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ABSTRACT Diffuse liver diseases such as fatty liver and cirrhosis, are leading causes of disability and
fatality across the world. Early diagnosis of these diseases is extremely important to save lives and improve
the effectiveness of treatment. This study proposes a non-invasive method for diagnosing liver diseases using
ultrasound images, by classifying liver tissue as normal, steatosis, or cirrhosis, using feature extraction,
feature selection, and classification. First, the correlation, homogeneity, variance, entropy, contrast, energy,
long run emphasis, run percentage, and standard deviation are determined. Second, the most efficient features
are selected based on the Fisher discriminant and manual selection methods. Third, three voting-based sub-
classifiers are used, namely, the normal/steatosis, normal/cirrhosis, and steatosis/cirrhosis classifiers. The
final liver tissue classification is based on the majority function. Our classification method provides two
key contributions: combination of two different feature selection methods, avoiding the limitations of each
method while benefiting from their strengths; and classifier categorization into three sub-classifiers, where
the overall classification is based on the decision of each individual sub-classifier. We obtained recognition
accuracies for the normal/steatosis, normal/cirrhosis, and steatosis/cirrhosis classifiers as 95%, 95.74%, and
94.23%, respectively, and an overall recognition accuracy of 95%, which outperforms other methods.

INDEX TERMS Feature extraction, Fisher discriminant, region of interest, majority based classifier, liver

diseases.

I. INTRODUCTION

Early diagnosis is vital in treating a disease. Diagnosis relies
on the skills, experience, and knowledge of the practising
physicians, although human errors may sometimes occur.
Recently, various artificial intelligence-based methods are
being increasingly used for liver disorder diagnosis to assist
doctors in the diagnosis of patients. Extended cirrhosis and
steatosis liver disease may cause the appearance of malig-
nant or benign tumours in the liver. Any abnormality in the
liver adversely affects the rest of the body, as well as the
general health of the patient [1]-[3].

Fatty liver disease (FLD) occurs when the human body
produces a considerable amount of fat or does not efficiently
metabolize fat. This excess fat is stored in the liver cells,
where it accumulates triglycerides in the blood, causing FLD
[4]. Tt is believed that FLD involves the pathogenesis of
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various common disorders, such as Type II diabetes and
cardiovascular diseases. A steatosis condition can progress to
advanced stages with fibrosis and non-alcoholic steatohepati-
tis (NASH), increasing the risk of hepatocellular carcinoma
and cirrhosis [5].

Cirrhosis is an advanced stage of liver fibrosis and is
caused by many types of liver diseases and conditions, such
as chronic alcoholism and hepatitis. As cirrhosis progresses,
more scar tissue forms, making it difficult for the liver to
function, and advanced cirrhosis is life-threatening. How-
ever, if liver cirrhosis is diagnosed early, the causes can be
treated, avoiding further damage, and its progression can
be reduced, or in rare cases, reversed. The most common
causes of cirrhosis are HCV, Hepatitis B virus (HBV) and
HCV are the most common causes of liver diseases in the
developing world [6], [7]. Patients with pre-existing liver
cirrhosis conditions may be more susceptible to SARS-CoV-2
coronavirus (COVID-19) infection because of their systemic
immunocompromised condition [8].
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There are two methods of diagnosis and identification for
liver diseases. The first is an invasive method, such as liver
biopsy. Liver biopsy is one of the most efficient techniques
employed because of its accuracy. However, liver biopsy has
some associated disadvantages, which include its invasive-
ness, mortality caused by bleeding, and some complications
such as accidental injury to a nearby organ and pain after
undergoing the procedure [9]-[12].

The second method is non-invasive. There are many
non-invasive imaging techniques, such as computerized
tomography (CT) scanning, magnetic resonance imaging
(MRI) scanning [12], and ultrasound (US) scanning [4], [10],
which are used for liver disease detection. CT is constrained
by the inaccurate quantification of steatosis, radiation expo-
sure, and low sensitivity in the case of mild steatosis. MRI-
estimated proton density fat fraction (MRI-PDFF) has been
demonstrated to correlate with the histology-determined fatty
grade in adults with FLD, and magnetic resonance spec-
troscopy (MRS) has emerged as the leading non-invasive
modality for steatosis quantification of FLD in terms of speci-
ficity, sensitivity, and reliability [13]. However, MRI and liver
biopsies are both expensive and uncommon procedures [12].

