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ABSTRACT With the evolution of the Internet of Things (IoT), various types of devices and massive
systems comprising national infrastructures such as a smart grid are connected on a network, which poses
various types of security issues in a cyber physical system. In this paper, we propose two false data injection
attacks, which are on the forward path and the feedback path of a control system. Both are designed with a
controllable parameter which determines the degree of degradation. A defensive method of inversing a linear
forward attack through estimating with least square or minimum mean squared method was developed.
A conventional Kalman filter was considered as a defensive method for a noise injection attack on the
feedback path. The numerical evaluation verifies that the parameters of the proposed attacks control the
degree of performance degradation of the control system, and the proposed defenses can effectively defend
the proposed attacks.

INDEX TERMS Cyber physical system, false data injection, security, cyber physical system attack, linear
quadratic Gaussian control.

I. INTRODUCTION
With the evolution of Internet and mobile technology, every-
thing is connected on a network. While a plant, a controller,
and sensors in a conventional control system are usually
co-located, separate development of them, and high speed
communication over the network accelerate the widespread
use of a networked controlled system (NCS) or cyber physical
system (CPS) [1]. However, due to the intrinsic nature of
connectivity in the network, the control system is vulnerable
to a cyber attack. In addition to the attack in a network
layer, there can be a physical layer attack which modifies
a control input or measurements from sensors. A combined
network layer and physical layer attack in the control system
is usually called as ‘‘CPS attack’’ since it is usually targeted
to degrade the physical performance of the plant through
the attack to the controller on the network. The security
issue associated with the CPS attack is very important in
the sense that the attack can result in a tremendously disas-
trous effect on national infrastructures such as a power grid,
water distribution, a nationwide traffic network, and military
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operation. The event of Stuxnet which degraded the pro-
duction performance of the uranium facility covertly [2]
arouses the importance of the security of CPS. It is also very
important in industrial applications such as smart factory,
cloud robotics, and autonomous vehicles [3], since the attacks
can result in casualties in human lives and huge economic
loss.

To deal with security issues in CPS, a significant amount
of research has been done in recent years. CPS attacks may be
classified into Denial-of-Service (DoS), Service Degradation
(SD) (compromised-key attack andman-in-the-middle(MitM
attack), Cyber-physical Intelligence (CPI) (Eavesdropping
and system identification attack) [4], [5]. The detectability
and identifiability of CPS attack were studied with defining
various types of CPS attacks [6]. Depending on the avail-
able information, the types of attack and the effect of attack
may be different. With the assumption of chi-square failure
detection and perfect knowledge of a control system at the
attacker, a sufficient and necessary condition for being per-
fectly attackable was provided [7]. When the attacker does
not have full knowledge of the system, it may try to refine it
through learning so that it can carry out more sophisticated
attack [8]. The fundamental tradeoffs between the system
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performance and security were quantified through modeling
a dynamical system with Markov decision process (MDP)
which can be seen as partially observable MDP (POMDP)
in the perspective of the attacker with limited access to the
system [9]. This approach makes it possible for the attacker to
find an optimal adversarial policy for the class of stochastic
control system. A simple real-time testbed implemented in
RTDS and OPNET for the MitM attack showed the poten-
tial of providing a realistic testing environment for the CPS
attacks [10].

The various methods for the defense to the attacks were
also proposed from robust control theory. A sufficient condi-
tion for desired security requirement for the FDIA and the
derivation of the control gain through some linear matrix
inequalities were established with the introduction of the
mean square security domain [11]. A receding horizon con-
trol of which horizon depended on an attack was proposed to
be resilient to the replay attack [12]. A robust sliding mode
control was developed for a class of Markovian jump system
to deal with FDIA into control signals and peak-bounded
external disturbances [13]. To detect the presence of CPS
attacks, transformations such as the graph Fourier trans-
form [14] and cross wavelet transform [15] were exploited
A control system was transformed into a switched auxiliary
system to develop a covert attack detection system using a
switched Luenberger observer [16].

