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ABSTRACT Underground metal target detection technology has been widely applied in industrial produc-
tion, resource exploration, and engineering construction, etc. However, due to the influence of non-negligible
noise and high dimensionality in collected data, achieving efficient and accurate underground target
classification remains a grand challenge for further applications of underground metal target detection
on portable devices with limited computing capability and energy supply. This study aimed to seek out
robust and efficient data-based strategies to classify the underground metal targets of different shapes
and materials based on electromagnetic induction detection. We investigated thirty-three classification
strategies based on eleven dimensionality reduction methods, namely, the least absolute shrinkage and
selection operator (LASSO), genetic algorithm-support vector machine (GA-SVM), Pearson correlation
coefficient (PCC), mutual information (MI), maximal relevance minimal redundancy Pearson correlation
(mRMRP), maximal relevance minimal redundancy mutual information (mRMRMI), statistical features
(SF), principal component analysis (PCA), kernel principal component analysis (KPCA), locally linear
embedding (LLE), and stacked denoising autoencoder (SDAE), and three machine learning models, namely,
artificial neural network (ANN), linear support vector machine (L-SVM), and Gaussian Naïve Bayes
(GNB). Several parameters, including classification accuracy, the number of features after dimensionality,
the feature type importance, and the time consumption were considered to evaluate the data-based classi-
fication strategies. Among the classification strategies investigated and considering the above evaluation
parameters, the artificial neural network (ANN) classifier assisted with the kernel principal component
analysis (KPCA) feature extraction method yielded the best performance in the material-based classification
(accuracy:0.99) and the shape-based classification (accuracy:0.99). The locally linear embedding (LLE)
improved the robustness of machine learning classifiers and efficiency of the artificial neural network in
the material-based classification (improvement of average accuracy:0.17, reduction of classification time
cost:14%) and shape-based classification (improvement of average accuracy:0.16, reduction of classification
time cost:22%). Our comparative investigation provides a robust and efficient data-based strategy for
underground metal target classification, which is significant for applications of underground metal target
detection on portable devices with limited computing capability and energy supply. The cross-combination
strategy of dimensionality reductionmethods andmachine learningmodels provides away to find the optimal
machine learning model for underground target detection.
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I. INTRODUCTION
Underground metal target detection is the process of esti-
mating the properties of subsurface metal items based on the
observed data. It has been widely applied in resource explo-
ration [1], engineering construction [2], military fields [3],
and many other fields [4]–[6]. Geophysical exploration sys-
tems such as infrared remote sensing (RS) system [7], [8],
electromagnetic induction (EMI) system [9]–[12] and
ground-penetrating radar (GPR) [2], [13], [14] have proven to
be successful in underground target detection. The EMI sys-
tem, using the induced magnetic fields generated as observed
data, has been an efficient way to detect underground metal
targets in complex environments [15] owing to its strong
penetrability, high precision, nondestructive, and sensitivity
to metal materials. As a time-domain EMI method, transient
electromagnetic (TEM) induction employs low frequencies
ranging from tens of Hz to hundreds of kHz to increase
sensitivity to conducting targets [16], [17], which has proven
to be efficient in the detection and discriminating metal
targets [18]. With the development of underground target
detection technology [19], the need for detection has become
more specific, and distinguishing the attributes such as the
materials and shapes of targets has become an urgent prob-
lem, i.e., the undergroundmetal target classification problem.

The existing classification strategies for underground
metal targets mainly focus on two aspects: model-based
methods [17], [20], [21] and data-based methods [22]–[24].
The model-based method needs to establish a forward
model [25] and obtains the properties of the target through
inversion. Therefore, the classification performance is greatly
dependent on the rationality of the forward model and
the reliability of inversion algorithms. Compared with the
model-based methods, data-based methods have attracted
considerable interest because they do not involve physical
mechanisms and can be accessibly applied. The mechanism
of data-based methods is the establishment of a mapping rela-
tionship between the influential factors (selected or extracted
features from observed data) and the properties of under-
ground targets. Therefore, there are two essential factors for
data-based methods, namely, the mapping relationship and
the influential factors (i.e., the model inputs).

In terms of the mapping relationship, abundant classi-
fication models have been applied for data-based classi-
fication. These methods include machine learning (ML)
models such as support vector machine (SVM), artificial neu-
ral networks (ANN), random forest, AdaBoost algorithm, and
so on [21], [22], [26]–[29]. Also, pattern matching methods,
such as comparing the extracted features of targets with a
given dictionary [30] and voting scheme which compares
field data polarizabilities against templates in the library [31],
are frequently employed for classification.

Regarding model inputs, one of the most important
problems in data-based modeling is dealing with the high

dimensional input space. The number of features generated
by time-domain electromagnetic sensors is potentially very
large which is dependent on the time channels, the number of
receiver elements, and the spatial sampling density [23], [32].
Notably, there are lots of irrelevant, redundant, and noisy
data as the amount of data becomes increasingly greater [33].
On the one hand, large-scale features bring problems such
as requiring more storage and greater computational com-
plexity of hardware, which may influence the performance
of computers (long modeling time and lack of memory) [34].
On the other hand, large-scale features bring challenging
problems in the learning process because of the "curse of
dimensionality" and complications in the interpretation of
data and results [35]. A model would show a lower prediction
performance with the poor data, especially in machine learn-
ing, even if the model is very robust and effective. In many
cases, the useful information that explains the mechanism
generated by the data is in a smaller subset of features [36].
Therefore, extracting and selecting the most discriminative
information from observed data is a crucial step in data-based
modeling, which is known as dimensionality reduction. As a
generally accepted rule, dimensionality reduction can be
classified into two categories: feature selection and feature
extraction [34], [37]. Feature selection refers to selecting a
portion of the original dimensions that are most impor-
tant for the task, while feature extraction refers to extract-
ing a new representation set from the original dimension
space [38]–[40]. For the research field of underground metal
target detection, dimensionality reduction techniques have
been frequently applied to drive more informative data-based
classificationmodels. Carin et al. utilized the relevance vector
machine (RVM) and Bayesian elastic net to identify fea-
tures that are relevant for discriminating unexploded ord-
nance (UXO) from the cluster and improve the generaliza-
tion ability of the classifier [23]. Four statistic features of
A-scans, such as the maximum value of amplitude signal
graph, the number of peaks in the signals graph, skewness,
and standard deviation values, were extracted for differenti-
ated buriedmetal targets [24]. Kappler et al. applied Bayesian
classification on four extracted features from the polariz-
abilities curve to discriminate UXO and harmless scrap
metal [31]. Ammari et al. extracted geometric features from
the induction data for identifying conductive objects [30].
In [41], dimensionality reducing techniques, such as the
discrete spectrum of relaxation frequencies (DSRF) and the
singular value decomposition (SVD), were used to improve
the efficiency of the dictionary matching algorithm for loca-
tion and orientation estimation. In those studies, various
classification systemswith different dimensionality reduction
methods have been proposed, where building an appropri-
ate feature set plays an important role in achieving high
performance. As an important data preprocessing approach
in data-based modeling, dimensionality reducing techniques
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directly affect the efficient and discrimination performance of
classification models [42]. To further improve the efficiency
and the robustness of data-based methods, it is worthwhile
to investigate the effect of different dimensionality reduction
methods on the underground metal target detection.