Nevertheless, an image-acquisition US device is simple to
operate, movable, radiation-free, inexpensive, and available
in a wide range of health clinics and radiology centres [13].
One of the major limitations related to using US is the low
quality of the acquired images compared to those of CT
and MRI. This renders the task of classification extremely
difficult and is one of the challenges addressed in this study.

Il. RELATED WORKS

In [14], a technique named ultrasound-induced thermal strain
imaging (US-TSI) was presented. US-TSI is used to esti-
mate fat content in ex-vivo mouse liver by using the pro-
posed speed temperature theory. As demonstrated in [15],
a combination of Discrete Wavelet Transformation (DWT)
and contrast enhancement for speckle noise removal from
a dataset of 30 cirrhosis and 25 normal liver images was
used. K-means clustering with a minimum Euclidian distance
followed by artificial neural networks (ANNs) was employed.
A study by [16] provides a survey of the machine learning
techniques used in diagnosing various diseases. Diffused liver
diseases such as fatty liver, hepatitis, and cirrhosis are leading
causes of fatality and disability worldwide. As a speckle is
present in the high-frequency components of a US image, 2D
WPT, which is considered as a richer space-frequency multi-
resolution analysis scheme, may offer an appropriate texture
descriptor. The multi-resolution fractal analysis can add more
data regarding the signal heterogeneity. The mean of grey-
levels and grey level run length matrix (GLCM) correlation
can show variations in granularity between the hepatocellu-
lar carcinoma (HCC) and the cirrhotic liver [17]. However,
the accuracy of US-based diagnosis depends significantly
on the expertise of radiologists. Computer-aided diagnosis
(CAD) systems based on US imaging assist in quick diagno-
sis, provide areliable “second evaluation™ for specialists, and
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act as effective tools for measuring the response of treatment
on the patients undergoing clinical trials [10].

A study by [18] developed a technique to distinguish fatty,
cirrhotic, and hepatomegaly livers. The grey-level run length
matrix (GLRLM), intensity histogram, and GLCM were
extracted and used in a multilayer perceptron (MLP). There-
fore, an accuracy greater than 90% was obtained. In [19],
a texture analysis technique known as texture feature co-
occurrence matrix (TFCOM) was proposed to categorize hep-
atitis, normal, and cirrhotic livers. An accuracy of 86.7% was
obtained using the maximum likelihood classifier. In [20],
three strategies to classify normal and fatty liver were pre-
sented. First, textural features were analysed, and the use
of classifier fusion provided an accuracy of 79%. Second,
the hepatorenal coefficient (HC) was calculated, followed
by statistical analysis. A sensitivity of 90% and specificity
of 88% were obtained. Third, the acoustic attenuation coeffi-
cient (AAC) was calculated. The author observed that the HC
was not influenced by the US machine parameters.

In previous works [4], [15], [18]-[20] the available
database was insufficient and considered only two classes:
normal/ cirrhosis or normal/steatosis, and none of them
adopted the classification of steatosis/cirrhosis. In this study,
liver tissues are classified as normal, steatosis, and cirrhosis.
It should be mentioned that three radiologists labelled the
dataset in order to avoid the incorrect classification.

The rest of this paper is organized as follows: in
Section 2, the materials and methods used are described.
Section 3 presents the experimental results. Finally, the con-
clusions are presented in Section 4.

Ill. MATERIALS AND METHODS

A. IMAGE ACQUISITION

In this study, image acquisition is performed using a
GE Logiq p5 US system. Images have been acquired at
“Elrouad Radiography Center, Menouf city, Egypt” by pro-
fessional medical radiologists and experts. The transmitting
frequency of the ultrasound was a 4 MHz with a convex
probe.

The challenge in this study is that the use of GE Logiq
pS equipment leads to the acquisition of images with a lower
quality in comparison to that obtained with other US equip-
ment (e.g., GE Logiq p9 and Toshiba SSA-700A equipment).
We use the GE Logiq p5 as it is one of the most commonly
used types of equipment because of its cost effectiveness.

