
Received October 21, 2020, accepted December 4, 2020, date of publication January 5, 2021, date of current version January 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3049310

On Performance and Scalability of Cost-Effective
SNMP Managers for Large-Scale Polling
PAULA ROQUERO 1 AND JAVIER ARACIL2
1Naudit HPCN, Parque Científico de Madrid, 28049 Madrid, Spain
2High Performance Computing and Networking Group, Tecnología Electrónica y de las Comunicaciones E.P.S, Universidad Autónoma de Madrid, 28049 Madrid,
Spain

Corresponding author: Paula Roquero (paula.roquero@naudit.es)

This work was supported by Ayudas para la formación de doctores en empresas, Doctorados Industriales, under Grant DI-16-08979.

ABSTRACT As networks grow larger in size and complexity, their monitoring is becoming an increasing
challenge because of the required polling performance and also due to heterogeneity of devices. As it
turns out, SNMP (Simple Network Management Protocol) is by far the most popular monitoring proto-
col. However, due to the increase in the number of network devices, it becomes necessary to employ
multiple SNMP managers, which is not cost-effective due to the hardware requirements. Additionally,
the different proprietary SNMP implementations require custom configuration very often, as new devices
are being incorporated into the network. Therefore, current SNMPmanagers not only require capabilities for
large-scale monitoring but also a high degree of flexibility and programmability. In response, we propose
an SNMP manager architecture with a flexible multi-threaded architecture, which effectively reduces the
hardware resources necessary to poll the increasing number of SNMP agents. In addition, it features a
scripting component to deal with the different data representations caused by proprietary implementations.
Our experience has shown that SNMP agents can have high variability in their response times. Actually, our
findings show a strong correlation between high response times and CPU load. As a solution, we propose and
analyze novel adaptive polling algorithms that decrease the load on agents’ CPUs while keeping the desired
polling rate for fast agents. Finally, we present several real-world use cases where we show the benefits of
the polling algorithms and the scripting component, by means of extensive measurement campaigns.

INDEX TERMS Adaptive polling, networking, parallelism, SNMP.

I. INTRODUCTION
The vast majority of legacy networks today use SNMP as
a management protocol. The first SNMP versions date back
from the ’90s (RFC 1157 [1]) and its adoption has been grow-
ing ever since. The main advantage of SNMP is simplicity
and stateless nature. Management information is stored in
Management Information Bases (MIBs) [2] whose elements
are well identified by standardized Object Identifiers (OIDs).
The SNMP manager polls agents at the monitored devices by
means of the OIDs and gets the desired values (for instance,
bits transmitted through a given switch interface). SNMP uses
UDP as the underlying protocol to send the queries and get the
corresponding replies, which is also stateless, thus providing
simplicity at the transport layer as well.

Nevertheless, as datacenters and networks grow in size and
complexity, not comparable to that of the ’90s, it becomes

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangjie Han .

necessary to revisit the performance of SNMP in such scenar-
ios. Since the number of devices to be polled by the SNMP
managers is in the thousands, scalability becomes a major
issue. A common workaround for scalability is to split the set
of devices into separate groups and deploy a networkmanager
for each of them, possibly in several virtual machines [3], [4].
Such horizontal scalability strategy takes care of the issue
but comes at a cost. On the one hand, it consumes valuable
computing and software resources; indeed, from our deploy-
ment experience with operators, hundreds of virtual machines
are employed, which not only consume hardware resources
but also software licenses. On the other hand, horizontal
scalability entails data disaggregation in the different network
managers, which complicates matters for data correlation
afterward.

In this paper, we investigate the scalability and perfor-
mance issues of SNMP managers for large-scale polling
in IT infrastructures, namely networks and datacenters,
driven by the need for cost-effective solutions in such

7374
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-7178-2754
https://orcid.org/0000-0002-6921-7369

P. Roquero, J. Aracil: On Performance and Scalability of Cost-Effective SNMP Managers for Large-Scale Polling

complex scenarios. In this regard, we wish to evaluate pos-
sible architectures for SNMP managers that can be success-
fully implemented with open-source programming languages
and operating systems using off-the-shelf hardware. Clearly,
polling a large population of SNMP agents requires the
use of multithreading. However, the issue is to find the
optimal number of devices per thread, taking into account
that devices’ response time is variable, during which the
thread is blocked waiting for the response. Needless to say,
this research does not prevent horizontal scalability of the
SNMP manager instances. It actually contributes to a more
cost-effective partitioning of the set of managed devices in
terms of occupied hardware and software devices.

