
Received December 25, 2020, accepted December 31, 2020, date of publication January 5, 2021, date of current version January 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3049421

Optimal Design and Simulation for PID Controller
Using Fractional-Order Fish Migration
Optimization Algorithm
BAOYONG GUO1, ZHONGJIE ZHUANG2, JENG-SHYANG PAN 2, (Senior Member, IEEE),
AND SHU-CHUAN CHU 2,3
1College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
2College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
3College of Science and Engineering, Flinders University, Clovelly Park, SA 5042, Australia

Corresponding author: Shu-Chuan Chu (scchu0803@gmail.com)

ABSTRACT Proportional Integral Derivative (PID) controller is one of the most classical controllers,
which has a good performance in industrial applications. The traditional PID parameter tuning relies on
experience, however, the intelligent algorithm is used to optimize the controller, which makes it more
convenient. Fish Migration Optimization (FMO) is an excellent algorithm that mimics the swim and
migration behaviors of fish biology. Especially, the formulas for optimization were obtained from biologists.
However, the optimization effect of FMO for PID control is not prominent, since it is easy to skip the
optimal solution with integer-order velocity. In order to improve the optimization performance of FMO,
Fractional-Order Fish Migration Optimization (FOFMO) is proposed based on fractional calculus (FC)
theory. In FOFMO, the velocity and position are updated in fractional-order forms. In addition, the fishes
should migration back to a position which is more conducive to survival. Therefore, a new strategy based on
the global best solution to generate new positions of offsprings is proposed. The experiments are performed
on benchmark functions and PID controller. The results show that FOFMO is superior to the original FMO,
and the PID controller tuned by FOFMO is more robust and has better performance than other contrast
algorithms.

INDEX TERMS Fish migration optimization, fractional calculus, PID controller, swarm intelligence.

I. INTRODUCTION
As is known to all, PID is one of the earliest control strategies.
Since its simple structure, good robustness, and high relia-
bility, PID controller plays an important role in the closed
industrial system [1], [2]. The PID controller is designed
based on the error of the system, which uses proportion,
integral, and differential to calculate the control quantity in
order to achieve excellent performance. The traditional tuning
methods include Ziegler-Nichols and Hägglund-Aström, etc.
However, the researchers have proposed various intelligent
tuning techniques in last few decades, including the methods
based on genetic algorithm, fuzzy reasoning, and neural net-
work. The traditional PID algorithms have low efficiency and
no prominent effect, while the methods based on intelligent
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algorithms can achieve high efficiency and have a good
effect [3], [4]. Soft computing is an effective intelligent algo-
rithm to tune PID parameters. The common techniques of soft
computing include fuzzy logic, neural networks, probability
reasoning, and meta-heuristic algorithms, etc. Fuzzy logic is
a science based on multi-valued logic that uses fuzzy sets
to study fuzzy thinking, language forms, and their laws [5].
Neural networks process information by adjusting the inter-
connections between a large number of internal nodes [6],
[7]. Probabilistic reasoning is a form of reasoning that people
make decisions based on uncertain information [8]. Meta-
heuristic algorithm is an improvement of heuristic algorithm,
it is the product of combining random algorithm and local
search algorithm.

