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ABSTRACT Because machine learning has been widely used in various domains, interpreting internal
mechanisms and predictive results of models is crucial for further applications of complex machine learning
models. However, the interpretability of complex machine learning models on biased data remains a difficult
problem. When the important explanatory features of concerned data are highly influenced by contaminated
distributions, particularly in risk-sensitive fields, such as self-driving vehicles and healthcare, it is crucial
to provide a robust interpretation of complex models for users. The interpretation of complex models is
often associated with analyzing model features by measuring feature importance. Therefore, this article
proposes a novel method derived from high-dimensional model representation (HDMR) to measure feature
importance. The proposedmethod can provide robust estimationwhen the input features follow contaminated
distributions. Moreover, the method is model-agnostic, which can enhance its ability to compare different
interpretations due to its generalizability. Experimental evaluations on artificial models andmachine learning
models show that the proposed method is more robust than the traditional method based on HDMR.

INDEX TERMS Feature importance, global interpretation, high-dimensional model representation, robust-
ness, supervised machine learning.

I. INTRODUCTION
Machine learning has been widely used in various fields.
For example, in predicting credit scores and health status,
machine learning algorithms are used to construct models
to map many features into a class (outcome or decision)
by a learning process on the digital traces of people’s daily
activities [1]. Practical requirements often evaluate machine
learning models by their accuracy. The pursuit of predic-
tive accuracy leads to the use of more complex predictive
models. Simple and interpretable models often do not have
the best performance in terms of predictive accuracy [2].
Complex machine learning models, however, are difficult for
humans to understand their internal working mechanisms and
decision-making process and are commonly referred to as
‘‘black boxes’’, such as deep neural networks. Such a lack
of transparency can increase severe issues and hinder fur-
ther applications of machine learning. Conversely, the reason
why certain simple models, such as logistic regression and
decision tree models, are widely used is partly attributable
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to the fact that they can generate interpretable models [3].
The interpretability of the black box will increase the trust
of users and allow them to realize that it is always possible to
understand the decisions made by models [4]. Therefore, for
further applications of complexmachine learningmodels, it is
necessary to interpret ‘‘black box’’ models and make them
transparent to builders and users.

Although interpreting models’ internal mechanisms and
predictive results is a hot topic in the field of machine
learning [5], the interpretability of complex models on
biased data remains a difficult problem. One inherent risk
in the interpretability of complex models is that model users
may inadvertently make incorrect decisions with explana-
tions of biased data generated by human or systematic fac-
tors. Particularly in risk-sensitive fields, such as self-driving
vehicles and healthcare, it is crucial to provide a robust inter-
pretation of complex models when the important explana-
tory features on concerned data are highly influenced by
contaminated distributions. In these scenarios, one incorrect
decision may directly lead to death [1]. Considering the
interpretability of machine learning models is often associ-
ated with analyzing the input features of models by looking
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at feature importance. Therefore, providing robust feature
importance for input features becomes indispensable in the
interpretability of complex models.

Feature importance is an efficient quantitative measure
to explore the structure of a model, evaluate the model’s
response to changes in the model inputs [6], and describe
how important the feature is for the predictive performance
of the model regardless of the shape (linear or nonlinear
relationship) or direction of the feature effect [7]. In the
central area of uncertainty in risk assessment, feature impor-
tance methods can be used to identify the most critical and
essential contributors to output uncertainties and risk [8].
To date, many methods of measuring feature importance
have been proposed. We can summarize these feature impor-
tance methods from two perspectives: 1) global vs. local
and 2) agnostic vs. specific. First, global methods [9]–[15]
evaluate feature importance by considering the entire input
feature space; however, local methods [16]–[20] only eval-
uate a single instance’s feature importance. Second, agnos-
tic methods can be used with any machine learning model
[17], [21], [22], and specific methods are only adaptable to
the interpretation and visualization of specific models [19],
[20], [23]–[28]. Although specific methods typically have
high computational efficiency, users must interpret different
black box models with different specific methods, which may
increase the difficulty of operation for nonexpert users. More-
over, specific methods cannot be used directly to compare the
interpretation of different models. Because agnostic methods
can be used with a variety of models [3], they can enhance
the ability of the system to compare different interpretations
[21], [29].