In this article, we investigated the classification perfor-
mance of frequently employed machine learning approaches
as well as the discrepancy of different dimensionality reduc-
tion methods for data-based underground metal target detec-
tion. A simulation platform was established to verify the
proposed classification strategies. The purpose of the detec-
tion was to estimate the shape type and material type of
underground metal targets. The TEM method was utilized to
acquire reliable data. Specifically, the general physical model
and the approximate spheroid model in the TEM method
were introduced. Then we examined the effectiveness of six
feature selection methods and five feature extraction meth-
ods on three classification models, namely, artificial neural
network (ANN), linear support vector machine (L-SVM),
and Gaussian Naïve Bayes (GNB). These feature selection
methods include the least absolute shrinkage and selec-
tion operator (LASSO), genetic algorithm-support vector
machine (GA-SVM), Pearson correlation coefficient (PCC)
and mutual information (MI), maximal relevance minimal
redundancy Pearson correlation (mRMRP), maximal rele-
vance minimal redundancy mutual information (mRMRMI).
Besides, Feature extraction methods include statistical fea-
tures (SF), principal component analysis (PCA), kernel prin-
cipal component analysis (KPCA), locally linear embedding
(LLE), and stacked denoising autoencoder (SDAE). The clas-
sification performance of classifiers was mainly estimated
by accuracy and confusion matrix on a separate hold-out
data set. To evaluate the quality of inputs, the relevance
analysis and redundancy analysis were employed for the
selected/extracted inputs obtained by different dimensional-
ity methods. Besides, the effect of dimensionality reduction
methods on the time consumption of the classifier and the
importance of selected feature types in classification tasks
were carefully analyzed. The main contributions of this paper
can be summarized as follows:
• To seek out robust and efficient data-based strategies
to classify the underground metal targets, we investi-
gate thirty-three classification strategies based on eleven
dimensionality reduction methods (LASSO, GA-SVM,
etc.) and three classification models(ANN, L-SVM,
GNB). Besides, the normalized feature type impor-
tance (NFTI) coefficient is utilized to analyze the signif-
icance of selected feature types and mutual information
is proposed to evaluate the redundancy and relevance of
inputs.

• The average accuracy of classifiers with different dimen-
sionality reduction methods is examined under dif-
ferent signal-to-noise ratios (SNRs). Compared with
original inputs, the locally linear embedding LLE)
improved the robustness of machine learning classi-
fiers and efficiency of the artificial neural network

in the material-based classification (improvement of
average accuracy:0.17, reduction of classification time
cost:14%) and shape-based classification (improvement
of average accuracy:0.16, reduction of classification
time cost:22%). The comparison results indicate that
the performance of classification models is sensitive to
the noise level and appropriate dimensionality reduction
methods (e.g., LLE and KPCA) can markedly enhance
the robustness of models to noise.

• The comparative investigation proves that the artifi-
cial neural network (ANN) classifier assisted with the
kernel principal component analysis (KPCA) feature
extraction method yields the best performance in the
material-based classification (accuracy:0.99) and the
shape-based classification (accuracy:0.99). The classifi-
cation strategy proposed in this study improves the pre-
diction accuracy of underground metal target detection.

The detailed content of this paper is arranged as follows:
Section II provides background on the TEM method. Then
we introduce the general physical model and the approximate
spheroid model. In Section III and Section IV, a theoretical
description of six feature selection methods and five feature
extraction methods, three machine learning models, the rele-
vance analysis, the redundancy analysis are addressed. The
simulation design and evaluation criteria are introduced in
Section V. The simulation results are displayed in Section VI.
The discussion is given in Section VII and the conclusion
comes in Section VIII.

II. SYSTEM MODEL
The process of underground metal target detection in the
TEM system is shown in Fig. 1. A typical TEM detector
has a transmitting coil and a receiving coil. To collect the
observation data of a target region, the transient current in the
transmitting coil generates a pulse magnetic field (e.i., pri-
mary field BP) first. Then eddy currents induced in the metal
target generate a secondary field BS which decays over time.
Finally, The secondary fieldBS induces the measured voltage
VS in the receiving coil. For an enhanced discrimination
of metal targets, a series of physics-based models [43]–[46]
have been designed to describe the response of targets with
intrinsic (e.g., target shape, material, and size) and extrinsic
(e.g., target position and orientation) properties. The most
frequently used physics-based model is the orthogonal dipole
model [21], [43], [44], which is used to simulate the actual
TEM response of underground metal targets in this study.

When the distance from the detector to a metal target is
larger than the size of the metal target, the secondary field
BS can be approximated by the magnetic field generated by a
dipolem [47]. In Fig.1, the secondary field BS at the position
of receiving coil is calculated as:

BS =

(
3r̂td r̂td − I

)
·ms

4πr3td
(1)

where r̂td represents the unit vector along rtd = rd − rt , rtd is
the modulus of rtd , I denotes the identity matrix. The dipole
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FIGURE 1. Process of underground metal target detection in the TEM system: (a)using a typical TEM detector to detect underground metal targets,
and (b) the generation process of EMI response.

moment ms is given by [48]:

mS = m1 +m2 +m3 = MBP (2)

wherem1,m2,m3 are the three orthogonal dipoles, BP repre-
sents the primary field at the position of the target, M is the
magnetic polarizability tensor (MPT) [49] of the target and
can be formulated as

M = U

 βx 0 0
0 βy 0
0 0 βz

UT (3)

where βx ,βy,βz are the principal polarizability elements of
MPT, U represents the Euler rotation tensor [50].
In the TEM system, the target response VS is proportional

to the derivative of the secondary field BS and it is calculated
as [11]:

VS = −

(
3r̂td r̂td − I

)
4πr3td

U


dβx
dt

0 0

0
dβy
dt

0

0 0
dβz
dt

UTBP (4)

The characteristic response matrix L(t) as the negative
derivative ofM .

