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ABSTRACT This paper presents a multi-service model of a communications system with stream and
elastic traffic. The idea of the model is based on an analysis of a two-dimensional Markov process, which
approximates the real process in the considered system. Such an approach allows us to describe the use of
system resources by stream and elastic traffic with high accuracy. An appropriate simulation model has been
developed and implemented in order to verify the proposed model. The presented results have confirmed the
validity of all the theoretical assumptions adopted in the study.

INDEX TERMS Stream and elastic traffic, compression, two-dimensioned Markov process.

I. INTRODUCTION
Data traffic in modern networks is based on the IP proto-
col. Recently, attempts have been made to send various data
streams (with different QoS (Quality of Service) require-
ments) using the IP protocol, e.g., voice (Voice over IP).
The problems with ensuring appropriate QoS parameters and
adequate levels of security have been solved, and today there
are basically no problems with sending any data stream over
IP networks. Furthermore, the development of access net-
works, especially cellular networks, has led to the point where
users have access to the network from anywhere on Earth.
Reports, published by the largest manufacturers of network
devices, unanimously state that the data volume is growing
bigger every year [1], [2]. Furthermore, network operators
have noticed an enormous increase in traffic load in areas
affected by the Coronavirus pandemic. According to [3], [4],
the increase in data traffic amounted to 30–50% already in
the first few days of the pandemic. Such a dynamic growth
in traffic load is a challenge for network operators and shows
that network resources are not limitless.

Network operators possess a variety of traffic management
mechanisms that allow them to shape the transmitted data
streams in such a way that the available network resources are
used in an optimal way. The proper adoption of management
mechanisms is of particular importance in networks with
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limited resources, e.g., in mobile networks. Depending on
the properties of the transmitted data stream, it is possible to
use several traffic management mechanisms, e.g., threshold
and thresholdless compression [5]–[8], resource reservation
[9], [10], overflow traffic [11], redirections, priorities [12],
[13], or queueing [14], [15].

The shaping of data streams means that their parameters
are changing, e.g., the transmission speed or delay. Traffic
streams are most commonly divided into traffic with a con-
stant bit rate (CBR) and traffic with a variable bit rate (VBR).
VBR data streams are usually subjected to thresholdless com-
pression, which is inscribed into the properties of the TCP
protocol. This allows the speed of data transmission to be
increased or decreased depending on the load of the links.
In the case that all the resources of the system are occupied,
the transmission speeds of currently serviced streams are
reduced in order to service new data streams that arrive at the
input of the system. Two types of compressed data streams
have been widely address in the literature: so-called adaptive
and elastic traffic. If a decrease in bit rate is accompanied
by extended service time necessary for transferring all the
data, then the generated traffic is elastic traffic (e.g., an e-mail
with an attachment). If, however, a decrease in bit rate of a
given packet stream is not followed by any changes in the
service time, thenwe consider the traffic to be adaptive traffic.
An example of this type of stream is the data stream associ-
ated with ‘‘live’’ transmission. In this case, when the links
are overloaded, the quality of the transmitted video stream
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decreases to maintain data transmission, which reduces the
required transmission speed.

Multi-service network systems are often described at the
application level in the literature. A call is defined as a stream
of CBR packets. The terms stream and flow are also used
in the literature, e.g., [16]–[19]. This approach assumes that
for the analytical modeling of multi-service network systems,
every real stream of VBR packets can be replaced with a
CBR stream of an accurate value, known in the literature
as equivalent bandwidth (EB) [20]–[22]. Nowadays, espe-
cially in Internet modeling, it is assumed that the EB value
is equal to the maximum bit rate of real packet streams
from VBR. In most proposed models of resource systems,
it is assumed that traffic at the call level (i.e., streams in
which packet streams are seen as individual request) can be
described by Poisson streams [18], [22], [23]. Consequently,
it is possible to analyze multi-service systems on the basis of
multi-dimensional Markov processes in which the number of
dimensions is equal to the number of offered traffic streams.
In [24], [25], a basic, recurrent model of a multi-service,
full-availability system was proposed. In [26], this model
was generalized to include BPP traffic streams, which are a
mixture of Bernoulli, Pascal, and Engset traffic streams. In
[27], a model of fully available resources with BPP traffic
is proposed, which is based on a convolution of occupancy
distributions of particular traffic classes.

