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ABSTRACT Major depressive disorder (MDD), which is also known as unipolar depression, is one of the
leading sources of functional frailty. MDD is mostly a chronic disorder that requires a long duration of
treatment and clinical management. One of the critical issues in MDD treatment is the need for it’s early
diagnosis. Conventional tools in MDD diagnosis are based on questionnaires and other forms of psychiatric
evaluations. However, the subjective nature of these tools may lead to misleading inferences. Recently, brain
electroencephalography (EEG) signals have been used for the quantitative diagnosis of MDD. Nevertheless,
a further improvement of the proposed methods in terms of accuracy and clinical utility is required. In this
study, EEG signals from 30MDD and 30 healthy control (HC) are used to estimate the effective connectivity
within the brain default mode network (DMN). Then, effective connections between the major six regions of
the DMN are used to train and test a three-dimensional (3D) convolutional neural network. Here, connectivity
samples generated from half of the subjects are used for training while the rest are used for testing. The results
show that the proposed MDD diagnosis algorithm achieved 100% accuracy,sensitivity and specificity in
classifying MDD and HC test subjects.

INDEX TERMS 3D convolutional neural networks (CNN), brain effective connectivity, default mode
network (DMN), major depressive disorder (MDD), partial directed coherence (PDC).

I. INTRODUCTION
Major depressive disorder (MDD), which is typically referred
to as depression (unipolar), is a mental state which manifests
itself via mood disorders, especially as low moods and aver-
sions to activities. Based on the symptoms and severity, MDD
can be classified as several different types such as bipolar
disorder, atypical depression, dysthymia, psychotic depres-
sion, and postpartum depression [1]. According to the Diag-
nostic and Statistical Manual of Mental Disorders (DSM–5),
a person can be diagnosed as depressed if he/she shows low
moods or loss of interest/pleasure for two weeks along with
at least three more symptoms, such as an irregular appetite
and weight fluctuation, slow thought processing, lethargy,
feelings of worthlessness, loss of concentration and focus,
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and suicidal thoughts [2]. These symptoms may render the
patient as functionally disabled. Thus, with approximately
7.5% of all Years Lived with Disability (YLD) [3], it is con-
sidered as a leading cause of disability worldwide, with more
than 264 million people of all ages being directly affected,
with more cases among women than men [4]. Owing to its
heterogeneity and comorbid nature, the effective diagnosis
of depression is a challenging task. The treatment of depres-
sion largely relies on its accurate and timely identification.
Besides, it is highly probable that MDD is misdiagnosed as
bipolar disorder (BPD) or other psychiatric disorders that are
due to the common occurrence of depressive symptoms [5].
This misdiagnosis results in delayed or inappropriate med-
ications which not only affect the efficacy of the treatment
course but may also lead to further complications such as the
development of drug resistance and deterioration in patients’
mental condition. Hence, an accurate and timely diagnosis of
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MDD will give a better chance for effective treatment and
lessen the risk of further damage. In addition, this error in
prognostics may be due to the subjective nature of conven-
tionally available diagnosing criteria of questionnaires and
other human factors, including the expertise of the doctor,
irregular patient history, and overstated depressive symptoms
reported from the patient or the person attending him/her.
This issue strongly suggests the incorporation of quantitative
measures using brain imaging modalities such as magnetic
resonance imaging (MRI), functional MRI (fMRI), and elec-
troencephalography (EEG) for reliable diagnosis of MDD.