The size of the acquired image is 684 x 552 pixels.
A total of 279 images was collected. An image is acquired
from each patient. According to the decisions of the physi-
cians, 95 images are manually categorized as normal, and
105 images are classified as steatosis. The rest of the images
(79 images) are classified as cirrhosis.

This study focuses on differentiating between nor-
mal/steatosis, normal/cirrhosis, and steatosis/cirrhosis liver
based on image analysis. Figure 1 shows an example image
for each of the tissue classifications of normal, steatosis, and
cirrhosis.
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a b ¢

FIGURE 1. Examples of the acquired images a) normal b) steatosis c)
cirrhosis.

B. METHODOLOGY

Firstly, multiple regions of interest (ROI) are selected within
the liver tissue instead of using single ROI to enhance the
performance of the liver diseases diagnosis. Three types of
selection parameters are used:

1) SIZE OF EACH ROI

To accurately diagnose the diffused liver disease, a dynamic-
sized ROI (rows x columns) is proposed. This is because
static-sized ROIs may not contain sufficient information. The

dynamic size is determined automatically via a genetic algo-
rithm (GA).

2) NUMBER OF ROIs

Multiple ROIs (1-9 ROIs) are selected and distributed within
the liver tissue, according to the guidance of three radiolo-
gists. This is also automatically determined by the GA.

3) POSITION OF EACH ROI

The position is determined initially and marked manually
by three experienced doctors. Once the ROIs are marked,
the fixed positions are used for any newly acquired image.

Secondly, to speed up the processing, only ROIs are trans-
formed from red, green, and blue (RGB) colours to a grey-
level.

Thirdly, the features of each ROI are extracted. Instead of
the features used in [24], [25], only nine low-computation
features including correlation, homogeneity, entropy, vari-
ance, energy, contrast, long run emphasis, run percentage, and
standard deviation are extracted. Table 1 shows a description
of these features [4], [26].

Fourthly, feature selection is used to minimize the number
of features. In this study, the Fisher discriminant (F-ratio) is
used to reduce the use of nine features to only six features
[27] as shown in Fig. 2. This significantly reduces the num-
ber of computations, it has been experimentally determined
from [28]. Finally, the majority-based classifier is used to
identify the category of a liver tissue as normal/steatosis,
normal/cirrhosis, and steatosis/cirrhosis liver images.

C. CLASSIFICATION OF TISSUES AS NORMAL/STEATOSIS
In this section, we describe the classification of each selected
ROI as normal or steatosis tissue. It was observed that the nor-
mal liver has a homogeneous grey level. Otherwise, it would
be considered to be a steatosis liver.
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FIGURE 2. Flow diagram illustrating the proposed system.

TABLE 1. Summary of feature equations.

Features Equation
Correlation Cor = Ly Z?;&(i XJ) X PGJ) — (e X uy}
(Cor) 0y X 0y
H . 2G-2 1

SRRt Homo = ) —— Hd(j| 4x,4)
ty (Homo) =
E G-1G6-1

ntro - Qi

Py Ent = —Z p(i.,j) *log (p(i,j )

(Ent) i=0 j=0
b . G-1G6-1

ariance Var = z Z(i — W2 P, ))
(Var) =0 j=0

2, .

Energy Ene = Z Z Nd(l,])
(Ene) 1=0=0
C " " G-1 G G

i Con=>"n )\ PG li=jl=n
(Con) n=0  i=1j=1
L G R G R

ong run P .

& _ LRE=ZZ}2(1.}\9)/ZZP(1.J\9)

emphasis =1 =1 i=1 j=1
(LRE)
R 1 G R

un RP= £ P\6)
percentage N i=1 j=1
(RP) Ng-1N,

— -1
Standard R
@ Ge= Y Y = w)? xP(ij),  for Columns
deviations . 4
i=0 j=0
Ng-1Ng-1
o, = Z Z G- u )2 x P(i,), for Rows
i=0 j=0

Howeyver, it is better to be able to select these thresholds
automatically. In this study, a GA is used to optimize the
selection of the thresholds.