In [9], the model of [24], [25] is expanded to include elastic
traffic resources. It was assumed that this type of traffic can
be compressed to certain limit values. In [28], this model is
generalized to include an instance of limitless compression
of elastic traffic streams. In the model, the bit rate of serviced
calls may tend towards zero and, as a consequence, calls will
always be serviced, i.e., the phenomenon of lost calls will
never occur. In the models of [9] and [28], it was assumed that
the multi-dimensional Markov service process is a reversible
process. The consequence of this assumption is a state-
dependent call service process of all classes and, as a result,
an appropriate distribution of the resources between the ser-
viced calls of individual classes. Such a resource distribution
can be executed on the basis of the so-called balanced fairness
algorithm [17], [29]. In [5], the model of [9] is expanded to
include the possibility of simultaneous service of elastic and
adaptive traffic. Reference [30] proposed the interpretation of
an occupancy distribution, determined in [5], as an occupancy
distribution of a multi-service queueing system with stream
traffic. In [14] and [15], a model of a queueing system with
elastic and adaptive traffic is proposed.

An approximate model of full-availability resources that
services a mixture of stream and adaptive traffic is proposed
in [31], [32]. In this model, it is assumed that the system ser-
vices only stream traffic, i.e., adaptive traffic is approximated
with such stream traffic that it corresponds to adaptive traffic
with the maximum compression coefficient. In [33], a two-
dimensional queueing model is proposed. In the model, it is
assumed that the occupancy distribution may be represented
as the product of two occupancy distributions associated with

the relevant types of traffic. Such an approach has made it
possible to develop a model of a full-availability resources
with a mixture of stream and elastic traffic. In [33], it is
assumed that the Markov service process is reversible and,
as a result, that the serviced resource division is in agreement
with the balanced fairness algorithm. Moreover, the assump-
tion that the service process is reversible has enabled the
construction of a two-dimensional occupancy distribution in
which one dimension corresponds to the occupancy distri-
bution of stream traffic and the other corresponds to the
occupancy distribution of elastic traffic.

In [16], a model of a system that services a mixture of
stream (non-adaptive traffic), adaptive and elastic traffic is
proposed. In the model the partial overlap link bandwidth
policy is adopted according to which the capacity of the
system is divided into two parts, a common part (for stream
traffic only) and a part reserved for elastic and adaptive traffic
streams only. In order to determine the capacity of each part
the Authors of [16] have proposed the iterative algorithm of
the system allocation procedure with the respect to QoS and
GoS requirements. In the algorithm it is assumed that the
minimum capacity of the common part is calculated on the
basis of Erlang-B formulae, while the capacity of second part
is defined as a sum of maximum number of adaptive and
elastic traffic streams simultaneously present in the system.
The number of adaptive traffic stream is determined on the
basis on two dimensional Markov chain (on the assumption
that the number of adaptive traffic stream is independent of
other traffic streams), and is a basis for calculation of the
number of elastic traffic streams. Finally, the blocking prob-
abilities for each class of calls are obtained from the steady
state distribution of the Continuous Time Markov Chain.

This article proposes an approximate analytical model of a
communications system with stream and elastic traffic. The
idea of themodel is based on an analysis of a two-dimensional
Markov process, which approximates the real process in the
considered system. To validate and verify the model proposed
here, an original and purpose-made simulator was used. The
results of the simulation corroborate the validity and accuracy
of the theoretical assumptions adopted in the model.

The remaining part of the article is structured as follows.
In Section II, an analytical model of the system with stream
and elastic traffic is proposed. Section III presents several
sample results of the analytical modeling of various selected
systems which are then compared with the relevant results
of the digital simulation. Finally, Section IV summarizes the
article.