In particular, influenced by bionics, meta-heuristic algo-
rithms were generated in the 1960s. Meta-heuristic algo-
rithms can obtain optimal solutions without having any
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specific requirements [9], [10]. Furthermore, meta-heuristic
algorithms can be separated into three categories includ-
ing swarm intelligence algorithms, evolutionary algorithms,
and algorithms based on mathematical or physical models.
Among them, swarm intelligence algorithms are inspired
by the ethology of group animals. For example, Particle
Swarm Optimization (PSO) [11]–[14] is inspired by birds’
foraging behavior. Ant Colony Optimization (ACO) [15],
[16] mimicked the behavior of ants in finding the path
in the process of searching for food. Bat Algorithm (BA)
[17], [18] imitated the echolocation behavior of bats. Arti-
ficial Bee Colony (ABC) [19], [20] simulated the honey
gathering process of bees, this algorithm has a fast con-
vergence speed to find global optimal solution. Cat Swarm
Optimization (CSO) [21], [22] depicted the cats’ search
and tracking strategy. Grey Wolf Optimization (GWO) [23],
[24] is an optimal search method which is designed by
the gray wolves’ predation activities. Cuckoo Search Algo-
rithm describes the parasitism behavior of cuckoo birds [25],
[26]. Pigeon Inspired Optimization (PIO) simulated the
behavior of pigeons going home [27]. Grasshopper Optimi-
sation Algorithm (GOA) is proposed based on the behaviour
of grasshopper swarms in nature for solving optimisation
problems [28]. However, evolutionary algorithms are inspired
based on the theory of biological evolution in nature, includ-
ing Genetic Algorithm (GA) [29]–[31], Differential Evo-
lution (DE), [32], [33], and QUasi-Affine TRansformation
Evolutionary (QUATRE) [34]–[37], etc. GA is designed
based on natural selection and genetic mechanism of Dar-
winian biological evolution. DE is a heuristic random search
algorithm based on population difference. QUATRE is an
excellent algorithm which improved the drawback of DE that
did not achieve equilibrium search in search space without
prior knowledge and moveover, it generalized the crossover
operation of DE from vector to matrix. In algorithms based
on physical or mathematical models, Simulated Annealing
(SA) [38], [39] originates from the principle of solid anneal-
ing; Gravitational Search Algorithm (GSA) [40], [41] mainly
uses the law of gravitation between two objects to guide the
motion optimization of each particle to search for the optimal
solution; Sine Cosine Algorithm (SCA) [42], [43] is achieved
by iteration of sine and cosine functions.

Particularly, Fish Migration Optimization (FMO) [44],
[45] is proposed in 2010 which is a swarm intelligence
algorithm. It simulated the growth, migration processes, and
predation strategy of fish biology. The difference of the FMO
and other meta-heuristic algorithms is that the formulas for
optimization were obtained from biologists. Compared to
PSO, the FMO has higher accuracy and acceptable time
consumption. However, the optimization effect of the FMO
for low-dimensional complex functions is not very excellent.
For low-dimensional complex functions, integer order speed
update is easy to skip the optimal solution and thus cannot
achieve good optimization effect, while fractional order speed
can use fraction to update step size and can learn from histor-
ical speed, so more accurate results can be obtained.

Fractional Calculus (FC) [46] is an generalization of the
classical concept of calculus. Similar to classical calculus,
FC mainly includes fractional derivatives and fractional inte-
grals. The difference between the two kinds of calculus is,
the orders of derivatives and integrals in classical one are
integers, while in FC, the orders can be fractions. Compared
to classical calculus, FC can describe memory and inher-
ited properties of various substances and their evolutionary
processes accurately. Since the concept of FC appeared,
the related theory has been successfully applied to many
fields. Many researchers realize that they can also be used to
describe some non-classical phenomena in natural sciences
and engineering applications. In Meta-heuristic algorithm,
a novel Fractional-Order Darwinian PSO was presented in
paper [47]. In [48], BA algorithm based on FC was shown.
In Ref. [49], Fractional-Order Cuckoo Search Algorithm is
designed for financial systems. The Fractional calculus-
based firefly algorithm was described in [50] and applied
to parameter estimation of chaotic systems, and enhanced
fractional chaotic whale optimization algorithm (WOA) was
designed in paper [51] for Parameter Identification of isolated
wind-diesel power systems. The paper [52] introduced the
augmented Lagrangian PSO with fractional order veloc-
ity for fractional fixed-structure H∞ controller. In addition,
the generalization of the PSO algorithm based on complex-
order is proposed in paper [53] and obtained excellent
performance.