L(t) = U


−
dβx
dt

0 0

0 −
dβy
dt

0

0 0 −
dβz
dt

UT

= U

 l1(t) 0 0
0 l2(t) 0
0 0 l3(t)

UT (5)

The characteristic response matrix L(t), which is described
with the intrinsic properties (target shape, size, and material)
of targets, is the key to underground metal target classifica-
tion. The general model described above is suitable for the
response modeling of arbitrary shape targets. However, most
metal targets are axisymmetric objects, hence the character-
istic response can be further simplified. The characteristic

matrix of axisymmetric objects is given by

L(t) = U

 l1(t) 0 0
0 l2(t) 0
0 0 l2(t)

UT (6)

where l1(t) is the characteristic response parallel to the sym-
metry axis of the target, l2(t) represents the characteristic
response perpendicular to the symmetry axis of the target.
In the time-domain, the impulse response of the target can
be described as an infinite sum of exponentials [48].

l1(t) = m1(0)δ(t)+
∂
∑

k u(t)m1k exp (−ω1k t)
∂t

l2(t) = m2(0)δ(t)+
∂
∑

k u(t)m2k exp (−ω2k t)
∂t

(7)

To reduce the computational complexity of the charac-
teristic response, a simple empirical function defined by a
minimum number of parameters is utilized to replicate the
features of the characteristic response. The parameterized
characteristic response of sphere objects is given by

ls(t) = k

(
1+

t
1
2

α
1
2

)−β
e−

t
γ (8)

where t is the time gate, k , α, β and γ are the fitting
parameters and a detailed description of these parameters is
given in [51]. Therefore, the characteristic response of sphere
objects is described as three different stages of the time decay
curve [48]. In the duration of the early time stage, the decrease
of response has a characteristic decay of t−1/2. At intermedi-
ate times, the decay will have a power-law behavior of t−β/2.
And the exponential decay of the response at the late time
stage is controlled by the parameter γ . Meanwhile, the axial
and transverse responses of ellipsoids can be approximated
as the characteristic response of spheres [52].

ln(t) =
2a2b
9R3n

µr + 2
µr

[
1

1− An
+

µr − 1
1+ An (µr − 1)

]
ls (t,Rn)

n = 1, 2 (9)

where R1 and R2 respectively correspond to the axial radius
and transverse radius of the spheroid,µr is the relative perme-
ability, and An is the demagnetization factor [52]. The target
response VS , which is measured directly with most TEM
receiving coil, can also be modeled with equation 9.
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III. DIMENSIONALITY REDUCTION
In machine learning, dimensionality refers to the number
of features in the data set. In the TEM system, the dimen-
sion of observed data is potentially high, depending on
the time channels used, the number of receiver elements,
and the spatial sampling density [23], [32]. Notably, there
are lots of irrelevant, redundant, and noisy data as the
amount of data becoming increasingly greater [33]. The
advantages of dimensionality reduction can be summa-
rized as follows [34], [53]. First, the data storage space and
the computational complexity reduced with the number of
dimensions comes down. Secondly, the data quality can be
improved by removing redundant, irrelevant, and noisy fea-
tures. Finally, the dimensionality reduction has been widely
used to alleviate the ‘‘curse of dimensionality’’ and hence
it can improve the generalization ability and efficiency of
classification models. The dimensionality reduction strate-
gies can be divided into two categories: feature selection
and feature extraction. In this study, six feature selection
methods and five feature extraction methods are investigated
to improve the performance of classification.

A. FEATURE SELECTION
Feature selection aims to select the most important part of
the feature subsets under a specific evaluation criterion and
the search strategy. The feature selection methods are often
divided into filter methods, wrapper methods and embedded
methods [54].

1) WRAPPER METHODS
Wrapper methods utilize a classifier to select the feature
subset. To accelerate the feature subset search process,
a genetic algorithm-support vector machine (GA-SVM) is
used in this study [55]–[57]. The GA-SVM uses genetic algo-
rithms (GAs) to heuristically search the high-dimensional
space of the feature subset. Then SVM is utilized to evaluates
the fitness of feature subset with three-fold cross-validation.
The advantages of GA-SVM can be summarized as follows.
First, exhaustive exploration of search space with greater than
100 features is computationally intractable (i.e., 2100 possible
subsets), while GAs can efficiently search the global optimal
subset by evaluating a small number of candidates. Mean-
while, the SVM classifier involves fewer parameters than
other machine learning algorithms (e.g., neural networks),
has built-in regularization and acceptable classification per-
formance, and is efficient in evaluating the fitness of candi-
dates. Specifically, for the genetic algorithms, individuals in
the population were binary strings, with 1 indicating that a
feature was included, 0 indicating that it was not included
(i.e., one-hot encoding [58]).

2) EMBEDDED METHODS
Embedded methods perform feature selection while training
the learning model (jointly train the classifier and select the
relevant features). They use a cost function to guide the

feature search and are faster than wrapper methods [59].
As one of the most popular embedded methods, LASSO
utilized the L1-norm penalty to regularize the coefficient of
linear regression and achieve the purpose of sparse feature
selection [53], [60]. LASSO seeks to minimize the objective
function as follows:

n∑
i=1

yi −∑
j

xijωj

2

+ λ

m∑
j=1

∣∣ωj∣∣ (10)

where x is the input sample, n represents the number of
samples, m is the number of features, ωj is the coefficient of
the jth feature, y∗ is the outcome, λ is the shrinkage parameter.
Due to the L1-penalty, LASSO has the desirable quality of
setting the coefficients of redundant features to zero. This
provides a natural framework for feature selection in which
models are constructed using only features with non-zero
coefficients. Specifically, λ controls the degree of coefficient
shrinkage and the value of λ is selected using three-folds
cross-validation.

3) FILTER METHODS
Filter assess the goodness of features based on evalua-
tion criteria. Since filter-based methods are not biased to
any classification algorithm and computationally less expen-
sive, they are popular for handling large feature space
problems [61]–[63]. Among the filter methods, mutual infor-
mation (MI) and Pearson correlation coefficient (PCC) are
frequently used to capture linear and non-linear relationships
between variables [64]–[66]. Based on whether they con-
sider the dependencies between the features, the filter-based
feature selection methods can be divided into bivariate and
multivariate methods [54]. The former uses specific eval-
uations between the feature and the target regardless of
other features, while the latter considers not only the cor-
relation between the feature and the target but also the
correlations between the feature and other features. In this
study, we proposed two bivariate feature selection methods,
namely, a ranking method based on Pearson correlation coef-
ficient (PCC) and a rankingmethod based onmutual informa-
tion (MI). Furthermore, two multivariate methods, namely,
forward feature selection based on maximal relevance min-
imal redundancy mutual information (mRMRMI) [67] and
forward feature selectionmethod based onmaximal relevance
minimal redundancy Pearson correlation (mRMRP) [68]
are proposed. The minimal-redundancy-maximal-relevance
(mRMR) criterion, which is given by

max
xi∈X−Xm−1

f (xi; y)− 1
|Sm−1|

∑
xj∈Xm−1

f
(
xi; xj

) (11)

where y is the label variable and f (·) is the Pearson correlation
or mutual information function, X(m−1) is the feature set
with m − 1 selected features, and the task is to selected the
mth feature from the set X − X(m−1).
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B. FEATURE EXTRACTION
Feature extraction methods extract new features from the
original data set such that the features are changed. They
can be divided into statistical features calculation, con-
vex techniques (e.g., PCA, KPCA, LLE), and autoencoder
(e.g., SDAE).