Among many different CPS attacks, FDIA can be con-
sidered to be one of the most prominent attacks [5]. The
FDIA injects a modified control input [13] or modified mea-
surement [17], [18] or both [8] to degrade the performance
of a control system. Even though FDIA was considered as
a specific deception attack in the sense that the FDIA as
the attack to the state estimator [6], MitM, FDIA, a replay
attack and a deception attack [11] can be regarded as the
attack of the same class. A heuristic MitM attack with system
identification attack which changed the scale of the control
input was shown to increase the stationary error [4]. The
statistical-duplicate attack which deceived the detector with
fictitious measurement having the same statistical property
as the one without attack was proposed to execute the attack
covertly [7]. To improve the state estimation in the presence
of FDIA on measurement data, deep learning with a gener-
ative adversarial network (GAN) was also introduced [17].
Attack detector and the intermittent message authentication
were proposed to improve robust control for CPS operating
on the resource-constrained network in the presence of the
FDIA at the measurement [18].

Many of existing FDIAs can be considered as a covert
attack which degrades the performance of the control system
without being detected as an attack [8]. There can be many
different ways to achieve the covert attack. It can be broadly
classified into two types, a pretender covert attack, and a
stealth covert attack. The pretender covert attack degrades the
performance with modified control input while replacing the
measurement output with the one predicted from the model
without attack. The stealth attack usually tries to degrade the

performance gradually or marginally without replacing the
measurement. A method of detecting an attack from the error
statistics of the output and compensating the controller was
developed to deal with the covet attack [19].

As more and more physical systems such as smart city, and
smart factory get connected, the importance of CPS security
is growing significantly. Thus, the various potential attacks
and associated defenses need to be studied further. To this
end, CPS attacks in both the forward path and the feedback
path at a control system are considered in the perspective of
FDIA while existing research focuses on either one not both.
Unlike many existing covert attacks which try to degrade the
performance of a control system by considering a specific
detector or replacing the measurements with ones without
attack, we propose controllable covert attacks with a sin-
gle parameter so that they can slow down the stabilization
of the system. In the forward path, we propose a linear
forward attack (LFA) which linearly transforms a control
input to degrade the performance of a control system with
linear quadratic Gaussian (LQG) control marginally while
a noise injection attack (NIA) which adds random noise to
increase the variance of the measurement noise is proposed
in the feedback path. The suboptimal defensive methods are
also provided. Estimating the transformation matrix through
the least square (LS) method and minimum mean squared
error (MMSE) method, the proposed method tries to nullify
the LFA by applying the inverse matrix of the LFA. For NIA,
Kalman filter is adopted to deal with changes in noise statis-
tics. The numerical simulations verify that the degree of the
proposed attacks can be controllable with a parameter, and the
proposed defense can effectively nullify the CPS attacks. This
paper is constructed as follows. This paper is constructed as
follows. In section-II, a system model and problem formula-
tion are given. The proposed LFA and the proposed defensive
method to the LFA are presented in section-III. The proposed
NIA and the proposed defensive method to the NIA are given
in section-IV. In section-V, the numerical evaluations of the
proposed attacks and the defensive methods are provided.
Some concluding remarks are made in section-VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a networked control system in Fig-1, where
control input and system output are transmitted through a
sensor to a controller (SC) channel, and a controller to actua-
tor (CA) channel respectively. Two types of cyber physical
attack are considered. i.e. LFA in a forward channel and
NIA in a feedback channel. The LFA can be considered
as a special case of MitM attack in [4], [20], [21]. It is
assumed that a network delay is zero for simplicity of problem
formulation. It is also assumed that the system is control-
lable and observable. Since we design a controllable attack
which can control the degree of attack, a particular detection
scheme is not considered. Similarly, since the detection of
the CPS attack is out of the scope of this study, a particular
detection scheme is not considered for designing a defense
scheme.
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FIGURE 1. A system model.