The problem of tuning PID controller is a low-dimensional
complex functions because it has only three parameters.
Therefore, Fractional-Order Fish Migration Optimization
(FOFMO) is proposed in this manuscript since it is reason-
able to improve the performance of the the FMO based on
fractional order velocity. The rest of the paper is organized
as following. Section II describes related works including
the FMO algorithm, the FC theory, and the PID controller.
In Section III, the FOFMO algorithm is presented in detail.
In Section IV, the experiments on benchmark functions are
shown. The PID simulation experiments are described in
Section V. Section VI depicts the main work of the paper and
gives some suggestions for further work.

II. RELATED WORKS
A. FISH MIGRATION OPTIMIZATION ALGORITHM
Every species in nature has its own way of survival, predation
and reproduction. In addition, they must be able to against
dangerous environment, since they constantly suffer from
capture by natural enemies, and not every fish can grow to
adult favourably. Biologists found that fish swim in water for
many purposes. The FMO algorithm is proposed by taking
grayling as an example. The life cycle of grayling can be
divided into five stages as follows in the algorithm.

Stage 0+: newborn and young(age from 0 to 1 year).
Stage 1+: juvenile(age from 1 to 2 year).
Stage 2+: sub-adult(age from 2 to 3 years).
Stage 3+: adult(age from 3 to 4 years).
Stage 4+: adult(age from 4 to 5 years).
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FIGURE 1. Life cycle graph of the grayling.

The fish in every stage have different fecundity rates.
FIGURE 1 shows the life cycle graph of the grayling, where
F2,F3, and F4 are the fecundity rates in stage 2+, 3+,
and 4+.

The FMO algorithm is designed to achieve the optimiza-
tion through two processes including the swim process and
themigration process. The swim process imitates the grayling
swims and grows in the water to find food sources. In this
process, energy consumption follows the movement of the
fish that is defined by Eq. (1).

Er,d = rand · E (1)

where Er,d is the energy consumed in d dimension, rand
is a random number, E is a constant defines the maxima
energy consumption in one dimension. In this algorithm, we
set E = 2.
The functional relationship between the moving distance

and energy consumption is

disoffset,d =
Er,d · Us,d

a+ b · (Us,d )x
(2)

where disoffset,d represents the moving distance and Us,d is
the swimming speed in d dimension; a, b, and x are all
constants, a denotes standard metabolic rate, b represents a
scaling constant, x is a speed exponent, in literature, a, b, and
x are 2.25, 36.2, and 2.23, respectively.

By updating the value of each dimension, the new position
can be obtained by (3), where doffset is the moving distance of
the particle.

pnew = pold + doffset (3)

If the fitness value of Pnew is better than that of Pold ,Pold
will be updated by Pnew utilizing (3). Meanwhile, the velocity
will be updated by (4).

Us = 2 · Us (4)

As the fish are mature, some of them migrate back to their
birthplace to reproduce offspring, that is migration process.
Due to the fish in stage 0+ and stage 1+ are incapable of
reproducing, the migration process only appears in stage 2+,
stage 3+, and stage 4+. The fecundity rates of the three stages
are 5%, 10%, and 100%, respectively. When fish find a new
candidate point, the coordinate will be updated by (5)

P = (dmax − dmin) · rand + dmin, (5)

where dmax , dmin denote the maximum and maximum values
of all dimensions of the fish, respectively.

Calculate the fitness value of the new candidate, the veloc-
ity will be updated by the following equation

U =

{
π · Us, F(P) < F(Pbest ),
Us, otherwise,

(6)

where Us denotes the initial velocity.

B. FRACTIONAL CALCULUS (FC)
The FC originates from the classical calculus and has a
history of more than 300 years. Due to the development of
various applied disciplines such as fluid mechanics, cyber-
netics, and biology, the FC has not made great progress until
modern times. Then people gradually realized the practical
significance of the FC, and more and more scholars began
to study FC. As a branch of mathematical analysis, the FC
has many advantages as follows. First of all, it reflects the
inevitability of historical development from the mathematical
point of view. Furthermore, memorability is a good feature of
the FC. In addition, compared to the nonlinear model, the FC
model can fit the real world better because of its concise
expression.