II. A MODEL OF A MULTI-SERVICE SYSTEM WITH
STREAM AND ELASTIC TRAFFIC
Let us assume thatMs classes of stream traffic andMe classes
of elastic traffic are offered to the system. If we assume
that the calls of elastic traffic do not undergo compression,
the offered traffic can be described by the following parame-
ters:
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• M - the total number of call classes offered to the system:
M = Ms +Me

• ti,u - the demanded bit rate of a call of class i type u,
where u = s for stream traffic, and u = e for elastic
traffic

• tAU - the bit rate of allocation unit (AU) adopted in
the considered system [32]. The value of tAU can be
calculated according to the following formula:

tAU = GCD
{
c1,s, . . . , cMs,s, c1,e, . . . , cMe,e

}
, (1)

where GCD is the biggest common divisor of the bit
rates of all the offered call classes

• ci,u - the demanded number of AUs necessary to service
a call of class i type u = s:

ci,u =
⌈
ti,u
tAU

⌉
(2)

• λi,u - the call stream intensity of class i type u
• µi,u - the call stream intensity of class i type u
• ai,u - the average traffic intensity of class i type u,
defined in relation to calls:

ai,u =
λi,u

µi,u
(3)

• Ai,u - the average traffic intensity of class i type u,
defined in relation to AUs:

Ai,u = ai,u · ci,u (4)

• V - the total bit rate of the system
• C - the total capacity of the system expressed in AUs:

C =
⌊
V
tAU

⌋
(5)

Let us now consider a model with the real capacity Cr .
Introducing the notion of the so-called virtual capacity Cv
(Cv > Cr ) significantly simplifies the analysis of the
resources with stream and elastic traffic. The virtual capacity
of the system is the capacity of the system from an elastic
traffic point of view, which does not affect the real capacity.
However, the greater number of calls of elastic traffic can be
serviced because of the mechanism of compression (decrease
of the demanded number of AUs necessary for a connection
of calls of elastic traffic).

A diagram of the multi-service resources with the virtual
capacity is shown in Fig. 1. The introduction of the virtual
capacity allows the system with traffic compression to be
regarded as a system with stream traffic only. In the thus
defined real capacity resources, the bit rate of the calls of
elastic traffic can be reduced as long as the sum of the AUs
occupied in the virtual capacity resources (which is defined
as the sum of uncompressed demands of calls of all classes) is
less than the virtual capacity. Thismeans that the compression
of the calls of elastic traffic in the real resources corresponds
to the servicing of the uncompressed calls of elastic traffic in
the virtual resources. Therefore, in the analysis of the service
process of the considered system, the traffic resources can be

FIGURE 1. Multi-service system with stream and elastic traffic.

divided into two areas: the uncompressed service area (here
referred to as the real area) and the compressed area (here
referred to as the virtual capacity), where the calls of elastic
traffic undergo compression. Let n be the total number of
serviced AUs in the multi-service resources. In the real area
(0 ≤ n ≤ Cr ), the calls of stream and elastic traffic are
serviced, whereas in the virtual area (Cr < n ≤ Cv) the calls
of elastic traffic are always serviced and the calls of stream
traffic only if the sum of AUs occupied by this type of calls
is less than the real capacity.

The service process in the multi-service system can be
considered at microstates and macrostates call levels. The
macrostate is defined as a set of natural numbers N+ deter-
mining the number of calls of class i serviced in the system
and is denoted by

(Xs,Xe) =
{
x1,s, x2,s, . . . , xMs,s, x1,e, x2,e, . . . , xMe,e

}
, (6)

where xi,u is the number of calls of class i type u (u = s for
stream traffic, u = e for elastic traffic) serviced in the system.
The total number of n (Xs,Xe)AUs serviced in the microstate
(Xs,Xe) is therefore equal to

n (Xs,Xe) =
Ms∑
i=1

xi,sci,s +
Me∑
j=1

xj,ecj,e. (7)