The state equation without cyber physical attack can be
expressed as

x ′k+1 = Ax ′k + Bu
′
k + vk (1)

y′k = Cx ′k + wk (2)

where x ′k ∈ R
n is a state at time k , u′k ∈ R

m is a control input
in the absence of cyber physical attacks, y′k ∈ R

p is a system
output, and vk and wk are process noise and measurement
noise which are assumed to be generated from the normal
distribution with zero mean and covariance matrices 6v and
6w, and A, B and C are constant matrices. When LFA and
NIA are present, the system will be controlled by a different
control input, which results in different states and system
outputs. The corresponding state equation under attack is
denoted by

xk+1 = Axk + Buk + vk (3)

yk = Cxk + yf ,k + wk (4)

where uk = Mu′k ,M is a linear attack matrix, and yf ,k is noise
for NIA which is assumed to be generated from the normal
distribution with zero mean and covariance matrices 6yf .
When Kalman filter is exploited for state estimation,

the corresponding update equation for the estimated state x̂k
can be expressed as

x̂k+1 = Ax̂k + Bu′k + K [yk+1 − C(Ax̂k + Bu′k )] (5)

where K is a Kalman gain. It is noted that u′k is used for the
update equation since the control unit does not know that it
is transformed to uk through the LFA. The dynamic equation
for the state estimation error can be easily derived as

ex,k+1 = (A− KCA)ex,k + (B− KCB)eu,k − Kyf ,k+1 (6)

where ex,k = xk − x̂k and eu,k = uk − u′k . (6) explicitly
shows that additional error terms can be decomposed into
errors resulting from each attack.

For this system, a conventional LQG control can be easily
found through deriving the optimal state estimator and the
linear quadratic regulators. To derive an optimal estimator,
we first define the following variables

x̂k|k−1 = E{xk |Yk−1} (7)

x̂k = E{xk |Yk} (8)

Pk|k−1 = E{(xk − x̂k|k−1)(xk − x̂k|k−1)T |Yk−1} (9)

Pk = E{(xk − x̂k )(xk − x̂k )T |Yk} (10)

where Yk = {y0, y1, · · · , yk}. From the above definition, pre-
diction equations and update equations can be easily derived
as follows

x̂k|k−1=Ax̂k−1 + Bu′k−1 (11)

Pk|k−1=APk−1|k−1AT

+B(M − I )u′k−1u
′

k−1
T (M − 1)TBT +6v (12)

x̂k = x̂k|k−1 + Pk|k−1CT S−1k (yk − Cx̂k|k−1) (13)

Pk =Pk|k−1 − Pk|k−1CT S−1k CPk|k−1 (14)

Kk =Pk|k−1CT S−1k (15)

where Sk = (CPk|k−1CT
+6w+6yf ). It is observed that the

LFA affects Pk|k−1 while the NIA does Pk . (12) shows that
since Pk|k−1 has dependency on uk−1, separation principle
does not hold when a perfect defense to LFA cannot be made.
To derive the optimal linear quadratic regulator (LQR),

the finite horizon cost function is given as follows.

JLQR(T ) =
T∑
k=1

[xTk Qxk + u
′
k
TRu′k ]+x

T
T+1GT+1xT+1 (16)

where Q, R, and GT+1 are positive definite matrices associ-
atedwith state cost, input cost, and final cost respectively. The
optimal control for this cost and resulting Riccati equation are
given as in [8]

Gk = Q+ ATGk+1A− ATGk+1BT
−1
k BTGk+1A (17)

u′k = −T
−1
k BTGk+1Axk (18)

where Tk = (R + BTGk+1B). Finally, the LQG control is
given as

u′k = −T
−1
k BTGk+1Ax̂k (19)

III. LINEAR FORWARD ATTACK AND DEFENSE
There can be an infinite number of ways to design physical
cyber attacks for a system with LQG control. Since LFA
affects a control inputs and NIA affects an observation as
their direct effects can be seen in (12) and (14), the linear
forward attack is designed to degrade LQR performance
while the NIA is designed to degrade the performance of state
estimation.