Over the past few years, the diagnosis of MDD has been
performed using EEG-based machine-learning (ML) tech-
niques owing to its non-invasive nature and high temporal
resolution [6]–[9]. The automated EEG-based ML methods
have proven their ability to correctly classify depressed and
healthy subjects [7], [10]. Similarly, ML methods, espe-
cially support vector machines (SVMs) over fMRI-based
features, have had valuable results in the identification of
MDD patients. Recently, a depression diagnostic index has
been proposed based on nonlinear features extracted from
EEG data [11]. Radial basis function and linear discriminant
analysis was performed in [12] with a classification accuracy
of 93.33 % based on relative wavelet energy and wavelet
entropy. Apart from conventional machine-learning tech-
niques, few attempts have also been made to diagnose MDD
using deep learning networks (DLNs). Acharya et al. [13]
used a 13-layer convolutional neural network (CNN) over
15 healthy and 15 depressed subjects and obtained classifica-
tion accuracies of 96% and 93.5% for the right and left hemi-
spheres, respectively. A combination of 1D EEG data along
with demographic information including gender and age are
fed into a 1D CNN achieving 75.29% classification accuracy
was also reported in [14]. In addition, [15] proposed a com-
bined model of CNN and long short-term memory (LSTM)
for one-dimensional EEG (1D-EEG) signals and achieved
a classification accuracy of 98.32% for 33 depressed and
30 healthy controls. However, the combination of CNN and
LSTM is a complex architecture which is computationally
costly, and the classification is still not perfect.

Recently, brain connectivity has been analyzed in order
to understand the effects of depression over brain net-
works. Aberrant brain connections have been found in
depressed patients as compared to healthy subjects [16]–[18].
Olbrich et al. [19] demonstrated abnormal functional con-
nectivity among different scalp locations in the frontal and
temporal regions when compared with healthy controls.
Xie et al. [20] used combination of brain functional net-
work based on phase lag index (PLI) and a simple 2D CNN,
giving 67.67% classification accuracy tested on 10 HC
and 10 patients. Similar combination was also used by
Li et al. [21] in which functional connectivity from different
EEG bands was transformed into images and trained on
2-stacked CNN to achieve 80.74% classification accuracy
for mild depression patients and HC. In [22], mixed feature
matrices obtained from inter-hemispheric asymmetry and

cross-correlation of EEG signals from 64 electrodes were
used for training of a 2D CNN achieving 94.13% classifi-
cation accuracy for 16 MDD and 16 HC. Although many
attempts have been made to automatically diagnose MDD
based on this functional synchronization, none of the pro-
posed methods have achieved perfect diagnosis of MDD.

In this study, a new biomarker was developed to indicate
the induced physiological changes in the human brain due to
depression. These changes in the human brain are observed
through the alternations in the exchanged causal effects
between the brain’s default mode network (DMN) regions
owing to MDD. The causal effect of one region on another
is referred to as brain effective connectivity. These effec-
tive connections, which are developed throughout the DMN
regions, are fed into a three-dimensional (3D) CNN for the
binary classification of the subject’s data as MDD or healthy
control. To the best of the authors’ knowledge, this is the
first attempt to diagnose MDD using a DMN’s effective
connectivity.

This paper is organized as follows: In section II, the resting
state network (RSN) and the DMN components are described
in detail, showing the regions involved in the DMN and
the major functions of each one. The concept of effective
connectivity is also briefly introduced under Section III. Next,
Section IV describes the algorithm for estimating effective
connectivity, known as partial directed coherence (PDC)
algorithm. This section also covers the experimental setup,
data acquisition, and code implementation, while Section V
presents the results and discussion. Finally, Section VI con-
cludes the paper and discusses on possible further work in
the area.

II. DEFAULT MODE NETWORK
A subject is said to be in a resting state if he/she is not involved
in any kind of activity or tasks. The brain networks which are
active during this resting state are referred to as RSNs. Among
these RSNs, a network of mesial prefrontal cortex, precuneus
/ posterior cingulate, and lateral parietal cortex is commonly
referred to as a DMN, as shown in Fig. 1.

FIGURE 1. Axial view of the brain highlighting the DMN regions
(reproduced from [23]).
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DMN has recently emerged as an attractive research area
for the scientific community as well as for clinicians because
they exhibit a unique feature in that during the resting state,
its activities intensify, and they become less active other-
wise [24]–[26]. This less intensive activity of DMN rather
than complete deactivation was also shown by Raichle and
Snyder [27], where they observed the functional connectivity
of mesial frontal gyrus and precuneus during the rest state as
well as in tasks designed for the activation of working mem-
ory. This indicates that the DMN may facilitate or monitor
the performance of active tasks, rather than simply getting
deactivated [27].