Furthermore, our experimental measurements in large dat-
acenters show that the response time of SNMP devices can
be significant. As new multimedia or real-time coopera-
tive services are being increasingly offered on the Internet,
the timescale for monitoring decreases below the typical
five-minute-long intervals. Thus, the response time to SNMP
queries eventually distorts the resulting time-series, as it adds
to the polling interval. Consequently, we propose a novel
dynamic polling algorithm for SNMP that either upgrades
or downgrades agents, in terms of polling frequency, as the
response time either decreases or increases, respectively.
We find a strong correlation between response time and CPU
load. Thus, in case the response time grows, the polling
frequency should be decreased not to add more fuel to the
fire. We propose novel dynamic polling techniques that take
into account this issue.

Finally, we also note that there are many proprietary MIBs
and that the standard MIBs specifications leave room for
slight differences in implementation [5] that, in turn, make
it necessary to tune the SNMP manager frequently or use a
translation layer [6]. To do so, we present a software archi-
tecture based on Python scripting that allows to swiftly adapt
to any kind of MIB.

In conclusion, the contributions of this paper are the
following. First, we investigate design alternatives for accom-
modating as many devices as possible in a single SNMPman-
ager instance. In doing so, we consider the interplay between
managed device response time and multithreading architec-
ture, with an open-source approach. Such software design
alternatives also take into account ad-hoc parsing of MIBs,
which can be very heterogeneous. Secondly, we propose a
novel dynamic polling algorithm that takes into account the
response time, and thus the CPU load, of the polled device.
Our methodology encompasses prototype implementation
and extensive performance evaluation in large real-world
datacenters and networks. Thus, the paper results are sup-
ported not only by extensive lab experiments but also by data
collection in real-world datacenters.

The paper is structured as follows. In section II we present
the design alternatives for the implementation of SNMPman-
ager instances. Section IV-A is devoted to extensive perfor-
mance evaluation in a simulated lab environment. Section III
presents novel adaptive polling algorithms that take into

account variable response time of the polled devices, which
is primarily related to CPU load, as we will show. In IV an
extensive performance evaluation is carried out, by means of
laboratory experiments and real-world datacenter measure-
ments. measurements. Section IV-B shows real-world use
cases that exemplify the design principles presented in this
paper. Finally, we provide the conclusions and lessons learned
in section V.

II. COST-EFFICIENT ARCHITECTURES FOR SNMP
MANAGERS
In this section, we discuss the different architectures for
the cost-effective design of SNMP managers for large-scale
polling. We begin by discussing single thread architectures
and then resort to multithread alternatives, that foster better
performance.

A. SINGLE-THREAD ARCHITECTURES
Single-thread architectures are the easiest to develop but lack
the necessary performance. A well-known example is the
Net-SNMP [7] single-thread SNMP manager, which can be
installed as a package in most Linux distributions. It actually
comes as a command-line utility that can be invoked through
standard shell scripts.

In order to poll agents, Net-SNMP provides the snmpget or
snmpwalk command-line utilities, the first of which allows
us to get individual values, while the second one can retrieve
tables. Once the SNMP data is readily available, UNIX
command-line utilities such as sed and awk can be used to
parse the results. When more complex analysis are required,
Python scripts can also be used for this purpose.
However, this approach can only be adopted when dealing

with few SNMP agents. Although the process can be paral-
lelized by running several scripts at the same time, it quickly
becomes unwieldy. In addition, the overhead of launching a
new SNMP process for each query penalizes performance.

In our experiments with Net-SNMP, retrieval of the net-
work interfaces table from localhost with snmpwalk took
40 ms on average, being the SNMP manager and agent in
the same host. This means that in the best case there’s an
upper limit of 7500 hosts that can be queried every 5 min-
utes with one process. In a real-world scenario, with more
tables included in the query, each walk can take hundreds or
thousands of milliseconds to complete depending on the load
and processing power of the agent. Thus, we believe that this
approach is only useful for initially exploring which MIBs
and OIDs are present on a device, as well as its format, but
not for large-scale polling. Such initial exploration of SNMP
MIBs is a most important issue since this information is often
poorly documented, especially with non-standard MIBs.

The above limitations imply that a multithreaded
alternative is in order, as we will discuss next.

B. MULTI-THREAD ARCHITECTURES
In order to evaluate multi-threading architectures for
SNMP managers, we considered different alternatives for
programming languages and libraries:

VOLUME 9, 2021 7375

P. Roquero, J. Aracil: On Performance and Scalability of Cost-Effective SNMP Managers for Large-Scale Polling

• First we considered Python but decided to not use it
because threads cannot be launched in parallel due to the
Global Interpreter Lock [8] that prevents threads from
running in parallel.