Only a few feature importance methods that are simultane-
ously agnostic and global have been proposed [1]. Therefore,
this article aims to propose a novel agnostic method to mea-
sure global feature importance based on high-dimensional
model representation (HDMR). HDMR is a function decom-
position technique that is often used to manage either the
performance of experiments or the modeling of chemi-
cal/physical systems where there are large numbers of input
features [30], [31]. However, HDMR is rarely used to eval-
uate global feature importance in machine learning models.
Moreover, although the feature importance method based on
analysis of variance (ANOVA) HDMR is theoretically rigor-
ous [15], it is difficult to estimate its variance-based indices
correctly with any degree of robustness [32] when there are
outliers in the input variables. Therefore, we propose a robust
estimation method when the input variables have tiny errors
that follow the contaminated distributions.

This article mainly focuses on how to provide robust inter-
pretations of complex models by implementing an agnostic
and global feature importance method. The feature impor-
tance indicates to what extent an input feature can influ-
ence the output. The main contributions of this research are
summarized as follows:

1) The proposed method derived from HDMR yields an
improvement in robustness compared to the traditional

method based on HDMR when the input features
follow contaminated distributions.

2) The proposed method is a novel global feature impor-
tance method that is model-agnostic. Moreover, due
to its general applicability, the method can compare
different interpretations among different artificial or
machine learning models.

The structure of this article is as follows. In Section II,
we briefly summarize the classification of global feature
importance research and review the literature related to
variance-based measures. In Section III, we discuss the
variance-based method derived by HDMR, propose the
novel robust method, and discuss relevant calculation issues.
Artificial datasets and complex machine learning models
are used to simulate and test the robustness of the pro-
posed method in Section IV, and Section V discusses the
conclusions of the study.

II. LITERATURE
In this section, we summarize certain global feature
importance methods that can be placed into one of two
categories: specific and agnostic methods.

Specific methods are only used in the interpretation of
specific machine learning models, such as decision trees and
random forests. When using specific methods, users must
interpret different black box models with different methods.
For additive models, the nomogram, which is a visual method
for measuring inputs, was previously used to explain naive
Bayes models [23] and linear SVM [33]. For random forest
models, feature importance is measured by the decrease in
prediction accuracy when input features are permuted [11],
[12]. A similar permutation measure method has been used
for neural networks, where noise is added to input features
[34], [35]. Moreover, Welling et al. measured feature impor-
tance using a method to decompose trees by splitting features
for random forest models [13].

Agnostic methods can be used to interpret any model.
Certain methods have been proposed for feature sensitivity
analysis in engineering. Nonparametric methods using linear
regression techniques are the first class of agnostic meth-
ods to measure global feature sensitivity [36]–[38]. Then,
researchers [14], [15], [39], [40] first used ANOVA-HDMR
to decompose interpreted models and derive a variance-based
method to measure global feature sensitivity based on the
variance of conditional model outputs, assuming that input
features are independent. When input variables are depen-
dent, researchers [9], [10], [41], [42] proposed novel methods
based on HDMR to investigate global feature sensitivity.
Another class of agnostic methods is density-based methods.
Researchers use different distance measures to measure the
discrepancy between the unconditional model output density
and the density conditional on inputs [43], [44]. Moreover,
regionalized sensitivity analysis, which is a Monte Carlo
filtering procedure, aims to identify which factors are most
important in leading to realizations of output that are either in
behavioral or non-behavioral regions [45]. Recently, a novel
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Shapley feature importance method was proposed to dis-
tribute the overall predicted performance of a model fairly
among features based on the marginal permutation-based
contributions, which can be used to interpret any type of
machine learning model [7].

The variance-based method derived by HDMR has been
used as a model-agnostic method to measure global feature
sensitivity. However, variance is not a robust measure when
input features are highly influenced by a contaminated dis-
tribution that is associated with the presence of outliers [46].
When estimating variance-based indices, there is a large prob-
ability of producing an uncertain feature importance ranking
for inputs that are unstable from sample to sample [32], which
we address in this study.

III. METHOD
In this section, we first discuss the variance-based method
derived by HDMR, then propose the novel robust method,
and finally discuss relevant calculation issues.