Within the DMN network, precuneus has been given
utmost importance owing to its strong correlation with
other nodes of the same network in terms of connectivity.
Besides, it acts as a mediator of intrinsic connections amongst
them [28]–[30]. Owing to its intensive interconnections with
other brain regions [30], [31], the involvement of precuneus
has been observed in a variety of higher-order cognitive
functions such as visio-spatial imagery, episodic memory
retrieval, and self-processing. Similarly, lateral parietal cor-
tex has significant connections with the medial temporal
lobe, which includes hippocampal and entorhinal regions,
a medial parietal lobe along with the anterior cingulate cor-
tex, and a dorsolateral prefrontal cortex. The lateral pari-
etal cortex has shown its involvement in cognitive processes
such as spatial cognition, social cognition, working memory,
attention [32], [33], and motor intent [34], [35]. Likewise,
the mesial prefrontal cortex is involved in higher cogni-
tive functions responsible for the processing, representation,
and integration of social and affective information, social
cognition [36], and self-referential memory [37] owing to
its reciprocal connections with amygdala (emotion pro-
cessing), hippocampus (memory), and temporal cortex
regions involved in higher-order sensing [38]–[40]. There-
fore, a study of the brain connectivity amongst DMN may
increase researchers and clinicians’ understanding of differ-
ent physiological phenomena of human behavior. Accord-
ingly, the variations in these connections can be treated as
a new biomarker for different neurological disorders.

III. EFFECTIVE CONNECTIVITY
A brain connection is formed when neurons of one brain
region are synchronized with neurons of other brain regions
and interact dynamically by adjusting their rhythmswith each
other [41]. This interaction can be analyzed through either
functional or effective connectivity techniques. Although
functional connectivity (FC) [42] efficiently describes the
connections between different regions using cross-correlation
values, it fails to give the direction of influence between two
regions, i.e., it will show the functional connection between
regions A and B, but it cannot differentiate the amount of
information sent to B from A, and vice versa. Similarly,
it is unable to eliminate the third-party effect, i.e., if another
region C influences B through A, FC displays it as a connec-
tion between A and B.

These limitations of FC can be resolved if a causal inter-
action (effective connectivity (EC)) is considered instead of
cross-correlation. EC reflects the causal influence which one
neuronal system exerts over another, thereby providing the
direction of influence as well [2]. This influence can be
directly estimated through signals, called data-driven EC, or it
can be based on models to specify causal links between dif-
ferent brain regions, which is referred to as model-driven EC.
Granger-causality (GC) [42] and dynamic causal modelling
(DCM) [43] are classified as data-driven and model-driven
EC techniques, respectively. GC assumes that ‘if a signal
can be predicted by the past information from a second
signal better than the past information from its own signal,
then the second signal can be considered causal to the first
signal’ [42].

GC was originally developed to predict the causality of
bi-variate signals in the time domain. However, its appli-
cability was further extended to the frequency domain by
Gweke [44], where he presented interaction amongst various
EEG frequency bands. Moreover, Gweke’s work enabled the
analysis of the coupling between EEG frequency bandswhich
hold utmost biomedical significance. Later, the concept of
bivariate GC was further altered to incorporate multivari-
ate signals [45], [46]. Currently, directed transfer function
(DTF) [47] and partial directed coherence (PDC) [48] tech-
niques are two commonly used variants of GC. In this paper,
PDC has been utilized for estimating the EC within the DMN
regions and described in the Section IV-A and Section IV-B.