Three definitions of fractional derivatives (FDs) are
described as follows, where α is the order of fractional
derivative.
Definition 1 (Riemann-Liouville FD):

RLDαa,t f (x)

=


dnf
dtn

, α = n,
1

0(n− α)
dn

dxn

∫ x

a
(x − t)n−α−1f (t)dt, n− 1 < α < n.

(7)

Definition 2 (Caputo FD):

CDαa,t f (x)

=


dnf
dtn

, α = n,
1

0(n− α)

∫ x

a
(x − t)n−α−1f n(t)dt, n− 1 < α < n.

(8)

Definition 3 (Grünwald-Letnikov FD):

GLDαf (x) = lim
h→0

1
hα

+∞∑
k=0

(−1)k0(α + 1)f (x − kh)
0(k + 1)0(α − k + 1)

. (9)

For Grünwald-Letnikov FD, the discrete time situation can
be approximated by (10)

GLDαf (t) =
1
T α

r∑
k=0

(−1)k0(α + 1)f (t − kT )
0(k + 1)0(α − k + 1)

. (10)

where T is the time increment, r is the truncation order.
0(x) is Gamma function in above three FD definitions.
The above three FC has the following properties:

(a) Linearity Dα[af (x)+ bg(x)] = aDαf (x)+ bDαg(x).
(b) The index law Dα+β f (x) = DαDβ f (x).
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(c) Generalized Leibniz rule

Dα[f (x) · g(x)] =
∞∑
i=0

Dif (x) · Dα−ig(x),

where a, b are constants.

C. PID CONTROLLER
The PID controller has three parameters that have different
effects on PID controller. The proportional gainKP can adjust
the deviation proportionally, quickly, and timely to improve
the control sensitivity, but there is a steady-state error and the
control accuracy is low. The integral gainKI can eliminate the
steady-state error, but it will affect the stability of the system.
The integral gainKD can speed up the response of the system,
reduce the overshoot, reduce the oscillation, and ‘‘predict’’
the dynamic process.

The input-output equation in the time domain of the clas-
sical PID controller is

e(t) = y(t)− r(t), (11)

u(t) = KPe(t)+ KI

∫ t

0
e(τ )dτ + KD

de(t)
dt

. (12)

where r(t), y(t), u(t) are system input, controller output, and
system output, respectively, e(t) is error signal.
The corresponding transfer function of PID controller is

G(s) =
U (s)
E(s)

= KP +
KI
s
+ KDs. (13)

III. PROPOSED FRACTIONAL-ORDER FISH MIGRATION
OPTIMIZATION ALGORITHM
In this section, a novel Fractional-Order Fish Migration
Optimization (FOFMO) algorithm is described detailly. The
FOFMO algorithm combines the FMO algorithm with the
concept of Grünwald-Letnikov FD. The difference between
the FMO algorithm and the FOFMO algorithm lies in two
aspects. On the one hand, the update strategy of fractional-
order velocity is used in the FOFMO. On the other hand,
the new offspring position of the FOFMO is produced based
on the global best particle.

A. FRACTIONAL-ORDER VELOCITY
Based on the analysis in Section 2.1, the velocity in the FMO
is updated by (4) and (6). Although the FMO algorithm has a
strong advantage in searching global optimal solution, it still
has a weak exploitation ability since it takes a lot of time to
make explore. In order to improve the ability of exploitation,
the FC is used to update velocity. Supposing the time interval
is 1, then

doffset =
Er · U t

s

a+ b · (U t
s )x
,

U t
s = Pt − Pt−1. (14)

From (14), due to a = 2.25, b = 36.2, x = 2.23, it can
be find that for the whole fraction, compared to numerator,
denominator is much bigger. As the iterative process con-
tinues, the speed of the fish gradually slows down, which

will cause the algorithm to stagnate. In order to avoid the
algorithm falling into the local optimal solution, the concept
of Grünwald-Letnikov FD is introduced in this manuscript.