Additionally, to enhance the recognition rate in this study,
other parameters are proposed. Instead of counting the
number of decisions by incrementing one to the voting count,
the count is increased using the weight factor. This weight
factor can be equal to two, three, or more. This is equivalent
to increasing the weight of the decision that is made by an
experienced doctor. In other words, the weight of an inexpe-
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FIGURE 3. Chromosome structure. Feature1l (F1) and etc.

rienced doctor is one, as expressed in the following equation:
voting 4+ 1 — voting. )
Hence, (1) is modified as follows:

voting + contrast_weight — voting 2)

voting + variance_weight — voting. 3)

Therefore, two weight factors are added to the parameters,
indicating one weight factor for each extracted feature.

In this study, a voting function is used to identify the
type of liver. Further, a voting threshold is used to deter-
mine the minimum number of ROIs to classify a given liver
as normal. To avoid the manual selection of the thresh-
olds and other parameters mentioned previously, a GA
is used.

GA is an adaptive heuristic search algorithm. In GA, firstly,
an initial population is formed. The population is composed
of 100 chromosomes. Each chromosome is composed of
concatenated thresholds or candidate solutions. The chromo-
some structure is illustrated in Fig. 3. Secondly, each pair
of parent chromosomes is selected. Thereafter, the crossover
operation is performed at a random crossover point. Thirdly,
the mutation operation is performed on each chromosome at a
random point. Thereafter, the offspring is generated. Finally,
the parent chromosomes and offspring are evaluated using an
objective function.

An objective function provides the number of incorrectly
classified images. In other words, the objective function in
the optimization process is used to maximize the correctly
classified images or to minimize the number of incorrectly
classified images. The objective function is the reciprocal of
the penalty value or specifically, the number of incorrectly
classified images.

Figure 4 shows the training and testing phases for opti-
mizing ROI selection using a genetic algorithm. In the train-
ing phase, each image of the normal/steatosis liver in the
training set is applied to the proposed system. Thereafter,
the thresholds, weights, and parameters are automatically
selected such that the image is classified as a normal/steatosis
case, respectively.

In the testing phase, each image of the testing set is applied
to the proposed study. Thereafter, according to the major-
ity function, the liver tissue is classified as normal/steatosis
liver. Figure 5 shows the proposed algorithm of the overall
process.
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D. CLASSIFICATION OF TISSUE AS NORMAL/CIRRHOSIS
For the process of classifying the tissue, each selected ROI
is classified as normal or cirrhosis tissue. It is observed that
the normal liver has a homogeneous grey level and is charac-
terized by low contrast as well as low variance. Otherwise,
it would be considered as a cirrhosis liver. The algorithm
in Fig. 5 is applied again by replacing (normal and abnormal)
with (normal and cirrhosis).

E. CLASSIFICATION OF TISSUE AS STEATOSIS/CIRRHOSIS
In this process, each selected ROI is classified as a steatosis
or cirrhosis tissue. The classification process mentioned in
Sections C and D will be repeated for all the ROIs. Com-
paring the number of ROIs classified as steatosis livers to
the number of ROIs classified as cirrhosis livers, a majority
function is used to identify the category of the liver case.
In the same way, GA is applied to automatically determine the
values of the parameters. The algorithm in Fig. 5 is applied
again by replacing (normal and abnormal) with (steatosis and
cirrhosis).

F. CLASSIFICATION OF TISSUE AS NORMAL/CIRRHOSIS
In this process, each selected ROI is classified as a normal,
steatosis or cirrhosis tissue. It is observed that the process
of differentiating between the three classes is quite challeng-
ing. To automatically differentiate between the three classes,
the previous classification between normal/steatosis, nor-
mal/cirrhosis and steatosis/cirrhosis was performed individu-
ally (i.e., the test image is applied to each classifier described
in Sections C, D and E), as shown in Fig. 6. Thereafter,
a majority function is used to select the maximum count.

In other words, to make the correct decision, the opinion
of three doctors is taken. The first doctor is specialized in
discriminating between normal and steatosis livers. The sec-
ond doctor is specialized in discriminating between normal
and cirrhosis livers, whereas the third doctor is specialized
in discriminating between steatosis and cirrhosis livers. The
final decision will be taken according to the opinions of the
three doctors.