IV. MATERIALS AND METHODS
The general methodology for development of the algorithm
for automated diagnosis of MDD using brain EC from
EEG signals and 3D CNN is illustrated in Fig. 2. The
19-channel EEG signals are first cleaned using automatic
artefact removal technique as described in Section IV-E. Sub-
sequently,M continuous segments of length 2-sec is extracted
for each subject for the calculation of PDC. Since, the brain
is highly dynamic in nature and it is necessary to select
proper EEG segment length which is sufficient enough for the
reliable calculation of MVAR modelling parameters and yet
small enough to identify minor changes in brain dynamics.
Generally, in EEG processing, it is a common practice to
consider segments of length less than 4-sec in order to ensure
stationary of EEG. [49], [50]. Thus, each 2-sec segment gives
one PDC matrix,which collectively yields M matrices of EC
over the 19 channels for 1 subject in this study. Specifically,
the PDC connectivity calculation will output (19× 19× 64)-
connectivity matrix and the subsequent DMN connectivity
extraction will reduce the connectivity matrix to 6× 6× 64.
The subsequent stage involves two steps. The first is where
all the samples from the subjects selected for training the
3D-CNN network, referred to as the training subjects whereas
in the second step the samples from testing subjects are
the input of this trained network to obtain the classification
results. Classification performance was then evaluated using
accuracy, sensitivity and specificity. Details of the method to
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calculate the EC and the training and testing of the proposed
3D CNN are covered in the subsequent sections.

A. PARTIAL DIRECTED COHERENCE (PDC)
Partial directed coherence is a frequency domain method
based on the multivariate autoregressive model (MVAR) and
the principle of partial coherence. Suppose that a set of n
simultaneously observed time series

Y (t) = [y1(t), y2(t), . . . , yn(t)]T (1)

is represented by an autoregressive model of order p as given
in Equation (2)

Y (t) =
p∑
l=1

AlY(t − l)+ ε(t), (2)

where

Al =

a11 (l) · · · a1n (l)
...

. . .
...

an1 (l) · · · ann (l)

 (3)

is the coefficient matrix at the time lag l, and ε (t) =[
ε1 (t) · · · εn (t)

]T is the zero mean multivariate Gaussian
white process. The MVAR coefficient auv represents the
effect of yv(t − l) on yu(t).
If A(f ) is the frequency domain equivalent of coefficient

matrix Al , then the Fourier transform auv(f ) of the elements
auv(l) can be obtained as,

auv(f ) =
p∑
l=1

auv (l) e
−i
(
2π
p

)
lf
. (4)

By subtracting A(f ) from n-dimensional identity matrix I ,
we get Ā(f ) then the PDC from electrode v to electrode u,
denoted by πuv(f ) is

πuv (f ) =
āuv (f )√

āHv (f ) āv (f )
, (5)

where āuv (f ) represents the uvth elements of matrix Ā(f ),
and (.)H indicates conjugate transpose. The πuv(f ) in Equa-
tion (5), represents the strength of the influence of electrode
v over u at frequency (f ) with values ranges from 0 for
no connectivity to 1 for maximum connectivity. The basic
Matlab code for the calculation of PDC is available at [51].

B. EFFECTIVE CONNECTIVITY IN DEFAULT MODE
NETWORK
Selection of 6 electrodes that constitutes DMN is based on
Brodmann areas (BA) specified for the brain regions as shown
in Table 1. Here, the PDCmatrix obtained shows connectivity
of all the 19 channels over 64 bins. These 19 × 19 × 64
matrices were then reduced to only six electrodes, which form
the DMN, i.e., F3, F4, P3, P4, Fz, and Pz giving reduced
matrix of size 6 × 6 × 64 as illustrated in Fig. 2. Details of
the algorithm for extraction of DMN connectivity is provided
in Algorithm 1. The input to the algorithm is a PDC matrix

TABLE 1. Mapping of EEG electrodes over DMN regions using Brodmann
areas.

obtained from 19 electrodes effective connectivity estimation
followed by extraction of connectivities that mapped to DMN
electrodes. This reduction from 19 × 19 × 64 to 6 × 6 × 64
is performed in order to eliminate all indirect causal effect
of non-DMN regions over DMN regions. It should be noted
here that the values of the total PDC matrix M varies from
one subject, depending on the length of EEG after artefact
removal.