A. SLOW LINEAR FORWARD ATTACK
There can be several different goals to design LFA. One
possible direction is to slow down the convergence. To this
end, one can determine M such that the system can maintain
stability while its convergence speed can be degraded, which
we call ‘‘Slow LFA’’ throughout this paper. In this context,
the following optimization problem can be posed as.

min ᾱ[
−Y Y (A+ BML)T

(A+ BML)Y −Y

]
< 0[

−ᾱI (A+ BML)T

(A+ BML) −I

]
≤ 0,
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ᾱ > 0, Y > 0, tr(M ) = ξm (20)

where L = −(R + BTGB)−1BTGA and G = limk→∞ Gk is
a control gain of LQR controller in (20). The first LMI is a
Lyapunov stability condition which is required for a covert
attack. The second LMI is equivalent to (A + BML)T (A +
BML) < ᾱI through Schur complement where ᾱ is equivalent
to the maximum eigenvalue of the matrix in the left side
of the matrix inequality when the optimal solution exists at
the boundary. The equality constraint in (20) was included
to control the effect of LFA through varying ξ . As the trace
of M increases, the achievable maximum singular value of
(A+BML) tends to increase, even though it is not guaranteed.
Thus, the proposed method controls the degree of attack
through varying ξ properly.

B. A DEFENSE FOR THE LINEAR FORWARD ATTACK
In the presence of LFA, there can be many different ways to
deal with this attack. Those can be broadly classified into a
linear method and a nonlinear method. However, since it is
a linear attack and the considered system is a linear system,
a simple linear defense can provide an optimal way to defend
the system from LFA.

A considered strategy is to compensate for the linear attack
through the linear feedfoward defense (LFD), MD, which
linearly transforms the control input. After applying LFD,
the control input applied to the plant will be

u′k = MMDuk (21)

Optimal control is given in (21) in the absence of LFA. Thus,
the optimal linear defense would be simply given as

MD = M−1 (22)

It implies that the optimal linear defense requires system
identification of the attacker paradoxically. One of the direct
and simple methods is to exploit the system equation in (1).
However, state information is not available in many cases.
Thus, we first introduce a stacked vector form of the system
equation with the assumption that there is no process noise
and no measurement noise.

Yl(k) = 0lXl(k)+ Hl,MUl(k) (23)

0l =


C
CA
...

CAl−1

 ,

Hl,M =


0 0 · · · 0

CBM 0 0
...

...
. . .

...

CAl−2BM CAl−3BM · · · 0

 (24)

where Ul(k) =
[
uTk uTk+1 · · · u

T
k+l−1

]T
, Xl(k) =

[
xTk xTk+1

· · · xTk+l−1
]T
, and Yl(k) =

[
yTk yTk+1 · · · y

T
k+l−1

]T
. The first

term in (23) can be eliminated through multiplying both sides

by the matrix of which columns are null space of 0l . The
resultant equation will be

0⊥Tl Yl(k) = 0⊥Tl HlUl(k) (25)

where 0l⊥T0l = 0. 0⊥l ∈
lp×(lp−n) can be found from left

singular vectors of 0l of which singular value is 0. The
following proposition provides a method of estimating M
from the stacked vector form in (23).
Proposition-1:When W̃ has full column rank and (l − 1)p ≥
m2, M can be calculated as

vec(M ) = (W̃ T W̃ )−1W̃ T0⊥Tl Yl(k) (26)

where vec(·) is the vectorization of the matrix in the bracket.
Proof: (25) can be rewritten through factoring out in the
following way.