The macrostate, in turn, is defined on the basis of the total
number of AUs occupied by the calls of stream and elastic
traffic in the system, without the division of AUs between
individual call classes for both types of traffic. Finally, on the
basis of the definition of the microstate and the informal
definition of the macrostate, we are in the position to formally
define the macrostate (ns, ne) as the state in which ns AUs
are occupied by the calls of stream traffic and ne AUs are
occupied by the calls of elastic traffic. We can thus write

�(ns, ne) =

=

{
(Xs,Xe) ∈ � : ns =

Ms∑
i=1

xi,sci,s ∧

ne =
Me∑
j=1

xj,ecj,e

 , (8)

where � is the set of all microstates such that

� =

=

{
(Xs,Xe) : 0 ≤ nXs,Xe ≤ Cv ∧

Ms∑
i=1

xi,sci,s = Cr
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⇒

Me∑
j=1

xj,ecj,e = 0

 . (9)

The compression of calls of elastic traffic causes a decrease in
their bit rates and may simultaneously be associated with an
extension of their service times. The average traffic intensity
of calls of class i type u in microstate (Xs,Xe), defined in
relation to AUs, can be written as follows:

Ai,u (Xs,Xe) = ai,u (Xs,Xe) ci,u (Xs,Xe) , (10)

where ai,u (Xs,Xe) is the average traffic intensity of calls of
class i type u in microstate (Xs,Xe) defined in relation to calls.
On the basis of (3), we can write

ai,u (Xs,Xe) =
λi,u

µi,u (Xs,Xe)
. (11)

The parameter ci,u (Xs,Xe) defines the number of resources
demanded by calls of class i type u in microstate (Xs,Xe). The
parameter µi,u (Xs,Xe), in turn, defines the service intensity
of calls of class i type u in microstate (Xs,Xe). In the case
of stream traffic, both the demanded number of AUs and
the service time of calls do not experience any alternations
regardless of the microstate in which the service process is
located. We can thus write

∀(Xs,Xe)∈� ci,s (Xs,Xe) = ci,s (12)

and

∀(Xs,Xe)∈� µi,s (Xs,Xe) = µi,s. (13)

In the virtual area, the demanded number of AUs by calls
of elastic traffic decreases, while the service time of calls of
these classes increases. Therefore,

∀(Xs,Xe)∈� cj,e (Xs,Xe) =

=



cj,e,
0 ≤ n (Xs,Xe) ≤ Cr ,

cj,e
Cr

n (Xs,Xe)
,

Cr < n (Xs,Xe) ≤ Cv,
(14)

and

∀(Xs,Xe)∈� µj,e (Xs,Xe) =

=



µj,e,

0 ≤ n (Xs,Xe) ≤ Cr ,

µj,e
Cr

n (Xs,Xe)
,

Cr < n (Xs,Xe) ≤ Cv.
(15)

Notice that both the demanded number of AUs by
calls of elastic traffic and the service intensity of these
calls do not change for each microstate (Xs,Xe) that

FIGURE 2. A fragment of the Markov process for three adjacent states.

belongs to macrostate (ns, ne) defined by (8). As a result,
we get

∀(Xs,Xe)∈�(ns,ne) cj,e (Xs,Xe) = cj,e (ns, ne) =

=



cj,e,
0 ≤ ns + ne ≤ Cr ,

cj,e
Cr

ns + ne
,

Cr < ns + ne ≤ Cv,
(16)

and

∀(Xs,Xe)∈�(ns,ne) µj,e (Xs,Xe) = µj,e (ns, ne) =

=



µj,e,

0 ≤ ns + ne ≤ Cr ,

µj,e
Cr

ns + ne
,

Cr < ns + ne ≤ Cv.