From (9), let α = 1, we obtain

GLDα[ft+1] = ft+1 − ft . (15)

Equation (15) is the derivative of order 1 in the discrete case.
For 0(x), we have

0(α + 1) = α0(α),

0(α + 1) = α(α − 1)0(α − 1),

0(α + 1) = α(α − 1)(α − 2)0(α − 2),

0(α + 1) = α(α − 1)(α − 2)(α − 3)0(α − 3), (16)

In order to generalize, let T = 1, r = 4 [50]–[52], Eq. (17)
can be obtained.

GLDα(ft+1) =
1
T α

r∑
k=0

(−1)k0(α + 1)ft+1−kT
0(k + 1)0(α − k + 1)

= ft+1 − αft −
1
2
α(1− α)ft−1

−
1
6
α(1− α)(2− α)ft−2

−
1
24
α(1− α)(2− α)(3− α)ft−3. (17)

For the proposed algorithm, assume the population size
of fish is ps and the dimension is Dim, let the position
matrix P = P(ps,Dim) = [p1, p2, · · · , pps]T , where
pi = [pi,1, pi,2, · · ·, pi,Dim] is the position of particle
i. Similarly, let Ppre = [Ppre1,Ppre2,Ppre3,Ppre4] denote
the historical position of the particles which is used to
calculate fractional-order velocity. Specifically, Ppre{h} =
Ppre{h}(ps,Dim) = [ppre{h}1 , ppre{h}2 , · · · , ppre{h}ps ]T , ppre{h}i =

[ppre{h}i,1 , ppre{h}i,2 , · · · , ppre{h}i,Dim ] where h = 1, 2, 3, 4; i =
1, 2, · · · , ps. Therefore, the velocity of the particle is updated
by (18), where Us,d is the velocity of dimension d .

Us,d = pi,d − αp
pre1
i,d −

1
2
α(1− α)ppre2i,d

−
1
6
α(1− α)(2− α)ppre3i,d

−
1
24
α(1− α)(2− α)(3− α)ppre4i,d .

pnewi,d =
Er,d · Us,d

a+ b · (Us,d )x
.

ppre4i,d = ppre3i,d .

ppre3i,d = ppre2i,d .

ppre2i,d = ppre1i,d .

ppre1i,d = pnewi,d . (18)

B. NEW POSITIONS OF THE OFFSPRINGS
Moveover, the graylings migration back to reproduce the new
offsprings when they have group to maturity. The graylings
should breed in a position that is more conducive to survival.
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FIGURE 2. The diagram of the proposed FOFMO.

Therefore, the positions of the new offsprings should close to
the global best particle. Equation (5) is replaced by (19).

pnewi = pgbest + rand · (poldi − pgbest ) (19)

C. THE PROPOSED ALGORITHM
In this section, the novel algorithm based on the fractional-
order velocity and the new positions is described in detail.
The diagram of the FOFMO is given in FIGURE 2.

TABLE 1 shows the pseudo code of the FOFMOalgorithm,
whereRatefecundity is the fecundity rates at specific stage,Emin
is the minimum energy to eliminate, xg,i is the grow status,
and xeng,i is the energy of particle i.

IV. EXPERIMENTAL RESULTS AND ANALYSIS ON
BENCHMARK FUNCTION
The value of α affects significantly on the memory of the
FOFMO. In this section, 23 classical benchmark functions
utilized by many researchers [23], [24] are used to examine
the performance of the proposed FOFMO algorithm with
different α. In detail, TABLE 2 contains seven unimodal
functions, TABLE 3 shows the details of six common mul-
timodal functions, and TABLE 4 displays the details of ten
multimodal functions in low dimension. Unimodal functions
have only one global optimal solution, but there is no local
optimal solution, this can verify whether the algorithm has
the ability to search the global optimal solution. Due to
multimodal functions have many local optimal solutions, it is
possible to verify if the algorithm falls into the local optimal
solution. Multimodal functions in low dimension can verify
the convergence of the algorithm under more strict condi-
tions. Search space denotes the boundary of search space; D
means the dimension of the function and fmin represents the
optimal value of the function.

TABLE 1. The pseudo code of FOFMO algorithm.