1) STATISTICAL FEATURES
Statistical features of signals are attractive for provid-
ing unique information about different types of the
signal [69]. For each of the observed targets, statistical
features of response signals are calculated including
mean, variance, standard deviation, minimum, maximum,
skewness [24], [70]. The total dimension of statistical
features is 6.

2) PRINCIPAL COMPONENT ANALYSIS
Convex techniques optimize an objective function that does
not contain any local optima, this is, the solution space is
convex [71]. principal component analysis (PCA) is a linear
technique, which performs dimensionality reduction by pro-
jecting the high-dimensional data into a linear subspace by
singular value decomposition (SVD) [72]–[74]. To maximize
the projection variance, PCA successively selects a set of pro-
jection directions with the largest projection variance as the
projection matrix M , which converts the high-dimensional
data into the low-dimensional data representations. Specifi-
cally, PCA attempts to find a linear mapping M that maxi-
mizes the objective function

max
M

trace
(
MT cov(X)M

)
s.t.MTM = I (12)

where cov(X) is the sample covariance matrix of the data X ,
the linear mappingM can be solved by the following equation

cov(X)ωi = λiωi (13)

where λi is the ith principal eigenvalues,ωi is the ith principal
eigenvector. The d principal eigenvectors of cov(X) with
the largest eigenvalues are successively selected to form the
projection matrix M . The d-dimensional data representation
X′ is given by

X′ = XM (14)

The dimension of the subspace, i.e., d is selected by
three-fold cross-validation.

3) KERNEL PRINCIPAL COMPONENT ANALYSIS
Kernel principal component analysis (KPCA) is the refor-
mulation of PCA in a high-dimensional space that is con-
structed using a kernel function [75]. Compared with PCA,
KPCA computes the principal eigenvectors of the kernel
matrix rather than the principal eigenvectors of the covariance
matrix. The application of the "kernel trick" endows Kernel

PCA with the ability to construct nonlinear mappings. Simi-
larly, Kernel PCA solves the problem:

Kαi = λiαi (15)

where K is a positive semi-definite kernel matrix, α∗ is the
eigenvector of kernel matrix, λ∗ is the eigenvalue. The entries
in kernel matrix K are defined by

(K)ij = κ
(
xi, xj

)
(16)

where κ(·) is the kernel function. The d principal eigenvectors
of the kernel matrix with the largest eigenvalues are succes-
sively selected to form the projection matrix α. For a given
input x, the results of the projection is calculated as

x′ =


n∑
j=1

α
j
1κ
(
xj, x

)
, · · · ,

n∑
j=1

α
j
dκ
(
xj, x

) (17)

where αji denotes the jth values in the vector αi. Since the
kernel matrix is proportional to the square of the number of
samples in the training set, the computational complexity of
KPCA is larger than PCA. Additionally, the kernel function
κ and parameter d play an important role in KPCA and they
are selected by three-fold cross-validation.

4) LOCALLY LINEAR EMBEDDING
Locally linear embedding (LLE) attempts to preserve
the local properties of the inputs. Specifically, the high-
dimensional inputs are approximately reconstructed as a lin-
ear combination of their k nearest neighbors [76]. And in the
low-dimensional representation of these inputs, LLE attempts
to retain the reconstruction weights in the linear combina-
tions (i.e., local properties of the inputs). Hence, finding the
reconstruction weights amounts to minimizing the objective
function:

min
ω1,ω2,··· ,ωn

n∑
i=1

∥∥∥∥∥∥xi −
k∑
j=1

ωijxj

∥∥∥∥∥∥
2

2

s.t.
k∑
j=1

ωij = 1 (18)

where the input xi which is reconstructed by its neighbors,
xj is the jth neighbors of xi, ωij is the reconstruction weight.
In the low-dimensional space, the reconstruction weights are
preserved and the d-dimensional data representation x′ can
be solved by minimizing the objective function:

min
x′1,x

′

2,··· ,x
′
n

n∑
i=1

∥∥∥∥∥∥x′i −
k∑
j=1

ωijx′j

∥∥∥∥∥∥
2

2

(19)

The parameters of LLE, i.e., k and d are selected by
three-folds cross-validation.
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5) STACKED DENOISING AUTOENCODER
As an unsupervised feature learning algorithm, the auto-
encoder (AE) network learns discriminative and effective fea-
tures from a large amount of unlabeled data by minimization
of the discrepancy of the output values to the input data [77].
The denoising auto-encoder (DAE) is developed from AE
but it is more robust since DAE assumes that the input data
contain noise and learns features from noisy data [78]. The
DAE is trained to reconstruct a clean ‘repaired’ inputs z from
the corrupted input data x̃. Also, DAEs can be stacked as
stacking denoising autoencoders (SDAE) to obtain better fea-
ture representation [79]. The training of SDAE is layer-wise
and each DAEwith one hidden layer is trained independently.
The squared loss of DAE is given by

Lα(x, z) = α

∑
j∈ξ (x)

(
xj − zj

)2
+(1− α)

∑
j/∈ξ (x)

(
xj − zj

)2 (20)

where x∗ is the input data, ξ (x) denotes the index set of
the components of x that were corrupted (i.e., x̃), α rep-
resents the weight of the reconstruction error on x̃. After
training, the decoding layers of SDAE are removed and the
encoding layers that produce features are retained. In this
study, the SDAE consists of two DAEs with one hidden layer.
The number of units in each hidden layer is 200 and 100,
respectively. The weight α is considered as hyperparameters
and is set as 0.1.

IV. MACHINE LEARNING MODELS
Each of the eleven feature sets obtained by different dimen-
sionality reduction methods is utilized as an input of machine
learningmodels. Themachine learningmodels can be divided
into generative classifiers and discriminative classifiers [80].
The generative classifiers learn the joint probability (P(x, y))
of the input x and label y at first. Then, the posterior probabil-
ity P(y | x) is calculated by Bayes rules to make predictions
and the most likely label y is picked. The discriminative clas-
sifiers directly model the posterior probability P(y | x) from
the training set. In this paper, three widely used classifiers
are selected, including gaussian naïve Bayes (GNB), support
vector machines and artificial neural network, and we briefly
outline the attributes of them.