(17)

On the basis of (10), (12), (13), (16), and (17), it is possible
to determine the average traffic intensities of calls of stream
and elastic traffic in macrostate (ns, ne) by the following
formulas, respectively:

Ai,s (ns, ne) = ai,s · ci,s = Ai,s, (18)

Aj,e (ns, ne) = aj,e (ns, ne) cj,e (ns, ne) = Aj,e. (19)

In order to determine the occupancy distribution in the thus
defined system, let us consider the service process in three
adjacent microstates presented in Fig. 2. Let us now make the
assumption that the considered service process is a reversible
process and that it satisfies the local balance equations. The
local balance equations for the three neighboring microstates
from Fig. 2 will take on the following form:

µi,sxi,sP (Xs,Xe) = λi,sP
(
Xs − 1i,s,Xe

)
, (20)

µj,e (Xs,Xe) xj,eP (Xs,Xe) = λj,eP
(
Xs,Xe − 1j,e

)
, (21)

where parameter P (Xs,Xe) is the probability of microstate
(Xs,Xe), 1i,s denotes exactly one call of class i of stream
traffic, and parameter 1j,e denotes exactly one call of class
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j of elastic traffic. Equations (20) and (21), after divid-
ing both sides by µi,s and µj,e (Xs,Xe), and multiply-
ing by ci,u and cj,e (Xs,Xe), respectively, can be written
as follows:

xi,sci,sP (Xs,Xe) =
λi,sci,s
µi,s

P
(
Xs − 1i,s,Xe

)
, (22)

xj,ecj,e (Xs,Xe)P (Xs,Xe) =

=
λj,ecj,e (Xs,Xe)
µj,e (Xs,Xe)

P
(
Xs,Xe − 1j,e

)
. (23)

In turn, on the basis of (10) and (11), we get:

xi,sci,sP (Xs,Xe) = Ai,sP
(
Xs − 1i,s,Xe

)
, (24)

xj,ecj,e (Xs,Xe)P (Xs,Xe) =

= Aj,e (Xs,Xe)P
(
Xs,Xe − 1j,e

)
.

(25)

In microstates in which the total number of AUs exceeds
the real capacity of the system, the service process does not
satisfy the local balance equations; therefore, the product
xi,u (Xs,Xe) ci,u (Xs,Xe) will be substituted with such a value
of the service stream yi,u (Xs,Xe) that it will guarantee the
reversibility property of the Markov process in the system
under consideration:

yi,s (Xs,Xe)P (Xs,Xe) = Ai,sP
(
Xs − 1i,s,Xe

)
, (26)

yj,e (Xs,Xe)P (Xs,Xe) =

= Aj,e (Xs,Xe)P
(
Xs,Xe − 1j,e

)
.

(27)

Because of the independence of the traffic stream offered to
the system, we can add up, all Ms equations of type (26) and
all Me equations of type (25). Hence,

P (Xs,Xe)

 Ms∑
i=1

yi,s (Xs,Xe)+
Me∑
j=1

yj,e (Xs,Xe)

 =
=

Ms∑
i=1

Ai,sP
(
Xs − 1i,s,Xe

)
+

+

Me∑
j=1

Aj,e (Xs,Xe)P
(
Xs,Xe − 1j,e

)
. (28)

The sum in the square brackets determines the total service
stream (in terms of AUs) of all the calls in microstate (Xs,Xe).
This stream can take on a value equal to the total number
of AUs occupied in the system (in the real area) or to the
real capacity (in the virtual area). Hence, the occupancy
distribution at the microstate level can finally be written in
the following form:

P (Xs,Xe) =

=



1
min {n (Xs,Xe) ,Cr }

[3pt]
[∑Ms

i=1
Ai,sP

(
Xs − 1i,s,Xe

)
+

+

∑Me

j=1
Aj,e (Xs,Xe)P

(
Xs,Xe − 1j,e

)]
,

for 0 ≤ n (Xs,Xe) ≤ Cv,

0, for all other cases,
(29)

where the value of the probability P (0 . . . , 0, 0 . . . , 0) results
from the normative condition

∑
(Xs,Xe)∈�

P (Xs.Xe) = 1.