IV. RESULTS AND DISCUSSION

In this study, several experiments were performed. Multiple
ROIs of a maximum of nine ROIs for each US image were
used. The total ROIs in the normal, steatosis, and cirrhosis
liver categories were 855 (= 95 x 9), 945 (= 105 x 9), and
711 (=79 x 9), respectively.

Figure 7(a) shows the original images acquired using the
GE Logiq p5 US machine. The dataset was collected from
279 subjects: 95 normal, 105 liver steatosis, and 79 cirrhosis
of known pathology. The images were then converted to
greyscale, as shown in Fig. 7(b). The selection of multiple
ROIs from ultrasonic images as shown in Fig. 7(c) was per-
formed under the guidance of doctors specialised in treating
liver diseases.
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FIGURE 4. Optimizing ROI selection using a genetic algorithm.

TABLE 2. Fisher discriminant of each extracted feature.

Extracted feature F-ratio
Correlation 6
Homogeneity 4.67
Entropy 4
variance 2.33
Contrast 2
Energy 2
Long run emphasis 1.69
Run percentage 0.81
Standard deviation 0.78

The feature selection process is divided into two parts. The
first part is determining the Fisher discriminant or F-ratio,
which is defined in the following equation [21], [22]:

(1 — p2)?
f="7 6)
o +0;
where 141 and w, are the mean values of the two classes, and
612 and 022 are the variances of the two classes. Table 2 shows
the computed F-ratio of each extracted feature.

The second part of the feature selection process is based on
manual selection to determine the most efficient feature. The
manual selection is essential in order to verify the experimen-
tal result of the Fisher discriminant. During this process, each
feature is selected and tested individually. The experimental
results show that the variance and the contrast individually
achieved the two highest recognition rates compared to the

5764

TABLE 3. Recognition rate in case of extracting each feature individually.

Extracted feature Recognition rate

Contrast 67.4%
Variance 69.7%
Entropy 62.6%
Homogeneity 63.8%
Correlation 65%

Energy 63.8%

rest of the extracted features (homogeneity, entropy, energy,
and correlation), as shown in Table 3.

It is noted that where two features are combined (e.g., con-
trast and variance), the recognition rate can be increased, as
shown in Table 4, compared to the case where these features
are used individually (see Table 3). It should be noted that
the highest recognition rate in Table 3 is 69.7%, whereas
in Table 4, it is 80.5%.

The experimental results show that combining the three
features does not lead to a significant improvement in the
recognition rate compared to the use of only two features. The
dataset is divided into two sets: a training set and a testing set.

A training set of 40 normal, 40 steatosis, and 40 cirrhosis
livers is used to train the system, while a testing set of 55
normal images, 65 steatosis images, and 39 cirrhosis liver
images is used to enhance the success rate of the classifier.
Finally, all the US images are classified (one of the three
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Algorithm: Optimization of the number of ROIs, ROI size selection,
variance threshold, variance weight, contrast threshold, contrast weight, and
voting threshold

1. For iteration number = 1,2,3,...... ,number of iteration, do
2. For every chromosome do
Number of incorrectly classified image = 0
For every training image do
voting =0
For every ROI of size, m x n do
Convert ROl into grey level using equation (4)

1=0.2989 * R +0.5870 * G+ 0.1140 * B “4)
Compute All Features
If All Features < All Features _threshold
voting + All Features _weight — voting 5)
End if
End for

If voting > voting_threshold
If training image = abnormal
Number of incorrectly classified image +1—
Number of incorrectly classified image
End if
Else
If training image = normal
Number of incorrectly classified image +1—
Number of incorrectly classified image
End if
End if
End for
Assign fitness score to the chromosome
End for
End for

3. For every testing image do
voting = 0
For every ROI do
Convert ROl into grey level f using equation (4)
Compute All Features using equation (5)

If All Features < All Features _threshold
voting + All Features_weight — voting
End if
End for

4. If voting > voting_threshold
Liver case = normal
Else
Liver case = Abnormal
End if
End for

FIGURE 5. Parameter optimization using a genetic algorithm.

pathologies: normal, cirrhotic and steatosis liver diseases)
manually by two specialist physicians.

The generation increases with decreasing number of incor-
rectly classified images or false negatives, as shown in Fig. 8.