In order to find the optimal fractional order α in (10),
the FMO, FOFMO(α = 0.1), FOFMO(α = 0.3),
FOFMO(α = 0.5), FOFMO(α = 0.7), and FOFMO(α =
0.9) algorithms are examined in the experiment. The exper-
iment runs 30 times and 1000 iterations on each bench-
mark function. The population has 100 individuals. TABLE 5
shows the statistical results of the FMO and the five FOFMO
algorithm with different value. AVG is the mean of the result
and STD is the standard deviation of the results of 30 times.
The red data represent the optimal result. The blue data rep-
resent all algorithms acquire the optimal result. The last line
represents the number of times of each algorithm achieves the
optimal result.

From TABLE 5, it can be seen that the effect becomes
worse as the value of α increases. In detail, these six algo-
rithms obtain the same optimal solutions on eight benchmark
functions. Among them, three unimodal functions, six com-
mon multimodal functions, and two multimodal functions in
low dimension. The FMO only achieves 2 optimal results.
However, The FOFMO(α = 0.1) obtains 9 optimal (red)
results, the FOFMO(α = 0.3) and the FOFMO(α = 0.5)
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TABLE 2. Unimodal benchmark functions.

TABLE 3. Common multimodal benchmark functions.

TABLE 4. Multimodal benchmark functions in low dimension.

obtain 3 optimal results, respectively. The FOFMO with
these 3 values is superior to the FMO algorithm. In special,

the FOFMO(α = 0.1) obtains the most optimal results and
performs best. Therefore, α = 0.1 is the optimal order
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TABLE 5. The statistical results of FMO, FOFMO(α = 0.1), FOFMO(α = 0.3), FOFMO(α = 0.5), FOFMO(α = 0.7), and FOFMO(α = 0.9).

in this experiment and it can be concluded that (18) is
effective.

TABLE 6 shows the runtime of the FMO and the
FOFMO(α = 0.1, 0.3, 0.5, 0.7, 0.9) in the experiment.
We can see that the FOFMO algorithm has a longer runtime
than the FMO. The main reason is that the velocity and
position update by (18) of the FOFMO are more complicate.

V. SIMULATION EXPERIMENT ON THE PID CONTROLLER
A. PERFORMANCE ANALYSIS
In this section, we design and optimize the PID controller
such that it has good performance. From (12) and (13),
we find that the PID controller has three parameters: KP,KI ,
and KD, so we need to optimize them only. For the design and
optimization experiment of PID controller, there are many
performance evaluation criterions. The common performance
evaluation criterions are integral absolute error (IAE), inte-
gral square error (ISE), integral time absolute error (ITAE),
and integral time square error (ITSE).

JIAE =
∫
∞

0
|e(t)|dt

JISE =
∫
∞

0
e2(t)dt

JITAE =
∫
∞

0
t|e(t)|dt

JITSE =
∫
∞

0
te2(t)dt, (20)

where e(t) is error signal. In this paper, we apply the ITAE
performance evaluation criterion, so JITAE is the fitness
function.

In this paper, the system (21) is examined for the PID
tuning problem.

G1(s) =
s+ 2

s4 + 8s3 + 4s2 − s+ 0.4
(21)

In order to verify the performance of the proposed
algorithm, we utilize the FOFMO(α = 0.1) with
PSO [11], fractional-order particle swarm optimization algo-
rithm FOPSO(α = 0.9) [12] and the FMO [44] for design and
optimization of the PID controller, respectively, and compare
the results. The parameter α = 0.1 in the experiment refers to
the order of fractional derivative, because FOFMO performs
best at this value. Similarly, α = 0.9 is the best parameter
of the FOPSO. In the experiment, all algorithms run 5 times,
500 iterations, and 20 particles on fitness function. The PID
controller is shown in FIGURE 3. We set the PID controller
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TABLE 6. The time consumption of the test algorithms.

FIGURE 3. Block diagram of PID controller.