Algorithm 1 Extraction of DMN Connectivity
PDC_DMN ← [0]6×6×64
PDC_ALL ← [PDC]19×19×64
ALL_EL ← combination of 19 electrodes
DMN_EL ← Electrodes 7→ DMN regions
for all Rows(r) of PDC_ALL do
for all Columns(c) of PDC_ALL do

if ALL_EL(r, c) ∈ DMN_EL then
PDC_DMN (r1, c1)← PDC_ALL(r, c)
r1← r1+ 1
c1← c1+ 1

else
next iteration

end if
end for

end for

C. CONVOLUTIONAL NEURAL NETWORK
The 3D CNN will take in the 6 × 6 × 64 PDC matrices
as its input, which represent the connectivity of the EEG
signals. The PDC matrices based on Equation (5) are calcu-
lated over six DMN channels at every (40/64)-Hz frequency
bin, i.e., f = 0.625b, where b = 1, 2, . . . , 64. Given
the 3D PDC input, a 3D CNN will be employed for the
classification of MDD versus healthy control (HC) from the
EEG signal. The general architecture of our proposed 3D
CNN is shown in Fig. 3, and consists of three convolutional
layers, three batch normalization (BN), and three rectified
linear unit (ReLU) activation layers, a global average pool-
ing layer, a dropout layer and one fully connected layer.
Each convolution layer is followed by a nonlinear activation
function (ReLU) [52]. It should be noted that classification
from the fully connected layer is based on the binary softmax
regression.
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FIGURE 2. General pipeline for development of classification algorithm of MDD vs. HC using DMN effective connectivity and 3D CNN.

FIGURE 3. 3D CNN architecture for classification of MDD vs. HC using PDC matrices. Channel dimensions are in grey color, while 3D dimensions are in
black. S = Stride, Conv = Convolution, BN = Batch normalization layer, ReLU = ReLU activation layer, 3D GAP = 3D global average pooling layer.

There are sixteen filters for each of the convolution layers,
while the dimensions of the convolution kernels are 1×3×4,
3×2×10 and 1×1×10, respectively, as shown in Fig. 3. The
size of the convolution kernels is in decreasing order because
no padding is applied; therefore, the kernel size needs to be
adjusted for every convolution layer. Furthermore, random
noise is added to the activation of each layer in order to reduce
the issue of internal co-variance shift, producing improve-
ment in training speed and reducing chances of over-fitting
by using a batch normalization layer. The ReLU activation
function is applied to the output of each batch normalization
layer to map it to real numbers within a specific range in order
to determine whether the information within the node is use-
ful, i.e., whether or not to activate the node. The topological
details of the proposed network are presented in Table 2.

The proposed network is trained using a mini-batch size
of 64. The Adam optimizer is used as a solver for the training
network, with a default initial learning rate of 0.001. All the
other training options are also kept at their default values,
except for L2 regularization, which is set to 0.0005 and

20% dropout in order to prevent over-fitting of data. The
cross-entropy loss function is used for the final classification
following a softmax layer, which assigns each input to one
of the K mutually exclusive classes. The loss function for N
number of samples is

loss = −
N∑
i=1

K∑
j=1

tij ln yij , (6)

where tij indicates that the ith sample belongs to the jth class,
and yij is the output for sample i for class j, i.e., the value from
the softmax function. Training is performed by utilizing a
GPU (Nvidia Quadro K620) for 60 epochs. The total training
time is only about 6.1 min. This fast training time also makes
the proposed 3D CNN framework a viable option for other
neuroscience applications.