0⊥Tl Yl(k) = 0⊥Tl Hl,I (I ⊗M )Ul(k) (27)

where ⊗ represents a Kronecker product operation. (27) can
be rearranged as matrix-vector equation through vectoriza-
tion as [24]

(Ul(k)T ⊗ 0⊥Tl Hl,I )vec(I ⊗M ) = 0⊥Tl Yl(k) (28)

However, due to the special structure in vec(I ⊗ M ), it is
not possible to finding a solution through direct inversion.
Let (Ul(k)T ⊗ 0⊥Tl Hl,I ) be denoted by W ∈(l−1)p×(lm)

2
. W

can be represented with its submatrix Wi ∈
(l−1)p×m as W =

[W1 W2 · · · Wl2m] . The left side of (28) can be rearranged
with W as

Wvec(I ⊗M ) =
m∑
i=1

l∑
j=1

W(i−1)l+(j−1)ml+j[M ]i (29)

(28) can be rearranged from using (29) as

W̃ vec(M ) = 0⊥Tl Yl(k) (30)

where W̃ =
[
W̃1 W̃2 · · · W̃m

]
, and W̃i=

l∑
j=1

W(i−1)l+(j−1)ml+j.

As long as W̃ has full column rank and (l−1)p ≥ m2, the left
inverse of W̃ exists, which proves the proposition.

However, even though (26) provides the perfect recovery
of M in the absence of noise, the estimation performance is
subject to degrade when there are process noise or measure-
ment noise. In the presence of noise, (30) can be written as

W̃ vec(M )+ El(k) = 0⊥Tl Yl(k) (31)

where El(k) is a composite noise due to process noise and
measurement noise. It is well known that the optimal esti-
mation with Gaussian noise is MMSE estimation. From the
orthogonality principle of the MMSE estimation, the estima-
tion of vec(M ) can be easily derived as

vec(M )MMSE = W̃H (W̃ W̃H
+6E )−10⊥Tl Yl(k) (32)

where 6E = 0⊥Tl (Hl,l|B=I6vHT
l,l|B=I + 6w)0⊥l . It can be

observed that the complexity of LS and MMSE estimation
are comparable. With the additional information of noise
statistics, the MMSE estimation is expected to provide more
robust estimation performance than LS estimation.
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IV. NOISE INJECTION ATTACK AND DEFENSE
The optimal noise injection without any constraint will be just
flooding noise with infinite variance. However, it is impossi-
ble physically. Simple large noise inject attack can be easily
detected. Thus, noise injection with power constraint will be
of interest.

A. SLOW NOISE INJECTION ATTACK
When the controller is determined from LQR, noise injection
does not have any effect on the controller design. Perfor-
mance metric associated with the optimal noise injection will
be involved with state estimation. The stability condition
for the linear state estimator can be posed from the error
dynamics as

ρ(A− KCA) < 1 (33)

where ρ is the spectral radius of the matrix inside the bracket.
The corresponding Lyapunov condition can be written as

(A− KCA)TP(A− KCA)− P < 0 (34)

where P > 0. The stationary Kalman filter in the presence of
the noise injection attack can be given as

Ks = PsCT (CPsCT
+6w +6yf )

−1 (35)

where Ps is a stationary Riccati matrix associated with
Kalman filter. When 6yf is much smaller than CPsCT

+6w,
Ks can be approximated from Talyor series expansion as

K ≈ Ks,o(I −6yf (CPsC
T
+6w)−1) (36)

where Ks,0 = PsCT (CPsCT
+ 6w)−1. Exploiting this

approximation, one can determine6yf such that the estimator
can maintain stability while its convergence speed can be
degraded, which we call ‘Slow NIA’ throughout this paper.
In this context, the following optimization problem can be
posed as

min β̄ −Y Y (Ã+ Ks,06yf DCA)
T I

(Ã+ Ks,06yf DCA)Y −Y 0
I 0 β̄

<0,

β̄ > 0, Y > 0, 6yf > 0, 6yf D ≤ γ I (37)

where D = (CPsCT
+ 6w)−1 and Ã = A − Ks,0CA. This

problem tries to maximize the largest eigenvalue of thematrix
associated with Lyapunov stability condition such that it can
slows down the convergence speed implicitly.