TABLE 7. The statistical results of PSO, FOPSO(α = 0.9), FMO,
FOFMO(α = 0.1) for G1(s) (0 ≤ KP ,KI ,KD ≤ 300).

parameters 0 ≤ KP ≤ 300, 0 ≤ KI ≤ 300, and 0 ≤
KD ≤ 300.

TABLE 7 shows the statistical results of the PSO,
FOPSO(α = 0.9), FMO, and FOFMO(α = 0.1) when
0 ≤ KP,KI ,KD ≤ 300. In TABLE 7, AVG is the mean of
the optimal values of 5 times, STD is the standard deviation
of the optimal values of 5 times. We find that the FOPSO has
smaller AVG value than the PSO and FOFMO has smaller
AVGvalue than the FMO.At the same time, the FOFMO(α =
0.1) achieves the smallest AVG value. FIGURE 4 shows the
curves of the fitness value of the results of 5 times.

FIGURE 4. The fitness values of PSO, FOPSO, FMO, and FOFMO.

TABLE 8. The parameter values of PID controller tuned by four
algorithms for G1(s) (0 ≤ KP ,KI ,KD ≤ 300).

TABLE 8 shows the parameter values (KP,KI , and KD)
corresponding to the optimal values when 0 ≤ KP,KI ,KD ≤
300. The results show that the FOPSO has smaller fitness
value than PSO and FOFMO has smaller optimal value than
FMO. At the same time, FOFMO(α = 0.1) achieves the
smallest optimal value.
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FIGURE 5. The terminal voltage step response of PID controller tuned by
four algorithms for G1(s) (0 ≤ KP ,KI ,KD ≤ 300).

TABLE 9. The overshoots (OS) of PID controller tuned by four algorithms
for G1(s) (0 ≤ KP ,KI ,KD ≤ 300).

TABLE 10. The parameter values and performance of PID controller
tuned by four algorithms for G2(s) (−50 ≤ KP ,KI ,KD ≤ 50).

FIGURE 5 shows the terminal voltage step response of the
PID controller which tuned by the PSO, FOPSO(α = 0.9),
FMO, and FOFMO(α = 0.1) when 0 ≤ KP,KI ,KD ≤ 300.
In TABLE 9, we can find that the overshoots of the PSO and
FMO become smaller with the help of fractional derivative.
Therefore, fractional derivative is effective for improving
the performance of the PID controller. Meanwhile, the PID
controller tuned by the FOFMO has the smallest overshoot.
As a whole, the results show that the FOFMO algorithm has
good performance for the design and optimization of the PID
controller.

In order to further examine the performance of the pro-
posed algorithm, another system (22) [54] is examined for
the PID tuning problem.

G2(s) =
−1.39s2 − 1.99s− 0.2577

s3 + 1.408s2 + 0.656s+ 0.1013
(22)

The result is shown in TABLE 10. The FOFMO achieves
the smallest AVG value and optimal value. This is the same
conclusion as in Table 7 and Table 8.

B. ANALYSIS ABOUT THE RANGE OF KP ,KI ,KD
TABLE 11 shows the statistical results of the PSO,
FOPSO(α = 0.9), FMO, and FOFMO(α = 0.1) when
0 ≤ KP,KI ,KD ≤ 100. The conclusion is similar to that in
TABLE 7. That is, the FOPSOhas smaller AVGvalue than the
PSO and the FOFMO has smaller AVG value than the FMO.

TABLE 11. The statistical results of PSO, FOPSO(α = 0.9), FMO,
FOFMO(α = 0.1) for G1(s) (0 ≤ KP ,KI ,KD ≤ 100).

TABLE 12. The parameter values of PID controller tuned by four
algorithms for G1(s) (0 ≤ KP ,KI ,KD ≤ 100).

TABLE 13. The statistical results of PSO, FOPSO(α = 0.9), FMO,
FOFMO(α = 0.1) for G1(s) (0 ≤ KP ,KI ,KD ≤ 30).

TABLE 14. The parameter values of PID controller tuned by four
algorithms for G1(s) (0 ≤ KP ,KI ,KD ≤ 30).