A. HDMR-BASED FEATURE IMPORTANCE
Given a model of the form Y = g(X ), with Y being
a scalar output and X = (X1,X2, . . . ,Xn) input vector,
the variance-based sensitivity analysis is closely related
to the decomposition of g(X ) into terms of increasing
dimensions [47]:

Y = g(X ) = g0 +
∑
i

gi(Xi)+
∑
i<j

gij(Xi,Xj)+ . . .

+ g12..n(X1,X2, . . . ,Xn) (1)

in which each individual term is also square integrable over
the domain of existence and is a function only of the factors
in its index. This expansion, called high-dimensional model
representation (HDMR), is not unique: for a given model
g(x), there could be infinite choices for its terms.

Unlike Sobol to derive the global sensitivity indices in
ANOVA-HDMR [15], we must not provide the mutually
orthogonal condition of all terms in the decomposition (i.e.,∫
X gi1,...,is (Xi1 , . . . ,Xis )dXk = 0 for any k = i1, . . . , is).
We can first let these terms be a particular form, which is
unequivocally calculated using conditional expectations of
the model output:

g0 =
∫
X
g(X )fX (X )dX = E[g(X )]

gi = gi(Xi) =
∫
X∼i

g(X )fX∼i (X∼i|Xi)dX∼i − g0

= E[g(X )|Xi]− g0
gij = gij(Xi,Xj) = E[g(X )|Xi,Xj]− gi − gj − g0

. . .

g12...n = g12...n(X1,X2, . . . ,Xn)

= g(X )− g12...n−1 − . . .− gi − gj − g0

where X∼i denotes the vector of all input variables
except Xi, and f (·) and f (·|·) denote the unconditional
probability density function and conditional probability

density function, respectively. Then, we have:

E[gi(Xi)] = E[gij(Xi,Xj)] = . . .
= E[g12...n(X1,X2, . . . ,Xn)] = 0.

If the input vector X = (X1,X2, . . . ,Xn) is independent,
then we can show that

Cov(gi(Xi), gj(Xj)) = Cov(gi(Xi), gij(Xij)) = 0

where i 6= j. The expansion of g(X ) is unique, which can
lead to a unique ANOVA-HDMR decomposition of V[Y ] as
follows:

V[Y ] = V[g(X )] =
∑
i

V[gi(Xi)]+
∑
j>i

V[gij(Xi,Xj)]+

· · · + V[g12...n(X1,X2, . . . ,Xn)].

Dividing both sides of the equation by V[Y ], we obtain:∑
i

Si +
∑
i

∑
j>i

Sij + . . .+ S12...k = 1. (2)

The unique decomposition obtained by ANOVA-HDMR is
the variance-based method, which is often referred to as the
Sobol method or Sobol indices. The first-order effect index
Si can be rewritten as:

Si =
V[gi(Xi)]
V[Y ]

=
V[Y |Xi]
V[Y ]

(3)

in which a larger V[E[Y |Xi]] indicates a larger importance
of Xi to the output variation. Apparently, the variance of the
conditional expectation V[E[Y |Xi]] is the only key item in
the first-order effect index, which can be considered as a
summary measure of feature importance in this case.

B. EXTENSION OF SOBOL METHOD
For the input vector X = (X1,X2, . . . ,Xn), we denote the
‘‘standard deviation(SD)-based index’’ with respect to Xi by:

rSDi =
√
V[E[Y |Xi]] =

√
E[E[Y |Xi]− E[E[Y |Xi]]]2

=

√
E[E[Y |Xi]− E[Y ]]2 (4)

in which V[E[Y |Xi]] is also used as a summary measure
in the Sobol method according to (3). In this article, rSDi
is used as an index to represent the Sobol method, which
is a variance-based method obtained via ANOVA-HDMR,
instead of the first-order effect index Si in (3).
In this study, the variance of the conditional expectation

V[E[Y |Xi]] is not the only method for measuring global
feature importance. As mentioned before, variance is not a
robust measure in robust statistics. The existence of outliers
in input data will make the measurement difficult due to the
poor robustness of variance. Therefore, we can use the mean
absolute deviation (MAD), which is referred to as the ‘‘mean
deviation’’ or ‘‘average absolute deviation’’, to address this
problem.
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We thus expand an SD-based index by MAD. For input
vector X = (X1,X2, . . . ,Xn), we denote the ‘‘MAD-based
index’’ with respect to Xi as:

rMADi =E[|E[Y |Xi]−E[E[Y |Xi]]|]=E[|E[Y |Xi]− E[Y ]|]
(5)