B. DEFENSE FOR NOISE INJECTION ATTACK
The NIA simply changes the statistics structure of measure-
ment noise, which affects the performance of the state esti-
mator. Kalman Filter is an optimal filter for estimation in the
presence of Gaussian noise. Thus, one can design the Kalman
filter simply replacing 6w with 6w +6yf .

FIGURE 2. The average norm square of state over last 1000 steps for
increasing ξ which controls the LFA.

V. NUMERICAL SIMULATIONS
In this section, we assess the performance of the proposed
attack and defense through numerical simulations. To this
end, we define a hypothetical system as follows.

A =
[

1 0.7098
0.1 0.9653

]
, B =

[
0.0085 1
1.6937 −1

]
,

C =
[
1 −1
1 1

]
(38)

This is an unstable system in which the maximum eigenvalue
of A is 1.2496. To generate a matrix M for LFA from (20),
the VK type iteration [25] was adopted to solve the LMI.
An initial state was generated from a standard normal distri-
bution. To evaluate the performance of the estimator for M ,
the mean squared error was calculated from 500 different
realizations. The MMSE estimator for M was designed with
an assumption that its mean is I from the consideration of
trace constraint. 6v and 6w are set to be white noise such
that 6v = 6w = σ

2
v I = σ

2
w I .

Figure-2 shows the effect of the proposed LFA for increas-
ing ξ . in terms of E{|x(k)|2} which is calculated from aver-
aging the norm square of states over last 1000 steps for
total 5000 steps. When ξ is less than 2, LFA is found to
improve the convergence characteristic slightly due to the
problem formulation for generating Mn. However E{|x(k)|2}
increases proportionally to ξ when ξ is larger than 2. It is
also observed that the effect of ξ has the same trend regard-
less of σ 2

v . However, for this specific system, when ξ is
greater than 3.3, it seems that there is no feasible M satis-
fying the trace constraint. Thus, the attacker needs to find a
proper interval to control the effect of LFA. It can be also
found that the compensation of LFA with MMSE estimation
works efficiently to keep E{|x(k)|2} close to one without
attack. However, the compensation of LFA with LS estima-
tion is found to fail often. It makes the state diverge for
(σ 2
v , ξ ) = (10−4, 1.5), (10−2, 1.0), (10−2, 1.5) , (100, 1.0),

(100, 1.5), (100, 2.0), (10−2, 2.5). It is also found that even
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FIGURE 3. The MSE performance of the proposed LS and MMSE estimator
for the LFA attack with varying noise power.

when LFA does not degrade the convergence performance,
the compensation with the proposed estimators may degrade
the performance marginally due to the estimation error. How-
ever, when the LFA degrades the performance significantly,
the proposed compensation with MMSE estimator provides
the performance comparable to one without LFA.

To evaluate the performance of the LS and MMSE esti-
mator which are used for the compensation of the LFA,
Figure 3 shows the performance of the proposed defense for
LFA in terms of MSE. ξ was also set to be 3. It can be
observed that LS and MMSE estimators provide the almost
the same performance when σ 2

v is very small and k = 1,
which corresponds to the case of high signal to noise ratio
(SNR). However, as σ 2

v increases, MMSE estimator provides
better performance as expected. When k = 11 and i = 2 the
performance of both estimators degrades significantly. The
performance degradation is mainly due to i = 2 rather than
k = 11. When i = 2 the number of observed variables is
simply smaller than the number of unknown variables. This
result shows that i needs to be set properly such that it is
proportional to m2.
Figure-4 shows how the NIA operates with a controlling

parameter γ where6v = 6w = 0.01I . States were generated
over 5000 steps of which last 1000 steps were used to take
the average of norm square of states. It is observed that the
average norm square of the state increases with increasing γ
while the effect of the proposed NIA is small with small γ .
However, it does not increase significantly as γ is larger than
some value. Even though increasing γ increases the feasible
region imposed by γ , the stability condition may limit the
feasible region of the space for the covariance matrix of NIA.
This implies that NIA can be effectively controlled with γ
even though significant attack may be limited due to the sta-
bility condition and the problem formulation. The proposed
defense which just considers the additional measurement
noise covariance shows better performance than one without
defense. It is observed that the proposed defense effectively

FIGURE 4. The average norm square of state over last 1000 steps for
increasing γ which controls the NIA.