A. GAUSSIAN NAÏVE BAYES
The gaussian naïve Bayes (GNB) is a typical generative clas-
sifier that assumes conditional independence between every
pair of features given the value of the class variable [81].With
a set of continuous features, GNB assumed the likelihood
of the features to be a Gaussian distribution which can be
written as

P (xi | y) =
1√
2πσ 2

y

exp

(
−

(
xi − µy

)2
2σ 2

y

)
(21)

where σy and µy are the standard deviation and mean of the
ith feature xi and they are estimated using maximum likeli-
hood. Then, the posterior probability P(y | x) is calculated
as

P (y | x1, x2, · · · , xm) =
P(y)

∏m
i=1 P (xi | y)

P (x1, x2, · · · , xn)
(22)

where P(y) is the prior probability for label y, P(x1, x2,
· · · , xn) is a constant for a given input x. In this paper,
the prior probability of each label variable is 1

3 in the
material-based classification task and is 1

2 in the shape-based
classification task.

B. SUPPORT VECTOR MACHINE
The support vector machine (SVM) [57], [82] is a discrim-
inative classifier that attempts to maximize the soft margin
while incurring a penalty when a sample is misclassified. The
optimization problem of SVM is given by

min
ω,b

1
2
‖ω‖2 + C

n∑
i=1

ξi

s.t. ξi ≥ 0, yi
(
ωTφ (xi)+ b

)
≥ 1− ξi (23)

where ω is a vector of coefficients, b is the intercept term,
ξi controls the allowable margins on either side of the hyper-
plane, and φ is the identity function. The value of ω can
be optimized by standard techniques of convex quadratic
programming problems. Hence, the discriminant function is
written as

f (x) =
n∑
i=1

αiyiK (x, xi)+ b (24)

where K (x, xi) is a kernel function and αi is the dual coeffi-
cients. In this paper, the kernel function is taken as the linear
kernel, C is taken as 1.

C. ARTIFICIAL NEURAL NETWORK
The artificial neural network (ANN) is a discriminative clas-
sifier. The ANN is a mathematical model that mimics the
structure and function of the biological neural network [83].
The multi-layer perceptron (MLP) with one hidden layer
can solve the nonlinearly separable problems and have been
widely used in underground target detection [21], [24], [28].
In most applications, the MLP network contains an input
layer, hidden layers, and an output layer. The training process
in the neurons is given by

y(k)p = f

N (k−1)∑
i=1

ω
(k−1)
ip · y(k−1)i − β(k)p

 (25)

where N (k−1) represents the number of neurons in the
(k − 1)th layer, ω(k−1)

ip is the connection weight between
the ith neuron in the (k − 1)th layer and pth neurons in
the kth layer, y(k)p is the output of the pth neuron in the
kth layer, β(k)p is the threshold of the pth neuron in the
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FIGURE 2. Process of the simulation platform.

kth layer, f (·) is the activation function. In this paper,
the MLP with one hidden layer (50 neurons) is used for
classification problems. The activation function of the hidden
layer is the tanh function, which is given by

f (x) =
ex − e−x

ex + e−x
(26)

And the limited-memory BFGS (L-BFGS) [84] have been
used to optimize the weights and thresholds in the layers.
The acronym for each dimensionality reduction method and
classification models was listed in Table 1.

TABLE 1. Summary of the used dimensionality reduction and
classification models with the acronyms and full names.

V. SIMULATION DESIGN
A. DATA PREPROCESSING
We build a simulation platform, which is based on the
ellipsoid model proposed in Section II, to verify the improve-
ment of classification performance by applying dimensional-
ity reduction methods. The simulation parameters are set as
shown in Table 2 and Table 3.

The shape types of metal targets are divided into two
categories according to the aspect ratio ρ = R2

R1
: ρ > 1

(i.e., the oblate ellipsoid), 0 < ρ < 1(i.e., the prolate
ellipsoid). The material types of metal targets are divided

TABLE 2. Data acquisition parameters of simulation platform.

TABLE 3. Target parameters of spheroid mode.

into three categories, including steel, nickel(Ni), and alu-
minum(Al). The process of the simulation platform is shown
in Fig. 2.

During underground metal target detection, there are some
signal sources from the presence of geologic noise. One of
the most common ways of describing noise is to assume that
it is random and can be denoted by Gaussian statistics [48].
The unbiased noise sources are quantified with SNR, which
is given by

SNR = 10 log
Ps
Pn

(27)

where Ps represents the signal energy, Pn denotes the noise
energy. In this paper, the SNR is set to 30dB as default. Also,
min-max normalization is used to scale the range of features,
which could improve the performance of the algorithms based
on the gradient optimization (e.g., neural network). The nor-
malized feature value is given by

xnorm =
x − xmin

xmax − xmin
(28)

where xnorm represents the normalized feature value of x,
and xmax and xmin are estimated from the given data set. The
simulation platform is implemented in Python and run on a
PC feature Intel core i7-6700 CPU(3.4 GHz) and 16 GB of
RAM.
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B. FRAMEWORKS OF CLASSIFICATION PERFORMANCE
EVALUATION
To avoid double-dipping, the performance of classification
strategies are obtained by using two test modes: hold-out and
k-fold cross-validation frameworks [85], [86].

1) HOLD-OUT APPROACH
In hold-out frameworks, the data set is split into the training
set and the testing set by a certain percentage ratio. In this
paper, for the 1026 ellipsoid samples with various shapes
(513 oblate ellipsoid samples, 513 prolate ellipsoid samples)
andmaterials (342 steel, 342 Ni, 342 Al), we randomly assign
718 samples to the training set and 308 samples to the testing
set according to a ratio of 7: 3. The training set is exclusively
used for training dimensionality reduction methods and clas-
sification models and the held-out testing set is exclusively
used for model evaluation.

2) K-FOLD CROSS-VALIDATION
In k-fold cross-validation, the data set is split into k equal
parts. Then, k − 1 parts are used for training and the rest part
is used for validating alternately. In this paper, the three-fold
cross-validation is used in the training phase of dimensional-
ity reduction methods.

C. RELEVANCE AND REDUNDANCY ANALYSES
The candidate inputs usually include features that are either
irrelevant to the classification problem or redundant. The
irrelevant features are uninformative variables, which add
noise and complexity to the model, while the redundant
features increasing the dimensionality of the model identi-
fication problem without providing any additional predictive
benefit. To quantify the redundancy and correlation of inputs,
the Pearson correlation coefficient and mutual information
are utilized to evaluate the linear and nonlinear relation
between features and label variables in the data set, respec-
tively. The relevance of the feature set X is defined as

Relevance(X , y) =
1
|X |

∑
xi∈X

f
(
xi; y

)
(29)

where y is the label variable, xi is the ith feature, and f (·) is
the Pearson correlation or mutual information function. And
the redundancy of X is defined as

Redundancy(X ) =
1
|X |

∑
xi∈X

1
|Xm−1|

∑
xj∈Xm−1

f
(
xi; xj

)
(30)

where X(m−1) represents the feature set with m − 1 features.
The operator combines the above two metrics is defined as

φ = Relevance− Redundancy (31)

In this paper, φ, Relevance and Redundancy metrics are uti-
lized to quantify the quality of the given data set.