Table 5 shows that the use of weighting leads to a signifi-
cant improvement in the recognition rate, where the recogni-
tion rate increases by 10%. From the obtained experimental
results in [23], weighting is recommended.

Considering a normal/steatosis classifier, the proposed
algorithm in Section C achieves a recognition rate of 95%
with GA and 66.7% without GA, as shown in Table 6.

Moreover, considering a normal/cirrhosis classifier,
the proposed algorithm in Section D achieves a recognition
rate of 95.74% with GA and 61.1% without GA. For
a steatosis/cirrhosis classifier, the proposed algorithm in
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FIGURE 6. Overall flow diagram describing the proposed system.

a b c
FIGURE 7. (a) Original acquired image, (b) grey-level image, and (c)
grey-level image with multiple ROIs.
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FIGURE 8. Plot of penalty value with varying generation number. The nine
parameters are optimized to increase the number of correctly classified
images.

Section E achieves a recognition rate of 94.23% with GA and
63.2% without GA. For a normal/steatosis/cirrhosis classifier,
the proposed algorithm in Section F achieves a recognition
rate of 95% with GA and 63.6% without GA, as shown
in Table 6.

Table 7 illustrates the confusion matrix of the three classes
to identify the no of samples that belong to each class (Nor-
mal, Steatosis, and Cirrhosis). Each row of the matrix repre-
sents the no of instances in an actual class while each column
represents the no of instances in a predicted class.

Table 8 shows the results of each classifier for selected
test images. For instance, considering normal image 1
(Nom_Imgl), the normal/steatosis classifier classifies it as
normal liver (Nom), the normal/cirrhosis classifier also clas-
sifies it as normal liver (Nom), whereas the steatosis/cirrhosis
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TABLE 4. Recognition rate in percentage in case of selecting two features.

Extracted feature Recognition rate
Contrast & Variance 80.5
Contrast & Entropy 66.4%
Contrast & Homogeneity 65.2%
Contrast & Correlation 67.5%
Contrast & Energy 64%
Variance & Entropy 67.5%
Variance & Homogeneity 66.4%
Variance & Correlation 68.7%
Variance & Energy 65.2%
Entropy & Homogeneity 62.8%
Entropy & Correlation 65.2%
Entropy & Energy 61.6%
Homogeneity & Correlation 64%
Homogeneity & Energy 61.6%
Correlation & Energy 62.8%

TABLE 5. Recognition rate in the training and testing phases with/without
weighting in case of extracting two features (with feature selection).

Without weighting
%
Training set 88 98.6
Testing set 75.6 95

With weighting %

TABLE 6. Recognition rate of normal/steatosis, normal/cirrhosis,
steatosis/cirrhosis and normal/steatosis/cirrhosis classifiers.

Recognition ~ normal/st normal/cirrh  steatosis/cir  normal/steato
rate eatosis osis rhosis sis/cirrhosis
Training set 70% 80% 65% 65%
Without GA
Training set 98.7% 100% 95% 97.9%
With GA
Testing set 66.7 % 61.1% 63.2% 63.6%
Without GA
Testing set  95% 95.74% 94.23% 95%
With GA
TABLE 7. The overall confusion matrix.
For testing Normal Steatosis Cirrhosis
datasets
Normal (55) 52 3 0
Steatosis(65) 3 60 2
Cirrhosis (39) 0 1 38

classifier classifies it as cirrhosis liver (Cirr). Consequently,
the final decision for this test image based on the majority
function will be normal (Nom). This is a correct classifica-
tion.

Considering steatosis image 4 (st_Img4), the nor-
mal/steatosis classifier classifies it as steatosis liver (St),
the normal/cirrhosis classifier classifies it as cirrhosis liver
(Cirr), and the steatosis/cirrhosis classifier classifies it as
cirrhosis liver (Cirr). Consequently, the final decision for this
test image based on the majority function will be cirrhosis
(Cirr), and this is an incorrect classification.

Table 9 presents a comparison between the proposed sys-
tem and a previous method. It should be noted that the
US system used in this study produces poor quality images
compared to other studies. However, the proposed system
achieved better accuracy compared to other researches except
for [26] which used a higher resolution US machine but had
the same accuracy (95%) as this study. It should be mentioned
that the proposed system discriminates between steatosis and
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TABLE 8. Result of liver tissue classification.