• Next, we considered C++, as it features several SNMP
libraries. As it turns out, Net-SNMP can be used
as a library, but is not thread-safe, so it can only
be instantiated as a single thread. Another candidate
library is SNMP++ [9], which provides thread-safety.
This solution provided the best performance. However,
we decided to discard C++ because it is not memory
safe and can lead to buffer overflows1 and memory
leaks. These problems cause security issues [10] and
increase development time due to the increased debug-
ging time necessary to find and fix them. In contrast,
other languages take care of most of these issues, includ-
ing garbage collection, and allow the software designed
to focus on optimal multi-threading schemes.

• Finally, we chose Java because of its good performance
and support for threads, and the open-source SNMP4J
library [11].

In Java, we represent each remote SNMP agent as an
SnmpAgent object. This object contains the address of the
agent and the OIDs we wish to query. To perform the queries
an array of SnmpAgent objects is created. Then, we use a
thread pool with a fixed number of threads, where each
thread takes agents from the array and performs queries for
all the OIDs we wish to query. Once all agents have been
queried, the results are printed and the program waits until
the next polling time to make requests again. We chose this
approach since we will deploy the manager in environments
with thousands of agents, where having a single thread per
agent is unfeasible.

The design approach was not to have more than a single
thread polling a single agent at the same time, not to over-
load the agent with several parallel requests, which could
eventually increase the response time and impact the agent
operation. Furthermore, even if a thread is busy with a slow
agent, the rest of the thread pool can keep querying other
agents, reducing the time to complete all requests. Finally,
in case a thread is kept waiting for too long, due to a slow
SNMP agent, a timeout can be configured to avoid the entire
thread pool.

C. JYTHON
To allow for flexibility, Jython [12] (a version of Python
that runs on the JVM (Java Virtual Machine) is used as a
scripting language. The code written in Jython is in charge
of controlling the Java core by providing information about
which SNMP agents to query, which MIBs to be queried, and
how to handle the responses from the agent. Actually, Jython
allows for faster development when dealing with heteroge-
neous MIBs, some of them proprietary, or complex use cases

1https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow

whereby a query needs the results of a previous query to be
performed.

For example, we found an issue when retrieving VLAN
information from several routers. Usually, SNMP agents are
queried using a password called community that gives direct
access to all OIDs. However, the MIBs from such routers did
not allow direct access to VLAN tables. Instead, we had to
query a given table with a list of VLAN IDs using the regular
community, and then, get detailed information about each
VLAN by querying a different table with the community for-
mat ‘‘community@VLAN ID’’. Figure 1 shows the process.
Should Jython had not been adopted, this procedure would
have to be hard-coded into the Java code and would need a
new deployment and recompilation of the software.

FIGURE 1. Querying vlans in two steps.

Another scenario where Jython has proven useful is in
combining information from different tables. For example,
tables containing different pieces of network information
usually use the interface ID as a field. Thus, such tables can
be joined by using these ids, allowing us to correlate different
kinds of information. Figure 2 shows an example joining
the interfaces and physical address tables using the interface
index.

The final benefit of Jython is that analysts with python
programming experience can write their own Jython code to
fulfill their needs, instead of having to wait for a new feature
to be added to the core Java code.

III. ADAPTIVE POLLING ALGORITHM
When dealing with real SNMP agents, we found that some of
them showed a larger response time to queries. In Figure 3 we
show a response time histogram for several walks performed
in different agents. We observe that the histogram follows
a bi-modal distribution such that response time is usually
low, but some of them are rather large. As we will show in
Section IV-B1, this happens when the agent CPU is loaded.

This becomes an issue since we may wish to query agents
more often than the slowest one allows. For example, we may
want to query agents every minute, but if one of the agents
takes five minutes to reply, the entire thread pool will be
blocked until the last agent finishes responding, resulting
in a polling interval of five minutes in that round, for all
agents. Thus, we designed and implemented an adaptive
polling scheduler that tackles this issue, by upgrading or
downgrading agents according to their response time.

7376 VOLUME 9, 2021

P. Roquero, J. Aracil: On Performance and Scalability of Cost-Effective SNMP Managers for Large-Scale Polling

FIGURE 2. Joining two tables.

FIGURE 3. Response time for walks.

To use this functionality, the user configures a number of
polling interval buckets, each of which represents a different
polling interval and has its own thread pool. For example,
a user may specify buckets for 10, 20, 60, and 100 seconds.