When the observation values of E[Y |Xi] are oscillatory,
we can also use the conditional median M[Y |Xi] as a surro-
gate value in the ‘‘MAD-based index’’. Then we can obtain
another ‘‘MAD-based index’’ as:

rMAD2i = E[|M[Y |Xi]− E[M[Y |Xi]]|]. (6)

For a normal distribution, the sample variance of the stan-
dard deviation is belowMAD [48]. However, MAD is a more
robust measure for variables with contaminated distributions
[49] and is widely used because MAD is easy to calcu-
late (it avoids calculating the square value), easy to under-
stand [50], and more tolerant of extreme values compared
to standard deviation. Thus, the MAD-based index is a more
robust method than the SD-based index in feature importance
measurements. To our best knowledge, few researches have
addressed the problem of robustness, so we compare our
MAD-based method with the traditional method, the Sobol
method, which does not consider robustness.

C. COMPUTATIONAL ISSUES
It should be noted especially that, in classification tasks,
Y represents the prediction probability of a specific class
in a given model g(X ) but not the real labels of class.
To numerically compute the novel feature importance indices,
one has to (i) obtain a sample set of inputs from input space
X = (X1,X2, . . . ,Xn) and calculate the corresponding output
by Y = g(X ), (ii) compute the conditional mean or median
of Y with respect to X1, . . . ,Xn, separately, with the samples
in step (i), and (iii) compute the MAD-based indices rMADi ,
rMAD2i and the SD-based index rSDi using the results from
step (ii).

In step (ii), we obtain the conditional values using the Bins
method [6], which allows us to calculate both continuous
and discrete inputs. We use the output and input samples
(X ,Y ) ∈ RN×(n+1) in step (i) to calculate the conditional
mean value E[Y |Xi] or conditional median value M[Y |Xi].
When Xi is a continuous variable, we can easily obtain the
scatterplot of Xi and Y . Next, we can partition the Xi-axis of
the scatterplot on the horizontal plane. We then divide Xi into
M mutually exclusive subsets Xm

i (m = 1, 2, . . . ,M ), where
∪
M
m=1X

m
i = Xi,Xm

i ∩ X
q
i = ∅, (m 6= q). Then, we substitute

the point condition value Xi = xi with the bin condition
value Xi ∈ Xm

i . Formally, we use the bin conditional value
E[Y |Xi ∈ Xm

i ] or M[Y |Xi ∈ Xm
i ] to replace the point

conditional value E[Y |Xi = xi] orM[Y |Xi = xi]. In addition,
we can obtain the bins estimator as follow:

E[Y |Xi ∈ Xm
i ] =

1
Nm

∑
x∈Xm

i

Yx

M[Y |Xi ∈ Xm
i ] = median

x∈Xm
i

Yx

where Nm indicates the number of observations falling in
the mth interval set Xm

i , and Yx denotes the output Y cor-
responding to one observation x ∈ Xm

i . However, if the
input Xi is a discrete variable, then we can only divide
levels or values of Xi into M ′ mutually exclusive subsets
Xm
i (m = 1, 2, . . . ,M ′), where M ′ is the number of the

different levels or values in Xi. The other calculation manip-
ulation is the same as the continuous inputs in X .

In the last step, with the conditional mean value E[Y |Xi]
or conditional median value M[Y |Xi] calculated in step (ii),
we can calculate all indices in Section III-B by

rSDi =

√∑M

i=1

Nm
N

(E[Y |Xi ∈ Xm
i ]− E[Y ])2 (7)

rMADi =

∑M

i=1

Nm
N
|E[Y |Xi ∈ Xm

i ]− E[Y ]| (8)

rMAD2i =

M∑
i=1

Nm
N
|M[Y |Xi ∈ Xm

i ]

−

M∑
m=1

Nm
N

M[Y |Xi ∈ Xm
i ]| (9)

where E[Y ] = E[E[Y |Xi]] =
∑M

m=1
Nm
N E[Y |Xi ∈ Xm

i ] =∑N
i=1 Yi.

