon-
structed to achieve feature sequence acquisition.

2) TheCVMDandMEEMDare used to extract the feature
items of the GPS and GRACE original sequences. The
results indicate that the CVMD is more reliable and
stable than the MEEMD. The accuracy of CVMD is
97.87% for the trend-feature extraction of GPS and
84.41% for the GRACE sequence, which is higher than
92.39% and 74.12%, respectively, for MEEMD feature
extraction. These results suggest that the CVMD
outperforms the MEEMD decomposition method.

3) In the extraction of the seasonal feature, the average
NCC of the CVMD is 0.83, which is 30.90% higher
than that of the MEEMD; the SNR of CVMD is 11.76,
which is higher than 6.98 for the MEEMD. These
results indicate that the feature extraction method of
CVMDhas the characteristics of a strong similarity and
high signal-to-noise ratio, which shows that the results
of feature extraction are more reliable than those of the
MEEMD.

4) The seasonal characteristics of the GPS and GRACE
sequences in the NCP are extracted by the CVMD.
The results indicate that the GPS signal has a slightly
larger amplitude than that of the GRACE signal, and
there is a phase difference, which may be caused by
the slow deformation of the hydrological load. The
WRMSreduction of the GPS is used to evaluate the
relationship between the GPS and GRACE series. The
mean WRMSreduction value of 10 GPS stations is 0.69.
The results indicate that the seasonal terms of the GPS
and GRACE are well correlated, and it is effective to
correct the GPS by means of the GRACE observations.

5) Finally, the crustal load-deformation of the NCP was
uplifted vertically at a rate of 0.20 ± 0.07 mm/yr from
2003 to 2015. Because of the decrease of rainfall in the
southern regions, the decrease in the water supply leads
to the vertical uplift. However, human activities play an
essential role in crustal load-deformation in the farming
regions.
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