At boot time, all agents are assigned to the smallest polling
interval bucket (in this example 10 seconds). Then, during
the queries, the response time is recorded for each agent. If
it is larger than its corresponding bucket time, it is moved to
the next bucket (larger polling interval) to decrease the CPU
load and prevent blocking in the faster bucket thread pool.
Conversely, if it is lower, we have a choice of mechanisms
to upgrade the agent back to a faster bucket, which will be
detailed next.

A. DOWNGRADING AGENTS TO SLOWER POLLING
BUCKETS
When an agent is slower in response time compared to the
polling interval of its current bucket, we take an aggressive
approach and immediately move it to a slower bucket as
shown in Figure 4.We decided to do this because our goals are
to decrease the load on the agent’s CPU as soon as possible
and tomake sure that fast agents are queried on time, allowing
us to maintain the polling rate we wish to achieve for as many
agents as possible.

FIGURE 4. Downgrading agents to slower buckets.

For example, we may have three agents that are assigned to
the 10-second polling interval bucket at the beginning. Then,
it turns out that agent A took 5 seconds to respond, agent B
took 15 seconds to respond, and Agent C took 30 seconds.
Consequently, agents B and C will be downgraded to the
20-second bucket for the next query, while agent A stays in
the 10-second bucket.

Assuming all agents always take the same time to reply in
the next round, agent C (that took 30 seconds to reply) gets
downgraded to the 60 seconds bucket, while agents A and B
remain in the 10 and 20-second buckets respectively.

With this approach, the queries for each bucket can be
performed in different threads and, as soon as they finish,
a new query can be performed after the time set up for the
bucket.

In our example, for each query to agent C, 3 and 6 queries
can be performed in parallel to agent B and agent A,
respectively.

B. UPGRADING AGENTS TO FASTER POLLING BUCKETS
When upgrading agents to faster polling buckets, we chose
a more conservative approach. Instead of upgrading

VOLUME 9, 2021 7377

P. Roquero, J. Aracil: On Performance and Scalability of Cost-Effective SNMP Managers for Large-Scale Polling

it immediately, we implemented different strategies to make
sure that the agent actually became faster in responding to
queries.

We aim to let agents with overloaded CPUs return to an
idle state and also to avoid having agents with highly variable
response times constantly switching between buckets.

To find the best approach, we implemented and evaluated
several algorithms to decide when to upgrade an agent to a
faster polling (smaller polling interval) bucket, which will be
explained next.
• Upgrade to a faster polling bucket after count faster
response times to queries.
This is by far the simplest strategy. As we can see
in Figure 5, each agent has a counter that counts the
number of times it took the agent less time to reply than
the threshold indicated by its current bucket. When the
counter reaches a pre-determined count, it is upgraded to
a faster polling bucket and the counter is reset to start the
process again and, eventually, get an upgrade to a faster
bucket, one at a time.

FIGURE 5. Upgrading agent to faster bucket based on count.

If the agent response time falls within the bucket it is
already assigned to, the counter is reset.
Conversely, the agent is immediately moved to a slower
polling rate bucket when its response time is larger than
that of the bucket it is currently assigned to.
As an example, shown in Figure 6, if we have two
buckets for 30 and 60 seconds, count is 2 and the agent
is in the 60-second bucket, it has to respond in less than
30 seconds two times in a row to be upgraded to the
30-second bucket.

• Dynamic counter
This strategy is similar to the previous one, but instead
of having a fixed counter that can only decrease, this
counter can also increase when the agent is slower, as we
show in Figure 7.
Thus, if an agent has been consistently slow, it should
take longer for it to be upgraded to a faster bucket than
if an agent has been slow in replying a small number of
times.

FIGURE 6. Example upgrading agent to faster bucket based on count.

FIGURE 7. Upgrading agent to faster polling bucket based on dynamic
count.

When an agent is downgraded to a slower polling bucket,
the counter is set to aminimum value the same way as in
the static counter. However, if the response time makes
it stay in that bucket the counter keeps being increased
up to a maximum value. This limit is put in place so it
is possible for an agent to move to a faster bucket if,
for example, the agent is slower because of higher load
during peak hours.
To upgrade the agent to a faster bucket, the counter has
to decrease count times in a row, namely, count smaller
response times to queries or it will start increasing again.
As an example, shown in Figure 8, with two buckets
for 30 and 60 seconds, a minimum counter value of 2
and a maximum counter value of 5, if an agent was in
the 30-second bucket but takes more than 30 seconds
to respond, it will be immediately downgraded to the
60-second bucket and the counter will be initialized
to 2. If the agent takes less than 30 seconds to reply
two times in a row, it will be upgraded back to the 30-
second bucket. However, if the agent keeps being slow
in responding, the counter will be increased up to a
maximum of 5. To be upgraded again, it will have to be
faster than 30 seconds 5 times in a row.