IV. EXPERIMENTS
In this section, the robustness of the proposed MAD-based
indices is shown in two experiments: 1) artificial models
with randomly generated datasets and 2) machine learning
models built on public datasets. These experiments allow us
to calculate and contrast feature importance so that we can
conveniently test the robustness of the proposed methods. For
all models in this section, the feature importance derived by
either the MAD- or SD-based index is compared.

A. FEATURES WITH CONTAMINATED DISTRIBUTION
To evaluate the robustness of the proposed method on data
with outliers, we generated data with contaminated distribu-
tions in the experiments with artificial models or added con-
taminated data to real data in the experiments with machine
learning models. The contaminated distribution of a feature,
Xi, is defined by its original distribution F(Xi) and an error
distribution N (θ, σ 2)

P(Xi < x) = Fmixed (µ, σ 2
0 , σ

2, ε)

= (1− ε)F(x)+ ε8(
x − µ
σ

) (10)

where µ and σ 2
0 denote the mean and variance of Xi, respec-

tively; 8(·) denotes the cumulative probability density func-
tion of a standard normal distribution; ε ∈ [0, 1] indicates the
percentage of samples Xi generated by the error distribution
N (µ, σ 2). The variance σ 2 is often set to be much larger than
σ 2
0 , and the parameter ε is typically set to below 0.05 when

we assume that a feature with contaminated distribution has
tiny errors.
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B. ARTIFICIAL MODELS
In this subsection, the efficiency of the proposed indices is
shown by two models

f1(X ) = X2
1 + X

2
2 ,

f2(X ) = X1 + X2 + X1X2.

These simple models allow us to easily calculate and contrast
the feature importance and error rates of inputs. Then, we can
evaluate the robustness of the proposed indices. For both
models, we first, assume that X1 and X2 follow the nor-
mal distributions N (1, 1) and N (1, 1.22), respectively. Thus,
we can obtain the theoretical values of the SD-based index of
Xi(i = 1, 2) for both models:

r thei =

{√
V (X2

i ) =
√
2σ 4

0 + 4µ2σ 2
0 , for f1(X )

|1+ E(Xj)|
√
V (Xi) = |1+ µ|σ0, i 6= j, for f2(X )

(11)

where µ and σ 2
0 denote the mean and variance of Xi,

respectively.
Second, to test the robustness of the proposed MAD-based

index, we assume that X1 has tiny errors in its distribution and
is generated by the contaminated distribution (refer to (10)):

P(X1 < x) = Fmixed (µ = 1, σ 2
0 = 1, σ 2, ε)

= (1− ε)8(
x − 1
1

)+ ε8(
x − 1
σ

) (12)

For each feature, 1,000 values are generated, and then the
MAD-based indices, rMADi and rMAD2i , and the SD-based
index, rSDi , are calculated. The process is repeated 300 times
to evaluate the error rate or confidence interval of feature
importance for each index.

1) ANALYZING ROBUSTNESS OF ALL INDICES BY ERROR
RATES
When no errors occurred in the distribution, X1 ∼ N (1, 12)
and X2 ∼ N (1, 1.22). For each feature, 1,000 values are
generated. Because X1 and X2 are equivalent in both models,
and the variance of X2 is above that of X1, the theoretical
feature importance of X2 is above that of X1 for both models
according to (11). After tiny errors are added to X1 based
on the contaminated distribution defined in (12), the rMADi ,
rMAD2i and rSDi of X1 and X2 are calculated based on the data
using the estimation method described in Section III-C. The
error rate of the SD-based index is defined as:

ErrSD =
1

300

300∑
k=1

I(rSD1 (k) > rSD2 (k)) (13)

where rSDi (k) denotes the SD-based index of Xi in the k th

experiment, and I(∗) denotes the indication function. Simi-
larly, the error rate for the MAD-based index can be calcu-
lated. The error rates can be used to evaluate the robustness of
the feature importance indices. A low error rate indicates that
the index is robust to errors in the contaminated distribution.

FIGURE 1. Error rates of f1(X ) by different indices.

FIGURE 2. Error rates of f2(X ) by different indices.