D. CLASSIFICATION ERROR EVALUATION CRITERIA
In this paper, accuracy and confusion matrix are utilized
to quantify the performance of classification models. The
accuracy is defined as the proportion of the instances cor-
rectly classified in the data set. True positive (TP, the cor-
rectly predicted positive instances number), false positive (FP,
the incorrectly predicted positive instances number), false
negative (FN, the incorrectly predicted negative instances
number), and true negative (TN, the correctly predicted pos-
itive instances number) are utilized to calculate the accuracy,
which is given by

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(32)

The accuracy reflects the overall performance of classi-
fication models. Besides, the confusion matrix [87] is used
to further explore the performance of classification models
on specific metal targets. The confusion matrix of the binary
classification problem is shown in Table 4.

TABLE 4. Confusion matrix for binary classification.

E. EVALUATION OF SELECTED FEATURE NUMBER IN
FILTER-BASED FEATURE SELECTION
The selected feature number is a key parameter, which plays
an important role in the performance of the filter-based fea-
ture selection approaches (i.e., PCC, MI, mRMRMI, and
mRMRP). To reduce the performance bias caused by different
classifiers, the average accuracy of three classifiers is utilized
to evaluate the selected feature number for filter-based feature
selection methods. For each filter-based feature selection
approach, a range of feature number from 5 to 400 with an
interval of 5 is selected. The three classifiers are utilized
to evaluate the prediction accuracy with three-fold cross-
validation.

F. EVALUATION OF FEATURE TYPE IMPORTANCE IN
CLASSIFICATION
Feature selection methods are normally distinguished from
feature extraction methods in that they preserve the original
set of features. Therefore, the importance of response signals
in different time stages can be quantified by analyzing the
distribution of selected features. In this paper, the normalized
feature type importance (NFTI) coefficient [88] is used to
describe the selected feature types for six feature selection
methods. Specifically, we count the number of selected fea-
tures corresponding to their time stage. Then, the numbers
are normalized by the selected feature number for all feature
types. Finally, we get the NFTI coefficient for three feature
types in each feature selection method.
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FIGURE 3. Accuracy heatmap of classification models (in columns) and dimensionality reduction methods (in rows) in
material-based classification.

FIGURE 4. Accuracy heatmap of classification models (in columns) and dimensionality reduction methods (in rows) in
shape-based classification.

VI. RESULTS
A. COMPARISON OF DIMENSIONALITY REDUCTION
METHODS AND CLASSIFICATION MODELS
To compare different dimensionality reduction methods
for underground metal target classification problems,
we extracted and selected informative features from the
response signals with 11 dimensionality reduction methods.
Then, we evaluated the performance of 33 combinations of
dimensionality reduction methods and classification models
on the held-out test set.

Fig. 3 and Fig. 4 depict the accuracy results, which high-
light four interesting characteristics. Firstly, regardless of the
dimensionality reduction method, classifier ANN is always
superior to the other two classifiers for material-based classi-
fication and shape-based classification. Secondly, the accu-
racy of shape-based classification is slightly better than
material-based classification, Thirdly, among the eleven
dimensionality reduction methods, feature extraction method

LLE exhibited a significant accuracy improvement for clas-
sifier GNB (material-based classification: 0.32, shape-based
classification: 0.34) and classifier L-SVM (material-based
classification: 0.19, shape-based classification: 0.15). Finally,
compared with the original inputs, most of the data sets
after dimension reduction a better classification performance
with majority classifiers. Concretely, for the material-based
classification problem, feature extraction method KPCA
and classifier ANN achieved the highest prediction accu-
racy (accuracy: 0.99), followed by feature selection method
PCC + classifier ANN(accuracy: 0.98) and feature selection
method MI+classifier ANN (accuracy: 0.98). Meanwhile,
for the shape-based classification problem, feature extraction
method KPCA+classifier ANN, feature extraction method
LLE+ classifier ANN, feature selection method mRMRMI
+classifier ANN, feature selection method PCC +classifier
ANN, feature selectionmethodMI+classifierANNachieved
the highest prediction accuracy (accuracy:0.99). However,
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feature extraction methods SF and SDAE showed low accu-
racy with majority classifiers, and classifier GNB showed
lower accuracy.

FIGURE 5. The normalized confusion matrices in material-based
classification.

FIGURE 6. The normalized confusion matrices in shape-based
classification.

To further explore the performance of classificationmodels
on specific metal targets and the corresponding influence of
dimensionality reduction methods, Fig. 5 and Fig. 6 shows
the normalized confusion matrices (dimensionality reduction
method: LLE, classifier: L-SVM) in material-based classi-
fication and shape-based classification respectively. For the
material-based classification, the classification performance
of aluminum targets is best for all of the aluminum targets
are classified correctly. But the classification performance
of nickel targets is relatively poor since 0.59 of nickel tar-
gets are misclassified. After dimension reduction with LLE,
the precision of nickel targets is increased to 0.86 and the
precision of steel targets is increased to 0.99. Meanwhile,
for the shape-based classification, the classification perfor-
mance of prolate spheroid targets is better. After dimension
reduction with LLE, the precision of oblate spheroid targets is
increased to 0.94, and the precision of prolate spheroid targets
is increased to 0.97.

B. IMPACTS OF DIMENSIONALITY REDUCTION METHODS
ON FEATURE DENOISING
To examine the impact of the eleven dimensionality reduction
methods on feature denoising, the performance of dimension-
ality reduction methods under different SNR are shown as
follows. Fig. 7 and Fig. 8 depict the results of material-based
classification and shape-based classification respectively.

FIGURE 7. The average accuracy (in columns) for different dimensionality
reduction methods under different SNR (in rows) in material-based
classification.

FIGURE 8. The average accuracy (in columns) for different dimensionality
reduction methods under different SNR (in rows) in shape-based
classification.

To reduce the performance bias caused by different classi-
fiers, the average accuracy of three classifiers was utilized
to evaluate the performance of dimensionality reduction
methods. The comparison results highlight two important
characteristics. First, the average accuracy increases with the
SNR in Fig. 7 and Fig. 8. It indicates that the classification
models have limited anti-noise ability, this is, the noise in the
data set would greatly affect the classification performance.
Besides, the average accuracy of shape-based classification
is higher than material-based classification under a specific
SNR, and classifiers for the shape-based classification are
more robust. Secondly, majority dimensionality reduction
methods would not significantly reduce the average accu-
racy of classifiers in the material-based classification and
shape-based classification. Specifically, compared with the
original data set, each subset obtained by feature selec-
tion methods, including mRMRP, mRMRMI, PCC, MI,
GA-SVM, and LASSO, has equivalent average accuracy.
Feature extraction methods, such as LLE, KPCA, and PCA,
greatly improve the average accuracy in both material-based
classification and shape-based classification. Particu-
larly, LLE is the best dimensionality reduction methods
(BestDRM) in material-based classification when the SNR
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is greater or equal to 25dB. Meanwhile, LLE outperformed
the other dimensionality reduction methods on the average
accuracy under different SNR in shape-based classifica-
tion. However, feature extraction methods, such as SF and
SDAE would reduce the average accuracy of classifiers in
material-based and shape-based classification.