• Upgrading to a faster polling bucket after count sec-
onds being faster
Instead of counters, this algorithm uses the time an agent
has been faster than its current bucket to decide when

7378 VOLUME 9, 2021

P. Roquero, J. Aracil: On Performance and Scalability of Cost-Effective SNMP Managers for Large-Scale Polling

FIGURE 8. Example of upgrading agent to faster polling bucket based on
dynamic count.

to upgrade it to a faster polling bucket as we show
in Figure 9.

FIGURE 9. Upgrading agent to faster polling bucket after timeout.

However, an agent will be downgraded to a larger polling
interval bucket if it takes longer to reply than its current
bucket threshold. Whenever the agent moves up or stays
in the same bucket, the current timestamp is recorded.
Then, if the agent replies in less than its current bucket
threshold, it must do so for a configured length of time
before it can be upgraded to a smaller polling interval
bucket.
For example, as shown in Figure 10, with two buckets
for 30 and 60 seconds and a 10minutes timeout, an agent

FIGURE 10. Example upgrading agent to faster polling bucket after
timeout.

that is taking more than 30 seconds to reply will stay in
the 60-second bucket and its timestamp will be updated
every time. Eventually, if the agent response time drops
to less than 30 seconds, and stays that way for 10minutes
(approximately 10 times), it will be upgraded to the
30-second bucket.

IV. PERFORMANCE EVALUATION
Performance evaluation encompasses laboratory and real-
world measurement experiments, the latter carried out in a
real datacenter. The purpose of the lab tests is assessing
the performance limits of the software, whereas, real-world
measurement campaigns not only serve to assess performance
but also adequacy to industrial use cases-

A. LABORATORY MEASUREMENT EXPERIMENTS
To conduct measurement experiments in a laboratory setting,
we wrote a small SNMP agent emulator capable of respond-
ing fast to queries to a table. Then, we arranged two comput-
ers connected through gigabit Ethernet as we see in Figure 11.
The network manager was running in a 12-core AMD Ryzen
1600X with 32 GB of RAM and the agents were running in
an 8-core Intel Core i7 7700HQ with 32 GB of RAM.

FIGURE 11. Experimental setup for 20,000 SNMP agents.

The agent receives requests and responds with hard-coded
data, which allows spending very little time in processing.
During the experiments, we confirmed that, even when the
network manager was using all CPU resources in the first
computer, the agent was using only a fraction of the resources
in the second computer. This way, the agent was not prevent-
ing the network manager to increase the polling frequency
whatsoever.

1) SPEEDUP WITH NUMBER OF THREADS
We performed experiments with 20,000 SNMP emulated
agents, changing the number of threads in the network
manager thread pool. For each experiment we measured
the response time for all requests, response times for indi-
vidual requests, and the average CPU load during the test.
Experiments for each number of threads were repeated
5 times.

The results of these experiments are shown in Table 1,
in terms of time to complete, speedup with respect to the
single-thread case and cpu use. Figure 12 shows these mea-
surements against the number of threads used for each
experiment.

We note that, as we increase the number of threads, a 6X
speedup was achieved for 12 threads, as we see in Figure 12,
decreasing the time to query all agents from 30 to 4.6 seconds.

VOLUME 9, 2021 7379

P. Roquero, J. Aracil: On Performance and Scalability of Cost-Effective SNMP Managers for Large-Scale Polling

TABLE 1. Speedup and time to complete queries with varying number of
threads.

FIGURE 12. CPU, time and speedup vs threads.

However, further increasing the number of threads did not
improve the results.

Initially, we hypothesize that this limitation was caused by
the CPU use of the network manager. However, we found that
the CPU use only went up to 60% as we see in figure 12.
In the SNMP agent emulator side, we assessed that the CPU
load was below 25% for all the experiments.

Next, we analyzed if the network may be causing the
bottleneck, as the UDP protocol does not support congestion
control and may saturate the network. Since UDP does not
support retransmissions, the SNMP library is in charge of
retrying requests after a configured timeout. Actually, as we
increased the number of threads, we found that the SNMP
library was timing out more often and retrying requests. This
shows that the network was losing packets and the increasing

number of timeouts were preventing the network manager
from achieving higher speedups. In this light, we concluded
that the network was the limiting factor for speedup, and not
the network manager itself.

To circumvent this issue, we made the UDP buffer size
larger. First, we modified buffer sizes in the network manager
side, without any noticeable change in performance. Then we
tried making the buffers larger on the agent side, but instead
of getting better performance, the packet loss rate increased
and made the problem worse.