The results of the error rates under different values of σ
and ε are shown in Figures 1 and 2. When the standard error
σ increases to 10, the error rates of all indices are increasingly
closer to 1. As the resultant curves show that the error rates of
theMAD-based indices are below that of the SD-based index,
the MAD-based indices are more robust than the SD-based
index for both models. The index rMAD2i is shown to be the
most robust index in the estimation of the error rates. Also,
when the contamination rate ε increases, the difference in
error rates among the three indices becomes negligible.

2) ANALYZING ROBUSTNESS OF ALL INDICES BY FEATURE
IMPORTANCE
After computing a quantitative contrast of the error rates,
we compare themagnitude of feature importance ofX1 gener-
ated by all indices. In the original distribution, the theoretical
values of the SD-based index of X1 for f1(X ) and f2(X ) are

√
6

and 2 (refer to (11)), respectively. After the errors are added
into X1, the MAD-based indices must be adjusted for com-
parison with the theoretical values. Because the sample mean
of the mean absolute deviation for X1 is

√
(n− 1)/n

√
2/πσ0

[48], the MAD-based indices are lower than expected. Thus,
we multiply the MAD-based indices by a constant

√
2/π to

distinguish the effect of the magnitude of feature importance.
With the generated input samples (X1 ∼ Fmixed (θ =

1, σ 2
0 = 1, σ 2, ε),X2 ∼ N (1, 1.22)), the estimates of the

feature importance for both models are reported in Figures 3
and 4. As σ approaches 10, all indices grow rapidly, and the
90% confidence interval becomes large. The resultant curves
show that the feature importance of the MAD-based indices
are blow those of the SD-based index; thus, the MAD-based
indices are more robust than the SD-based index.

C. MACHINE LEARNING MODELS
We begin this subsection by contrasting the efficiency of
the proposed indices to the other indices when using com-
plex machine learning models, including supported vector
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FIGURE 3. Feature importance values of f1(X ) by different indices.

FIGURE 4. Feature importance values of f2(X ) by different indices.

TABLE 1. Description of the Dimaonds data.

machine (SVM), neural network (NN) and xgboost (XGB).
These complex models allow us to evaluate the robustness of
the proposed indices.

1) DATASETS AND MACHINE LEARNING MODELS
We train the machine learning models on two real-world
datasets: the first contains data about Diamonds,1 including
54,000 records with the output target of price and nine input
features (refer to Table 1); and the second contains data about
Boston housing,2 including 506 entries with the output target
ofmedv and 13 input features for homes from various suburbs
in Boston (refer to Table 2). To improve the generalization,
parameters are tuned during training for both data. During the
training of machine learning models, 5-fold cross-validation
is used for model evaluation. The NN is trained as a neural
network with 3 layers and 5 hidden neurons, and its activation
function is sigmoid. The SVM uses the default parameters
set in R for regression task with C equals 1. And the XGB
also uses the default parameters set in R for the linear booster
with maximum number of iterations equals 150. All cate-
gorical features are transformed into numerical values and
normalized via regression.

1https://www.kaggle.com/shivam2503/diamonds
2https://www.cs.toronto.edu/∼delve/data/boston/bostonDetail.html

TABLE 2. Description of the Boston housing data.

After the models are trained, we calculate the output values
of Y based on the trained models with X . To test the robust-
ness of the proposed MAD-based index, we assume that an
arbitrary feature Xi(Xi ∈ X ) has tiny errors in its original
distribution and is generated by a contaminated distribution
(refer to (10)):

P (Xi < x) = Fmixed
(
µ̂i, σ̂

2
i , σ

2
= (5σ̂i)

2
, ε = 0.05

)
= (1− ε)F(x)+ ε8

(
x − µ̂i
σ

)
(14)

where µ̂i and σ̂ 2
i represent the sample mean and variance of

Xi, respectively. After Xi is contaminated, we obtain a new
data set X̂ i and calculate the corresponding output Ŷ i based
on the trained model.

2) ANALYZING THE ROBUSTNESS OF ALL INDICES ON
MACHINE LEARNING MODELS
With the Diamonds data, we specify the first feature
‘‘carat’’ of diamonds as the contaminated feature to con-
trast the robustness of the proposed indices on the trained
machine learning models. We then generate the contaminated
data X̂ carat and the output Ŷ carat according to (14). The
rMADi , rMAD2i and rSDi of each feature are calculated based
on the contaminated data (X̂ carat , Ŷ carat ) and the original
data, respectively, using the estimation method described in
Section III-C. The percent variation of the SD-based index
for the feature ‘‘carat’’ is defined as rSDi of the contaminated
data divided by that of the original data. Similarly, the percent
variation of theMAD-based index can be calculated, and then
can be used to evaluate the robustness of the MAD-based
method compared with the percent variation of SD-based
method.