Similarly, FOFMO(α = 0.1) achieves the smallest AVG
value. TABLE 12 shows the parameter values corresponding
to the optimal values when 0 ≤ KP,KI ,KD ≤ 100. The
results show that the FOPSO has smaller optimal value than
the PSO and FOFMO has smaller optimal value than FMO.
At the same time, the FOFMO(α = 0.1) achieves the smallest
optimal value.

TABLE 13 shows the statistical results of the PSO,
FOPSO(α = 0.9), FMO, and FOFMO(α = 0.1) when
0 ≤ KP,KI ,KD ≤ 30. The conclusion is similar to that in
TABLE 7 and TABLE 11. That is, the FOPSO has smaller
AVG value than the PSO and FOFMO has smaller AVG
value than FMO. At the same time, the FOFMO(α = 0.1)
achieves the smallest AVG value. TABLE 14 shows the
parameter values corresponding to the optimal values when
0 ≤ KP,KI ,KD ≤ 30. The results show that the FOPSO
has smaller optimal value than the PSO and FOFMO has
smaller optimal value than the FMO. At the same time,
the FOFMO(α = 0.1) achieves the smallest optimal value.

C. ROBUSTNESS ANALYSIS
Robustness is an important property to evaluate the stabil-
ity and reliability of a controller [55]–[58]. In this section,
the robustness of the PID controller for different tuning meth-
ods forG1(s) is tested. The system slightly different from (21)
is used as (23).

Gtd (s) =
s+ 2

s4 + 8s3 + 4s2 − s+ 0.4
e−0.01s (23)
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TABLE 15. The parameter values and performance of PID controller
tuned by four algorithms for Gtd (s) (0 ≤ KP ,KI ,KD ≤ 300).

FIGURE 6. The terminal voltage step response of PID controller for Gtd (s).

TABLE 16. The running time of PSO, FOPSO(α = 0.9), FMO,
FOFMO(α = 0.1) for G1(s) (0 ≤ KP ,KI ,KD ≤ 100).

In order to test the robustness of these different tuning
methods, the time delay is added to G(s). TABLE 15 shows
the the performance on tuning the PID controller with the
PSO, FOPSO(α = 0.9), FMO, and FOFMO(α = 0.1).
In TABLE 15, OS is the overshoot, and ts (± 2%) is the
settling time.

FIGURE 6 shows the terminal voltage step response of the
PID controller which tuned by the PSO, FOPSO(α = 0.9),
FMO, and FOFMO(α = 0.1).

From TABLE 15 and FIGURE 6, we can see that the
PID controller tuned by the FOFMO is more robust and
has better performance in terms of the AVG, STD, optimal
value, overshoot, and settling time compared to other PID
controllers.

D. RUNNING TIME
TABLE 16 shows the running time of the PSO, FOPSO(α =
0.9), FMO, FOFMO(α = 0.1) when 0 ≤ KP,KI ,KD ≤ 100.
We find that both the FMO and FOFMO are much faster than
the PSO and FOPSO. This result is consistent with the result
of paper [44]. Furthermore, the PSO is faster than the FOPSO
and the FMO is faster than the FOFMO. The main reason is
that the velocity and position update by fractional-order are
more complicate.

VI. CONCLUSION
In order to improve the performance on tuning the PID
controller, a novel FOFMO algorithm is proposed in this
manuscript based on the FC concepts. In particular, the veloc-
ity and position in the FOFMO are updated in fractional-order
form.Meanwhile, the discrete fractional derivative used in the
FOFMO is derived in detail. The experiment on benchmark
functions shows that the proposed algorithm is superior to
the original FMO on performance. In addition, the FOFMO
algorithm is utilized to tune the PID controller by simula-
tion experiment. The result reveals the PID controller tuned
by the FOFMO has the best performance of the four algo-
rithms including the PSO, FOPSO, and FMO. Therefore, it is
effective to use the FOFMO algorithm for optimal control.
The initial particle numbers affects the performance of many
algorithms, and there are many other outstanding algorithms
proposed in recent years. These will be tested in our future
work.
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