FIGURE 5. The norm of the first state at the convergence with and
without the proposed attack and the proposed defense.

deals with NIA though its average norm square of the state
is larger than one without NIA. In table-1, the effect of NIA
and the efficiency of the proposed defense were compared for
different disturbance and measurement noise configurations.
It is assumed that disturbance noise and the measurement
noise are white noise. The average norm square of the state
increases by 100 times or so when both noise power increases
by 100 times. The proposed defense is observed to reduce
the average norm square of the state by 20∼40% depending
on the noise configurations, which may also depend on γ .
When the measurement noise power and disturbance noise
power are asymmetric, the measurement power seems to have
a greater effect on the average norm square of the state.
The constraint associated with γ can be rewritten as 6yf ≤

γ (CPsCT
+6w). It shows that for a fixed γ , feasible region of

6yf is restricted by 6w, which explains the results in table-1.
Figure-5 shows the magnitude of the first state over the

last 50 steps after generating the states for 5000 steps. For
the simplicity of the plot, the second state is omitted since
its characteristics are pretty much same as those of the first
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TABLE 1. Effect of NIA and the proposed defense for the different
configurations of process noise covariance matrix and measurement
noise covariance matrix.

state. 6v, 6w, γ and ξ are set to be 10−4I , 10−4I , 1, and
3 respectively. The figure shows that the proposed defense
effectively makes a defense over the proposed attack. Even
though NIA seems to degrade the performance more signifi-
cantly than LFA in this figure, the effect of NIA and LFAmay
vary depending on disturbance noise covariance, measure-
ment noise covariance, and parameterizations of the attack
and the defense. One interesting result is that the performance
with LFA, NIA, and no defense is better than one with NIA,
and no defense. It can be expected from the result shown in
the figure-2 in which LFA improves the convergence slightly
for ξ < 2

VI. CONCLUSION
In this paper, we provided a method of LFA and NIA with
controllable parameters such that they can degrade the per-
formance of a control system marginally with a controllable
degree of amount rather than destabilizing a system. The
defensive methods were also proposed to deal with the pro-
posed attack. The numerical simulations verified that the
proposed attack could control the degree of degradation with
parameterizations, and the proposed defensive methods could
effectively defend the proposed attack.

There are several remaining problems which need to be
addressed in future research. The proposed LFA and NIA
were developed separately. If they were designed jointly
under a single performance measure, it is expected that there
can be more flexibility in attackers. Similarly, a joint defense
method is expected to provide more robust performance.
In this research, disturbance and system uncertainties were
not considered. However, they need to be considered further
to provide a more robust method to keep the sanity of the
system away from the CPS attack in a real control system. The
Takagi-Sugeno (T-S) fuzzy model to approximate the control
systems with uncertainties such as parameter perturbation
[26] and packet dropout [27] was exploited to estimate the
state of the system. As such, a fuzzy model may be exploited
to develop a more robust defense to noise injection attacks
with system uncertainties. A sliding mode control [28] may
be also exploited to make the control system more robust to
the uncertainties incurred by the false data injection. While
CPS attack and defense were considered, the detection of the
attack was not addressed. False data detection can be consid-
ered to be in line with the fault data detection. Some design
methodologies for fault diagnosis such as total measurable
fault information residual (ToMFIR) based approach [29] or a
robust observer-based detection method [30] can be extended
to the detection of CPS attack.
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