D. STUDY PARTICIPANTS
In this study, eye-close resting state EEG data were acquired
from 30 MDD patients (Male: Female = 17: 13) with an

VOLUME 9, 2021 8839



D. M. Khan et al.: Automated Diagnosis of MDD Using Brain Effective Connectivity and 3D CNN

TABLE 2. Network architecture of the proposed 3D CNN along with the configuration and the corresponding number of trainable parameters and features.

average age of 40 and a standard deviation of ±12.4. For
HC, data from an age-matching group of 30 people (Male:
Female = 19: 11) were acquired. The Diagnostic and Sta-
tistical Manual IV (DSM IV) was used to recruit 30 MDD
patients who do not have any other psychotic symptoms.
The recruitment was conducted at the Hospital Universiti
SainsMalaysia (HUSM). Patients having a cumulative scores
greater than 7 on Hospital Anxiety and Depression Scale
(HADS) [53] were considered as MDD. Similarly, 30 HC
subjects with no history of any psychiatric disorder were
selected to participate in the study. Resting state EEG data
used in this study is part of data used in [54] and is taken
from CISIR’s data repository.

The involvement of both the MDD patients and HC par-
ticipants was voluntary. Their consent was obtained after
a proper briefing about the experiment design, which was
approved by the hospitals’ ethics committee. To maintain
consistency of the data, data acquisition for all the partici-
pants was performed at the same time of the day in a sound-
proof room. The participants were instructed to abstain from
coffee, nicotine, and alcohol before EEG recordings.

E. EEG DATA ACQUISITION
A 5-min-long recording of EEG data was acquired from all
of the participants during eye-close resting states. The data
were recorded with a 19-channel EEG cap following the
10–20 electrode placement standard [55] with linked ear (LE)
as the reference. The 19 electrodes covering the scalp include

FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5,
T6, FZ, CZ, and PZ. The 19-channel EEG cap was attached
using an amplifier from Brain Master Systems (BrainMaster
Discovery 24E). The data were recorded at a sampling rate
of 256 Hz, and a bandpass filter (0.1–70 Hz) and a 50-Hz
notch filter were applied. The EEGLAB software [56] was
used for the automatic removal of artefacts.

Algorithm of artefact removal in EEGLAB was based
on the artifact subspace reconstruction (ASR) method. This
builtin plugin detects and removes muscles artefacts, eye
blinks and sensor motions by comparing it with artefact free
reference data as described in [57]. In this study, all the
artefacts marked by the ASR method were removed and only
the continuous 2-sec segments were used for the calculation
of PDC.

The data used in this study and their findings will be made
available for use upon reasonable request from the corre-
sponding author after signing a formal data sharing and usage
agreement. This study was approved by the ethics committee
of the Hospital Universiti Sains Malaysia (HUSM).

F. EVALUATION OF 3D CNN
The generalization of the CNNwas evaluated based on k-fold
cross-validation (CV) set at k = 10, 15. The steps for k-fold
CV are presented in Algorithm 2.

As shown in Algorithm 2, all the subjects from one class
were randomly shuffled and stored in an array with fixed
indices such that the same sequence of subjects could also
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FIGURE 4. PDC connectivity of DMN electrodes for 30 MDD and 30 HC subjects.

Algorithm 2 k-Fold Cross Validation for CNN
PDCMDD← [MDDSubjects]30
PDCHC ← [HCSubjects]30
RandNo← [Shuffle]30← only first time
RandGrp← [RandNo]k−partitions

for Iterations(j) = 1 to100 do
for all FOLDS(kfld) do
TestMDD← RandGrp ∈ kfld
TestHC ← RandGrp ∈ kfld
TrainMDD← RandGrp /∈ kfld
TrainHC ← RandGrp /∈ kfld
CNN Training
[TrainMDD, TrainHC ] 7→ Networkkfld
CNN Testing
[TestMDD,TestHC ] 7→ ACC_Netkfld

end for
AVG_ACCkj← Average(ACC_Net)

end for

AVG_ACCFOLD← Average(AVG_ACCkj)

be used for the next k-fold iteration. Likewise, the process
was repeated for subjects in another class. Next, the subjects
with corresponding indices from each class were arranged
in unique groups according to the number of folds required
for validation i.e (10 or 15). Subsequently, for every k-fold
iteration, a group was selected from each class for testing

while the remaining k − 1 groups were used for training
the 3D CNN. Thus, the outcome of each iteration was the
classification accuracy of the testing group. After complete
iterations, the accuracy values were averaged from 100 trials
for the respective folds.