B. REAL-WORLD MEASUREMENT CAMPAIGNS
Currently, an SNMP network manager following the above
guidelines is deployed at two sites working with real-world
data. In this section, we explain how it is used, challenges
found, and how they were tackled.

1) LARGE-SCALE NETWORK EQUIPMENT MONITORING IN A
DATACENTER
The SNMP network manager was used to monitor the status
of 150 network devices, including core routers, switches,
firewalls, and balancers.

Wemeasured performancemetrics, such as CPU andmem-
ory usage; network metrics, such as network traffic passing
through each interface and static network information such
as the configured VLANs. These collected statistics were
written to text files to be processed by other tools. Our polling
interval was five minutes, which is a typical polling interval
in this setting.

Interestingly, this measurement campaign revealed agents
taking different times to respond. Specifically, at times of the
day with peak traffic, the core routers tookmore than ten min-
utes to respond, which severely distorted the measurements.
We note that a five minutes time interval is rather large as
the timescale of interest for traffic monitoring is decreasing.
Indeed, port saturation in the order of seconds may severely
affect the performance of multimedia services such as tele-
conferences. Such small timescale saturation epochs cannot
be detected with a five minutes time interval, and even less
with a ten minutes time interval.

Therefore, a root-cause analysis for these increased
response times is in order, which follows next.
Finding the Root Cause of Large Response Times: As

we saw in section III, the response time to SNMP walks
follows a bi-modal distribution, whereby most requests are
taken care of fast, but some of them can take much longer.
We recorded the response times for a whole month to seek
any possible pattern that can explain such slowdowns. The
resulting average response time during this period is shown
in Figure 13.

We observed that the plot shows several peaks where the
average response time increased compared to the baseline.
These peaks correspond to the weekends and after check-
ing with the datacenter managers, we found that scheduled
maintenance tasks were performed at those times.

7380 VOLUME 9, 2021

P. Roquero, J. Aracil: On Performance and Scalability of Cost-Effective SNMP Managers for Large-Scale Polling

FIGURE 13. Average response time during a month.

We also hypothesized if slowdowns could be due to the
network load during the maintenance windows, but we dis-
carded that cause after checking that ping times to the affected
agents did not change whenever response time increased.
In addition, there are slow response times during the entire
measured period as we can see in Figure 14, which shows
a response time time-series, and the ping to the agents was
stable during that time.

FIGURE 14. Response time during a month.

Next, we wondered if the cause may be increased CPU
usage when the agents are more loaded. Luckily, the agents
showing slow response times offered CPU load statistics
through SNMP. To either verify or discard the former hypoth-
esis, we carried out a measurement experiment whereby we
queried a large SNMP table and, right after, queried the OID
that reports CPU use.

As such, we queried vtpVlanTable, which contains infor-
mation about VLANs and cpmCPUTotalTable, which con-
tains information about CPU use. First, we checked that the
response times for both tables followed the same bi-modal
distribution we saw in our previous tests (as shown in
Figures 15 and 16), namely large response times that happen
sporadically.

Then, we derived the Pearson correlation coefficient
between the response times and the CPU usages and
confirmed that they were highly correlated as shown in
Figures 17 and 18.

In the light of these findings, we came out with the adaptive
polling algorithms presented in section III. We also note that

FIGURE 15. vtpVlanTable response time histogram.

FIGURE 16. cpmCPUTotalTable response time histogram.

FIGURE 17. vtpVlanTable CPU - Response time.

FIGURE 18. cpmCPUTotalTable CPU - Response time.

polling slow agents less frequently is beneficial, not to add
more fuel to the fire by increasing CPU load on an already
saturated device with frequent polling.

VOLUME 9, 2021 7381

P. Roquero, J. Aracil: On Performance and Scalability of Cost-Effective SNMP Managers for Large-Scale Polling

2) NETWORK TOPOLOGY IN A DATACENTER
In this case, we obtain information about interfaces and
VLANs in a datacenter to infer the topology of the network.
This use case is different from the previous one. There is no
regular polling since the information obtained from the agents
does not change often. Instead, the program is executed man-
ually when there are changes in the datacenter hardware.

This use case motivated the incorporation of the Jython
software layer to the software. As mentioned before, in order
to get detailed VLAN information from some equipment,
we first have to query a table with all the VLANs, then
query a different table using communities with the format
‘‘community@VLAN ID’’.

The first solutionwas implemented by using command-line
scripts that queried the different tables. However, this solution
did not scale well when adding more hosts, as the scripts were
slow and increased in complexity. Adding the Jython layer,
this solution became simpler and more efficient.