FIGURE 9. The average accuracy (in columns) for different filter-based
feature selection methods with different selected feature numbers
(in rows) in material-based classification.

FIGURE 10. The average accuracy (in columns) for different filter-based
feature selection methods with different selected feature numbers
(in rows) in shape-based classification.

C. IDENTIFYING SELECTED FEATURE TYPES FOR
CLASSIFICATION
The selected feature number plays an important role
in the performance of the filter-based feature selection
approaches, such as mRMRP, mRMRMI, PCC, and MI.
Hence, we adjusted the parameters for each method to obtain
a range of selected subsets. In this paper, the range of selected
feature number is from 5 to 400 with an interval of 5 as
shown in Fig. 9 and Fig. 10. And each of the selected fea-
tures is then trained by three classifiers respectively with
repeated three-fold cross-validation. For the material-based
classification, mRMRMI is the fastest feature selection to
achieve the highest average accuracy (accuracy: 0.75, feature
number: 55). Besides, we found that the average accuracy
increased with the selected feature number when the feature

FIGURE 11. The NFTI coefficients (in columns) of feature sets obtained by
different methods (in rows) in material-based classification.

FIGURE 12. The NFTI coefficients (in columns) of feature sets obtained by
different methods (in rows) in shape-based classification.

number is smaller than 150. Then, the average accuracy is rel-
atively stable and slightly decreases when the selected feature
number is larger than 150. For the shape-based classification,
mRMRMI and MI achieve a stable average accuracy (aver-
age accuracy: 0.78) with a smaller selected feature number
(feature number: 100) than the majority of feature selection
methods. Then, the optimal parameters of filter-based feature
selection methods are the feature number with the highest
average accuracy. The decay response signals in the TEMsys-
tem can be divided into three stages, including the early time
stage, the intermediate time stage, and the late time stage.
Fig. 11 and Fig. 12 depict the NFTI results of material-based
classification and shape-based classification, respectively.
For the material-based classification, the late time response
signals have the highest proportion in the selected subsets
for most feature selectionmethods, e.g., mRMRP,mRMRMI,
PCC, and MI. Meanwhile, the early time response is hardly
selected by those feature selection methods. For shape-based
classification, the selected features of most feature selection
methods (e.g., GA-SVM, mRMRP, mRMRMI, PCC, and
MI) contained nearly all kinds of feature types, and the
proportions of these three types are quite close. However,
the LASSO, which has lower accuracy with the majority
classifiers than other feature selection methods, rarely selects
the intermediate time response signals.
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FIGURE 13. The mutual information coefficients (in columns) of feature
sets obtained by different methods (in rows) in material-based
classification.

FIGURE 14. The mutual information coefficients (in columns) of feature
sets obtained by different methods (in rows) in shape-based
classification.

D. IMPACTS OF DIMENSIONALITY REDUCTION METHODS
ON REDUNDANCY AND RELEVANCE OF INPUTS
The impacts of dimensionality reduction methods on redun-
dancy and relevance of input are then evaluated. The
Relevance, Redundancy, and φ metrics are utilized to quan-
tify the quality of different data sets as shown in Fig. 13 and
Fig. 14. For the material-based classification, all of the eleven
dimensionality reduction methods reduce the redundancy
and increase the relevance, thus, those data sets have larger
values of φ than the original data set. Moreover, compared
with feature selection methods, feature extraction methods,
including SF, PCA, KPCA, LLE, and SDAE, are much more
efficient in reducing the redundancy. Specifically, KPCA and
LLE reduce 94.37% and 95.92% redundancy respectively.
Similarly, for the shape-based classification, the redundancy
of the data sets obtained by mRMRP and PCC are 1.99 and
2.33 while the redundancy of the data sets obtained by KPCA
and LLE are 0.40 and 0.15. Meanwhile, KPCA and LLE have
the highest relevance.

E. IMPACTS OF DIMENSIONALITY REDUCTION METHODS
ON THE EFFICIENCY OF CLASSIFICATION MODELS
According to the simulation results, most of the dimen-
sionality reduction methods reduce the redundancy of the

FIGURE 15. The feature number (in columns) corresponding to different
dimensionality reduction methods (in rows).

data set, we further analyzed the detailed time consump-
tion of classifier ANN which achieved the highest accuracy
for material-based classification and shape-based classifica-
tion. The dimensionality of inputs is an important factor
affecting the complexity of classification models and the
RAM storage of hardware, hence we counted the feature
number corresponding to different dimensionality reduction
methods as shown in Fig. 15. For the material-based classi-
fication, the dimensions of eleven data sets after dimension-
ality reduction are approximately reduced by 50% compared
to the original data. Specifically, feature selection methods,
e.g., LASSO andmRMRMI reduce the dimension of original
data by 92.5% and 86.3% respectively while feature extrac-
tionmethods, e.g., FS, PCA, andKPCA reduce the dimension
of inputs by 98.3%, 98.8%, 92.3% respectively. Meanwhile,
for the shape-based classification, feature selection methods,
e.g., LASSO and GA-SVM reduce the dimension of original
data by 92.5% and 89.0% while feature extraction methods
FS, PCA, and KPCA reduce the dimension of inputs by
98.3%, 99.0%, 97.0%, respectively.

FIGURE 16. The build time consumption (in columns) of ANN with
different dimensionality reduction methods (in rows).

Then we compared the impacts of dimensionality reduc-
tion methods on the efficiency of classifier ANN. Fig. 16
and Fig. 17 depict the build time and classification time
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FIGURE 17. The classification time consumption (in columns) of ANN
with different dimensionality reduction methods (in rows).

results respectively. As shown in Fig. 16 and Fig. 17,
most dimensionality reduction methods reduced the build
time and classification time of ANN, and the build time
consumption far outweighed the classification time. Fea-
ture selection method LASSO obtained the shortest build
time (material-based classification: 0.39s, shape-based clas-
sification: 0.36s), followed by mRMRMI (material-based
classification: 0.41s, shape-based classification: 0.83s) and
GA-SVM (material-based classification: 0.51s, shape-based
classification: 0.39s). Feature extraction method SF obtained
the shorted build time (0.28s) for material-based classifica-
tion, followed by PCA (0.29s) and KPCA (0.39s). Mean-
while, feature extraction method LLE obtained the shortest
build time (0.17s) for shape-based classification, followed by
PCA (0.27s) and SF (0.29s).