First, the percent variation of the feature importance for
the feature ‘‘carat’’ are shown in Table 3. The resultant
table shows that the variation percentages of the MAD-based
indices in the feature ‘‘carat’’ are markedly below those of
the SD-based index. Apparently, the MAD-based indices are
more robust than the SD-based index in the estimation of the
percent variation of the feature ‘‘carat’’. When we specify
the feature ‘‘carat’’ as the contaminated feature, the average
variation percentages of the MAD-based indices are also
below that of the SD-based index, while rMAD2i is much
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TABLE 3. Percent variation in feature importance values with contaminated data X̂ carat .

TABLE 4. Percent variations in feature importance values with contaminated data of another 3 features with most feature importance values with the
Diamonds dataset.

TABLE 5. Percent variation in feature importance values with contaminated data X̂ crim.

below rSDi . This result shows that in the estimation of the
average precent variation, MAD-based indices are still more
robust than the SD-based index, while the efficiency of the
MAD-based index rMAD2i in robustness is highest.
Second, for comparison, we specify another three features

with the most feature important values as the contaminated
feature, separately, and show its corresponding percent vari-
ation of the contaminated feature in Table 4. For simplicity,
with respect to each contaminated data of specified feature,
table 4 only illustrate its variation percentages in contami-
nated feature and the average variation percentages. In the
estimation of the percent variations of all three chosen fea-
tures, the MAD-based indices yield better robustness than the
SD-based index for the percent variations of the SD-based
index that are higher than 10%. In the estimation of the aver-
age percent variations, MAD-based indices are still markedly
more robust than the SD-based index for other cases, even
though the performance of MAD-based indices is marginally
unstable in robustness compared to that of the SD-based index
when the percent variations are below 10%.

With the Boston housing data, we also specify the first
feature ‘‘crim’’ as the contaminated feature and generate
the contaminated data X crim and the output Y crim based
on (14), as with the diamond data. The percent variations
of the feature importance for the feature ‘‘crim’’ are shown
in Table 5. We also choose another three features with the
most feature-important values as the contaminated feature,
separately, and show its corresponding percent variation of
the contaminated feature in Table 6. The results of the Boston
data are nearly identical to those of the diamond data when
comparing the robustness between the MAD-based indices
and SD-based index. The results of the MAD-based indices
are more robust than those of the SD-based index for nearly
all cases shown in Tables 5 and 6.
The experimental results on both the Diamonds and Boston

housing data demonstrate the advantages of the proposed
MAD-based method. First, we can find the efficiency of
the proposed MAD-based method in robustness by com-
paring the results of MAD-based indices with that of the
SD-based index, which is an index of the Sobol method.
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TABLE 6. Percent variations in feature importance values with contaminated data of another 3 features with most feature importance values with the
Boston housing dataset.

For example, in the estimation of the percent variation of
a specified feature, MAD-based indices are markedly more
efficient in robustness for variation percentages greater than
10%. Second, we can also use the MAD-based method as a
reliable and model-agnostic method to estimate the feature
importance values of complex models instead of the Sobol
method by implementing the two indices of the MAD-based
method. For example, in the estimation of both the percent
variations and the average percent variations, MAD-based
indices are only marginally unstable in robustness compared
to SD-based index when the percent variations are below
10%, while MAD-based indices are markedly more efficient
in robustness in other cases.

V. CONCLUSION
In this article, we proposed a model-agnostic method to
measure global feature importance. The method is based
on high-dimensional model representation and is an exten-
sion of the standard deviation-based method, which is a
variance-based method obtained via ANOVA-HDMR. The
proposed method is more robust than the SD-based method.

The proposed method can be used in various domains
because it is generally applicable to complex models and can
provide similar explanations when inputs have unanticipated
small modifications or contamination. The main limitation of
this study is that the method assumes feature independence
and thus cannot be used to estimate correlated features. Thus,
future work should investigate a method to estimate feature
importance when features are assumed to be correlated.
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