The python function used to obtain the ‘‘community@
VLAN’’ community for each agent is shown next. This func-
tion is called for every agent after performing the first query
to get the list of VLANs available on each agent. It gets as
an input an agent IP and the OID of the table containing
the VLAN names, then iterates over the VLAN names. For
each VLAN, it creates a new SnmpV2Agent object where
the community will have the format ‘‘community@VLAN
ID’’ as explained earlier. These SnmpV2Agent objects will be
used to perform further queries to obtain the desired detailed
information about the VLAN.

We observe the code snippet is short and can be easily taken
care of by the network analyst, instead of having to request
new core functionalities to the network manager Java core
developers. This is a most important feature given the com-
plexity and heterogeneity of devices in current datacenters.

Receives an agent and OID for the
table with the VLAN IDs.
Returns a list of SnmpAgent objects
used to make further queries.
def get_vlan_agents_cisco(agent,

vlan_table_oid):

agents = []

Iterate over the VLAN IDs and
create SnmpAgent objects
for row in agent.

tableResults[vlan_table_oid].
rows.keys():

Get VLAN id
vlan_id = row.split(’.’)[1]

Create a new object with the
community in the form
"community@VLAN ID"

agents.append(
SnmpV2Agent(agent.address,

agent.name + ’@’ +
vlan_id,
agent.community + ’@’ +
vlan_id))

return agents

C. MEASURING ADAPTIVE POLLING PERFORMANCE
In this section, we present a performance evaluation of
the adaptive polling algorithm presented in section III.
Our experimental setup runs in the datacenter presented in
section IV-B1. More specifically, we polled 150 real network
devices from a server with a 20 core Intel Xeon E5-2640 v4@
2.40GHz and 256 GB of RAM. We performed a throughout
measurement campaign that took a whole week’s worth of
measurements for each of the three schedulers, in addition to
a week of measurements with no scheduler active.

For these tests we used two buckets for 30 and 60 seconds
for the schedulers, as we showed in Section III.

We also used the same parameters for the schedulers as in
Section III. For the Simple counter scheduler, we used a count
value of 2. For the Dynamic counter, we used a minimum
counter value of 2 and amaximum counter value of 5. Finally,
we used a timeout of 10 minutes for the Timeout scheduler.

In these experiments, we focused on measuring the effec-
tiveness of the three schedulers described in Section III.
We measured response times for each monitored agent and
how the scheduler moves them between time buckets.

Our main goal was to find the scheduler that minimizes the
impact polling has on the agents’ CPU, since we wish to pre-
vent overloading the agents and causing possible operational
slowdowns. By downgrading the agent to a larger polling
interval bucket, our schedulers ensure it will be polled less
frequently, reducing the CPU load. This goal will also prevent
slow agents from affecting the rest by blocking the faster
bucket thread pool, allowing us to better sustain our desired
polling rate of 5 minutes. We note that if an agent remains
in a given bucket and the response time is actually higher
than its corresponding polling interval then all agents in the
bucket will suffer from polling starvation, as the new polling
round will not start before the slowest agent replies. Thus,
downgrading the agent to a larger polling interval bucket as
soon as possible is of utmost importance.

Conversely, our secondary goal is to minimize the time an
agent spends in a larger polling interval bucket, as we wish to
obtain the best measurement resolution possible.We note that
the former and latter goals are opposite. Additionally, some
of the proposed schedulers are more aggressive than others in
downgrading agents, namely are better suited to the first goal
than to the second one. In this light, a performance assessment
is in order, as we will present next.

Table 2 shows the percentage of time in the correct bucket
for each scheduler, meaning by ‘‘correct’’ the ideal bucket in
which agents would be placed with complete knowledge of

7382 VOLUME 9, 2021

P. Roquero, J. Aracil: On Performance and Scalability of Cost-Effective SNMP Managers for Large-Scale Polling

TABLE 2. Percentage of time the schedulers were correct or wrong.

their future response time beforehand. It also provides the
percentage of time the agent should have been in a larger
polling interval bucket, which is a figure of merit of how
conservative the scheduler was in downgrading the agent.
We also show the results of running the program without
any scheduler active as a baseline. This means agents stay
permanently in the faster bucket, with no option to go to a
slower one if they take too long to respond.

As shown, all schedulers assigned agents to faster buckets
than where they should have been less than 0.24% of the
times, namely, they were very reactive in preventing CPU
load increase. In contrast, when not using a scheduler 1.36%
of all requests took longer than the faster polling interval,
increasing CPU load on the agents and causing us to miss our
polling interval target more often. Furthermore, the dynamic
counter scheduler was more conservative in upgrading agents
back to faster buckets.