VII. DISCUSSION
In the TEM system, the properties of underground metal
targets are estimated based on high dimensional observa-
tion data generated by time-domain electromagnetic sensors.
In this paper, different dimensionality reduction methods and
classification models were investigated to improve the classi-
fication performance for data-based undergroundmetal target
detection. Also, other controllable variables, e.g., the number
of selected features, feature type were discussed for guiding
the data acquisition parameters setting of time-domain elec-
tromagnetic sensors.

Eleven dimensionality reduction methods and three fre-
quently employed classifiers were investigated for under-
ground metal target detection. The results showed that the
KPCA feature extraction method combined with the ANN
classifier achieve the highest prediction accuracy in both
the material-based classification (accuracy: 0.99) and the
shape-based classification (accuracy: 0.99) problems, which
is higher than the classification performance in the previ-
ous study [21] (the accuracy of material-based classifica-
tion: 0.79, the accuracy of shape-based classification: 0.89).
Remarkably, the prediction accuracy of the ANN classifier
was always superior to the other two classifiers. Noted that

the ANN has been proven to be an efficient classification
model previously [21], [24]. Among the eleven dimension-
ality reduction methods, the feature extraction method LLE
exhibited superior prediction accuracy with majority clas-
sifiers. Statistic features are frequently utilized in previous
studies [24], [70], and it is proved to be an efficient feature
extraction method. However, it is not outstanding compared
with the other dimensionality reduction methods in terms of
accuracy. Although the feature selection method GA-SVM
could avoid the pitfall of local optima [57], the performance
of GA is depending on the parameters (e.g., population size,
crossover, and mutation operators) [89]. The GA-SVM fea-
ture selection method does not perform better than filter
methods (e.g., mRMRP,mRMRMI, PCC,MI). The confusion
matrix results indicated that dimensionality reduction meth-
ods (e.g., LLE) can significantly improve the performance of
classifiers (e.g., L-SVM, GNB).

To further investigate the effect of noise on the accuracy,
we compared the average accuracy of dimensionality reduc-
tion methods under different SNRs. The results showed that
the performance of classification models was sensitive to
the noise level. Notably, the robustness of classification can
be improved by adopting appropriate dimensionality reduc-
tion methods (e.g., LLE, KPCA, and PCA). Specifically,
the feature extraction method LLE improved the robustness
of machine learning classifiers in the material-based classi-
fication (SNR:30dB, improvement of average accuracy:0.17)
and shape-based classification (SNR:30dB, improvement of
average accuracy:0.16). Although feature selection meth-
ods(e.g., GA-SVM, mRMRMI, and LASSO) reduced the
dimension of inputs, the improvement of prediction accu-
racy was still limited. The comparison results of selected
feature number of four filter-based feature selection methods
illustrated that nonlinear criteria (i.e., mRMRMI and MI)
achieved the stable average accuracy with smaller selected
feature number compared with linear criteria (i.e, mRMRP
and PCC) which indicated that the relationship between fea-
tures and label variables (shape type and material type) are
nonlinear. Moreover, the average accuracy of material-based
classification slightly decreased when the selected feature
number exceeded 150, indicating that feature selectionwas an
efficient strategy to improve the classification performance.
Through the feature type analysis, we found that the late
time response signals were most important for material-based
classification although other features were necessary for
shape-based classification as well. These results provided
crucial guidance for the data acquisition parameters setting
of time-domain electromagnetic sensors.

We proposed a data quality quantify scheme based on
mutual information. The redundancy and relevance analysis
results indicate that the original inputs are highly redundant
and partial feature extraction methods (e.g., KPCA, LLE,
PCA) exhibited outstanding ability on reducing the redun-
dancy and increasing the relevance of data sets. Moreover,
the analysis results demonstrated the poor performance of
GNB since it assumed conditional independence between
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every pair of features. This strong assumption of GNB led to
the loss of classification accuracy, which was consistent with
corresponding results in the previous study [90].

We further compared the impacts of each dimensionality
reduction method on the efficiency of the ANN classifier.
The results showed that dimensionality reduction meth-
ods approximately reduced 50% dimensions of inputs and
reduced the build and classification time consumption of
ANN classifier, e.g., compared with original inputs, fea-
ture extraction method LLE reduced the time consump-
tion of ANN in material-based classification(reduction of
build time:52%, reduction of classification time:14%) and
shape-based classification (reduction of build time:82%,
reduction of classification time:22%). Utilizing such a
method, our machine learning strategy becamemore effective
for the devices with limited computing capability and energy
supply in the TEM system.

VIII. CONCLUSION
In this article, we investigated thirty-three classification
strategies based on eleven dimensionality reduction methods
and three classification models to seek out a robust and effi-
cient data-based strategy to classify the underground metal
targets of different shapes andmaterials based on electromag-
netic induction (EMI) detection. A simulation platform was
established to verify the proposed classification strategies.
Among all the classification strategies explored, the ANN
classifier assisted with the KPCA feature extraction method
yielded the best performance in the material-based classi-
fication (accuracy:0.99) and the shape-based classification
(accuracy:0.99), which is higher than the model-based meth-
ods in the previous study (the accuracy of material-based
classification: 0.79, the accuracy of shape-based classifi-
cation: 0.89). The results revealed that the ANN classifier
was superior to the other two classifiers for the classifica-
tion of the underground metal target with majority dimen-
sionality reduction methods. A scheme based on mutual
information was proposed to evaluate the redundancy and
relevance of inputs, which proved the necessity of dimen-
sionality reduction. The comparative investigation indicated
that the effect of noise is non-negligible, i.e., the average
accuracy of machine learning classifiers decreased rapidly
with the decrease of SNR. Dimensionality reduction methods
could improve the robustness of machine learning classifiers
in the material-based classification (e.g., feature extraction
method: LLE, improvement of average accuracy:0.17) and
shape-based classification (e.g., feature extraction method:
LLE, improvement of average accuracy:0.16). The effi-
ciency analysis also indicated that dimensionality was effec-
tive in reducing the time consumption of ANN classifier,
e.g., feature extraction method LLE reduced more than 50%
dimensions of original inputs and reduced the build and
classification time consumption in material-based classifi-
cation (reduction of build time:52%, reduction of classifi-
cation time:14%) and shape-based classification (reduction
of build time:82%, reduction of classification time:22%).

Our comparative investigation provides a robust and efficient
data-based strategy (feature extraction method KPCA and
classifier ANN) for underground metal target classification,
which is significant for applications of underground metal
target detection on portable devices with limited computing
capability and energy supply. The cross-combination strategy
of dimensionality reduction methods and machine learning
models provides a way to find the optimal machine learning
model for underground target detection. In the future, we will
concentrate on optimizing the classification models to further
improve the robustness of classification strategies under low
SNR for underground metal target detection.
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