Test images Nom./ Nom./ St./ Majority
St. Cirr. Cirr. Function
Nom_Imgl Nom Nom Cirr Nom
Nom_Img2 Nom Nom St Nom
Nom_Img3 Nom Nom Cirr Nom
Nom_Img4 Nom Nom St Nom
St_Imgl St Cirr St St
St_Img2 St Cirr St St
St_Img3 St Cirr St St
St Img4 St Cirr Cirr Cirr
St Img5 Nom Cirr St Unknown
Cirr_Imgl St Cirr Cirr Cirr
Cirr_Img2 St Cirr Cirr Cirr
Cirr_Img3 St Cirr Cirr Cirr
Cirr_Img4 Nom Nom St Nom

*image (Img), Normal (Nom), Steatosis (St), Cirrhosis (Cirr)

TABLE 9. Comparison between previous works and the proposed work.

US/classes . performan

Author (No. of Patients) Features/classifier ce
Texture, wavelet Accuracy:
[2] normal, fatty  transform, and HOS/DT 9;(;; % °y:

. 0

and FSC

Normal and fatty FOS, GLRLM, GLCM, Accuracy:

9 0,
(177 echo- law’s texture energy 76.9 f;
[25]  graphic images) and fractal dimension/  79.7%
btained from 36 and three classifiers;  74.1%
obtamned trom ANN, SVM & KNN  respective
patients ANN, SVM & KNN Iy
n?rglal( 1(3;))’ Intensity histogram,
(18] cirrahoysis (16) GLCM, GLRLM, Accuracy:
hepatomesal ? Invariant 92.5%
P (10) g2y moments/BPNN
FOS, GLCM, GLRLM,
Gabor filter, Laws’
filter, fractal dimension, .
. classifiers
normal (68), lacunarity, hepatorenal .
[20] . fusion:
Fatty (52) coefficient, 799
attenuation/ANN, 0
SVM, k-NN, Bayes,
Decision Tree
Texture
[26] nl;);’tr?al( l(gg;’ features/Information 9Ascoiuracy.
Y fusion-based classifier ¢
Normal(28),
steatosis(47), GLCM and Wavelet
[24] fibrosis(42), and Packet Transform Accuracy:
cirrhosis(12) (WPT)/SVM 94.91%
images
Accuracy:
-~ . 95%
3 normal/steatosis )
= normal/cirrhosis: LT,
2 . ° 6 Features/Majority  74%
@ steatosis/cirrho .
e sis: Function Accuracy:
g ' 94.23%
= respective
ly

cirrhosis. However, no other researches discriminate between
these two classes. Another advantage of the proposed system
is the simplicity achieved via building the whole complicated
classifier using simple sub classifiers with the majority func-
tion.
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V. CONCLUSION

In this study, a diagnostic method for diffused liver tissues
is proposed. The unenhanced US images of liver tissues are
classified as normal, steatosis, or cirrhosis. The US images
(acquired via a non-invasive method) are used for the identi-
fication and diagnosis of normal and abnormal liver tissue.

Individual classifications between normal/steatosis, nor-
mal/cirrhosis and steatosis/cirrhosis are achieved. The recog-
nition accuracy for normal/steatosis classifier is 95%, that
of normal/cirrhosis classifier is 95.74%, and that of steato-
sis/cirrhosis classifier is 94.23%. The final decision is based
on the majority function. The recognition accuracy achieved
is 95%.

The proposed system has the potential to be used in hospi-
tals and clinics to assist in the evaluation of liver diseases in
real-time. Therefore, it is expected to reduce the workload of
radiologists because they do not need to manually segment
the ROI. Moreover, the proposed system can be adopted to
characterize the various stages of diffused liver fibrosis.

A limitation of this study is that there is no publicly avail-
able database that can be used to further verify the method.
Furthermore, the poor quality of the US images leads to a
demand for more enhanced techniques or efficient features
without degrading the image information. As a future work,
the recognition accuracy of the proposed system could be
improved by decreasing the rate of false-negative (FN) cases
to allow us to better differentiate between closely resembling
diseases.
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