The choice of a scheduler is a tradeoff between more
conservative behavior in safeguarding CPU load and faster
polling rates. In this regard, the simple counter provides a
good balance between both.

V. CONCLUSION AND LESSONS LEARNED
In this paper, we have provided a throughout performance
and scalability analysis of SNMP managers for large-scale
polling. We have discussed software architectures targeted
towards tackling the most important issue in large-scale
polling: vertical scalability through multi-threading architec-
tures and swift adaptation to heterogeneous data (MIBs).

We have also performed measurement campaigns in
real-world datacenters, aside from laboratory experiments,
that reveal slowness in response time from agents due to
high CPU load epochs. Consequently, we have come up
with an adaptive polling algorithm that either upgrades or
downgrades agents, in terms of the polling interval, as their
response time is being tracked.

Our findings serve researchers, software manufacturers,
and practitioners in their quest to design cost-effective,
large-scale SNMP network managers.

REFERENCES
[1] J. Case, M. Fedor, M. Schoffstall, and J. Davin, ‘‘A simple net-

work management protocol (SNMP),’’ Netw. Working Group, IETF,
Tech. Rep. RFC 1157, 1990. [Online]. Available: https://tools.ietf.
org/html/rfc1157

[2] K. Amirthalingam and R. J. Moorhead, ‘‘SNMP—An overview of its
merits and demerits,’’ in Proc. 27th Southeastern Symp. Syst. Theory,
Mar. 1995, pp. 180–183.

[3] T. Song, Y. Kawahara, and T. Asami, ‘‘Cache management algorithm of
load balancer for large-scale SNMP monitoring system,’’ in Proc. IEEE
Globecom Workshops (GC Wkshps), Dec. 2013, pp. 901–905.

[4] E. Magaña, L. Lefevre, M. Hasan, and J. Serrat, ‘‘SNMP-based
monitoring agents and heuristic scheduling for large-scale grids,’’ in
Proc. OTM Confederated Int. Conf. Move Meaningful Internet Syst.
Springer, 2007, pp. 1367–1384. [Online]. Available: https://link.springer.
com/chapter/10.1007/978-3-540-76843-2_17

[5] J. Schonwalder, ‘‘Characterization of SNMP MIB modules,’’ in Proc. 9th
IFIP/IEEE Int. Symp. Integr. Netw. Manage. IM, May 2005, pp. 615–628.

[6] S. S. Chavan and R. Madanagopal, ‘‘Generic SNMP proxy agent frame-
work for management of heterogeneous network elements,’’ in Proc. 1st
Int. Commun. Syst. Netw. Workshops, Jan. 2009, pp. 1–6.

[7] Net-SNMP. (2020).Net-SNMP. [Online]. Available: http://www.net-snmp.
org/

[8] Global Interpreter Lock, ThomasWouters, Amsterdam, The Netherlands,
2017.

[9] AgentPP. (2020). SNMP++. [Online]. Available: https://agentpp.com/
api/cpp/snmp_pp.html

[10] M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, and A. K. Motlagh,
‘‘An empirical study of C++ vulnerabilities in crowd-sourced code
examples,’’ 2019, arXiv:1910.01321. [Online]. Available: http://arxiv.
org/abs/1910.01321

[11] AgentPP. (2020). SNMP4J. [Online]. Available: https://agentpp.com/api/
java/snmp4j.html

[12] Jython. (2020). Jython. [Online]. Available: https://www.jython.org/

PAULA ROQUERO received the M.Sc. degree in
computer science from the Universidad Autónoma
de Madrid, Spain, in 2016. She then joined
the High Performance Computing and Network-
ing Research Group, Universidad Autónoma de
Madrid. Her current research interests include as a
Ph.D. student in distributed systems and network
traffic analysis.

JAVIER ARACIL received the M.Sc. and Ph.D.
degrees (Hons.) in telecommunications engineer-
ing from the Technical University of Madrid,
in 1993 and 1995, respectively. In 1995, he was
awarded with a Fulbright Scholarship. He was also
appointed as a Postdoctoral Researcher with the
Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley.
In 1998, hewas a Research Scholar with the Center
for Advanced Telecommunications, Systems and

Services, The University of Texas at Dallas. He has been an Associate
Professor with the University of Cantabria and the Public University of
Navarra. He is currently a Full Professor with the Universidad Autónoma
de Madrid, Madrid, Spain. He has authored more than 100 papers in
international conferences and journals. His research interests include optical
networks and performance evaluation of communication networks.

VOLUME 9, 2021 7383