After k-fold CV and confirmation of generalization of the
network, all the subjects were divided in a ratio of 0.5:0.5 for
final training and testing. From the 30MDD subjects, 15 were
randomly selected for training, and the remaining 15 were
used for testing. Similarly, the 30 HC subjects were also
divided into training and testing classes. Accordingly, a total
of 3965 PDC matrices were generated as the training set with
ratio of MDD: HC= 1760: 2205 and 3902 for testing set with
ratio of MDD: HC = 1910: 1992.
All the 3D-PDC training matrices were then fed to the

3D-CNN network evaluated earlier, as shown in Fig. 3,
to obtain a trained network for classifying the unseen PDC
matrices.

G. STATISTICAL ANALYSIS
To check the statistical significance of difference amongst
MDD and HC subjects’ individual connections, Multivari-
ate Analysis of Variance (MANOVA) pairwise comparison
was performed with significance level set at 0.05. Bonfer-
roni correction was applied as an adjustment for multiple
comparisons [58].

H. PERFORMANCE EVALUATION
Performance measures of how well the PDC connectivity can
discriminate between MDD and HC subjects will be based
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TABLE 3. p-values of 11 significant connections in DMN.

TABLE 4. Evaluation of the proposed classification algorithm using k-fold
cross validation.

on the performance of the developed 3D CNN. If TP is True
Positive, TN is True Negative, FP is False Positive, and FN is
False Negative, then the accuracy (ACC), sensitivity (SEN ),
and specificity (SP) are given as follows

ACC (%) =
TP+ TN

TP+ TN + FP+ FN
× 100, (7)

SEN (%) =
TP

TP+ FN
× 100, (8)

SP (%) =
TN

TN + FP
× 100. (9)

V. RESULT AND DISCUSSION
As described in section IV-E, M PDC matrices are initially
calculated and averaged for all MDD and HC subjects in
order to obtain a single PDC value for each class. The mean
strengths of each connection within the DMN networks of
MDD and HC are shown in Fig. 4.

By observing the connections having only significant dif-
ferences in Fig. 4 obtained via MANOVA as described
in IV-G and summarized in Table 3, it can be seen that in
MDD patients, self-connectivity of electrodes is higher than
that of HC. Eleven out of thirty-six connections have been
found to be statistically significant with 95% confidence level
as shown in Table 3. Bonferroni correction was applied on
p-value for adjustment on multiple comparisons.
This high self-involvement of brain regions may be con-

sidered as an indicator of abnormal DMN in MDD patients.
Apart from that, the network strengths for most of the sig-
nificant connectivities in HC are relatively higher than that
of MDD, which may reflect a degraded network formation

TABLE 5. Classification performance of 15 MDD (Subject 1 to 15) and
15 HC (Subject 16 to 30).

between the frontal and parietal regions ofMDDpatients. The
less active DMN connections in MDD patients may represent
their executive dysfunction, suicidal thoughts, inability to
focus, loss of interest, exhaustion, and lethargy; the discus-
sion on which is beyond the scope of this paper. However,
these changes may indicate that EC between different brain
regions of DMN can be used to quantitatively identify MDD
when compared to controls.

In order to evaluate the robustness and generalization of our
proposed network, k-fold cross validation (k = 10, 15) tech-
nique was used. Average accuracies are provided in Table.4.
High average accuracy, >95%, for 15-fold in Table 4 shows
that themodel is well generalized andDMN effective connec-
tivity can be a potential biomarker for the diagnosis of MDD.
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TABLE 6. Comparison of the proposed technique with recent CNNs and deep learning techniques.

After evaluating the robustness of our proposed method,
in the classification stage, as described in section IV-F, ran-
domly selected M -PDC matrices of 15 MDD patients and
15 HC subjects were used to train the 3D CNN model, while
the samples of the remaining 15 MDD and 15 HC subjects
were used for blind testing purposes i.e. not a single matrix of
testing was involved in data training. The results as a function
of M have been presented in Table 5.

Here, it should be recalled that the variation in the total
PDC matrices (M ) for different subjects is primarily due to
inconsistencies in the availability of clean 2-sec continuous
segments between them. The results in Table 5 show the
different values of M for 30 testing subjects, which vary for
instance between 68 for subject 8& 28 and 157 for subject 29.
The subject-based decision is made depending on the total
number of classification of PDC matrices for MDD and HC.
If there are more PDC matrices classified as MDD, then
the decision of the algorithm will be MDD, and vice-versa.
The deep learning classification results in Table 5 show good
statistical tendency towards the right decision for all of the
subjects. This is indicated by the significant gaps between the
number of correct and wrong classifications within the same
subject.

The confusion matrix of the final subject-based classifi-
cation process of 30 test subjects is shown in Fig. 5. From
the confusion matrix, all MDD and HC cases are correctly
classified with no misclassification, thereby, giving 100%
accuracy sensitivity and specificity.

As machine learning and recently deep learning has found
success in different brain disorders diagnosis, attempts are
made to use EEG signals for classification of MDD using
CNN or deep learning architectures. A comparison of the
recently published studies based on EEG and CNN or deep
learning models are given in Table 6.

Table 6 shows various recent deep learning methods,
including 1D and 2D CNN networks that was used with
different EEG features. Among the features used include
EEG from multiple bands & spatial locations [59], inter-
hemispheric asymmetry [22] and functional connectivity

FIGURE 5. Confusion matrix for classification of 15-MDD and 15-HC test
subjects using 3D CNN.

expressed in terms of PLI [20] and cross correlation [22].
Classification using functional connectivity [20], [22] as
input of 2D CNN shows better accuracy in comparison to 1D
CNN [14].

Our proposed technique uses brain effective connectivity
as input to a 3D CNN gives 100% accurate classification
between MDD and HC subjects. The technique employed
causal effects amongst the DMN, which is a fundamental
resting state network, may be treated as the biomarkers for
MDD. Resting state diagnosis may eliminate the differences
arising from goal directed tasks due to cognitive disabil-
ity, age, education, gender, physical sloppiness, interest in
task and sensori stimuli disability amongst subjects. In addi-
tion, resting state analysis may provide the actual on-going
intrinsic activities inside the brain. In particular, resting-state
connectivities between brain regions could provide an infor-
mative insight about the pathophysiology of MDD. The
proposed MDD classification algorithm based on 6 DMN
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electrodes as input to a 3D CNN is considered to be compu-
tationally fast. This indicates that the proposed technique has
tremendous potential to be incorporated in clinical investiga-
tions of MDD with high degree of reliability, hence address-
ing the issue of subjectivity nature of questionnaire-based
diagnosis.

VI. CONCLUSION
In this study, the differences between MDD and a HC are
derived using the EC over the DMN regions. The results
show a relatively higher level of information flow between
the DMN regions with HC than for the MDD subjects apart
from the abnormal high self connectivity of various DMN
regions amongst MDD patients. These variations in the rest-
ing state connectivity strength of DMN may be related to
the symptoms observed in MDD patients and require further
investigation. Treatments like neurofeedback can be used in
order to eliminate these abnormal variations of connectivity
amongst DMN regions, which may help in faster recov-
ery of MDD patients. Nevertheless, these changes indicate
that the effective connections between the different brain
DMN regions can be used to accurately classify the MDD
subjects. To this end, a 3D CNN was developed for the
classification of MDD and HC using DMN effective con-
nections. This network was trained using 15 MDD and
15 HC subjects and was tested with the same number for
both cases. The results show perfect accuracy in the classi-
fication of the MDD and HC subjects from their effective
connections over the DMN regions. However, although it
has perfect accuracy, the developed scheme requires further
testing with more subjects before being employed in clinical
applications.
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