The probability of macrostate (ns, ne) is defined as the sum
of the probabilities of the microstate that belongs to the set
�(ns, ne). As a result, we get

P (ns, ne) =
∑

(Xs,Xe)∈�(ns,ne)

P (Xs,Xe) . (30)

Now, since the service process in the considered system is by
definition a reversible process, in relation to the macrostate,
we can add up both sides of (29) over the set �(ns, ne).
Taking into account (30) and the definition of the macrostate
in (8) we can write the probability of macrostate (ns, ne) in
the following way:

P (ns, ne) =

=



1
min {ns + ne,Cr }[∑Ms

i=1
Ai,sP

(
ns − ci,s, ne

)
+

+

∑Me

j=1
Aj,e (ns, ne)P

(
ns, ne − cj,e

)]
,

for 0 ≤ ns + ne ≤ Cv,

0, for all other cases.
(31)

The value of the probability P (0, 0) at the macrostate level
results from the normative condition

∑
(ns,ne)

P (ns, ne) = 1.

The blocking phenomenon occurs if there are not enough
AUs available to service a new call. Thus, in the case of calls
of class i of stream traffic, it occurs if one of the following
three mutually exclusive cases occurs:

1) if there are no calls of elastic traffic serviced in the
system and the sum of the demands of serviced calls
and a new call of class i exceeds the real capacity Cr

2) if there are calls of elastic traffic serviced in the system
and the sum of the demands of serviced calls of stream
traffic and a new call of class i is equal to or exceeds
the real capacity Cr

3) if there are calls of elastic traffic serviced in the system
and the sum of the demands of serviced calls and a new
call of class i exceeds the virtual capacity Cv

Conversely, in the case of calls of class i of elastic traffic,
it occurs in the following two situations:
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FIGURE 3. Blocking probability in System I.

1) if there are no calls of elastic traffic serviced and the
sum of all serviced calls of stream traffic is equal to the
real capacity Cr

2) if there are calls of elastic traffic serviced in the system
and the sum of the demands of serviced calls and a new
call of class i exceeds the virtual capacity Cv

Thus, taking into account the states in which blocking for
individual call classes occurs, the blocking probability is
equal to:

Ei,u =
∑

(ns,ne)∈�i,u

[P (ns, ne)]Cv , (32)

where

�i,s

= {(ns, ne) ∈ �

:
(
Cr − ci,s + 1 ≤ ns ≤ Cr ∧ ne = 0

)
∨ (ne 6= 0)∧

∧
[(
ns = Cr − ci,s, . . . ,Cr − 1 ∧ 0 < ns + ne ≤ Cv

)
∧

∨
(
ns < Cr − ci,s ∧ Cv − ci,s + 1 ≤ ns + ne ≤ Cv

)]}
(33)

is the set of macrostates in which the blocking of calls of
class i of stream traffic occurs, and

�j,e = {(ns, ne) ∈ � : (ns = Cr ∧ ne = 0) ∨

∨ (ns = 0, . . . ,Cr − 1∧

∧ Cv − cj,e + 1 ≤ ns + ne ≤ Cv
)}
, (34)

is the set of macrostates in which the blocking of calls of class
j of elastic traffic occurs.

III. RESULTS
In order to verify the accuracy of the proposed model of a
system with stream and elastic traffic, the model’s results
were compared with the results of simulation experiments.
For this purpose, an appropriate simulator of the considered
system was designed and implemented (C++).

Figs. 3–5 present the results of the blocking probability in
the considered systems. Figure 3 shows the results in System I
with the parameters Cr = 10 AUs and Cv = 20 AUs.
The system was offered four call classes: one stream class

FIGURE 4. Blocking probability in System II.

FIGURE 5. Blocking probability in System III.

(c1,s = 1 AU) and three elastic classes (c1,e = 1 AU, c2,e = 2
AUs, c3,e = 4AUs). Fig. 4 presents the results of the blocking
probability in System II with the parameters Cr = 10 AUs
and Cv = 40 AUs. The system was offered three call classes:
c1,s = 1AU, c1,e = 3 AUs, c2,e = 6 AUs. In Fig. 5,
the results for System III with the parameters: Cr = 20 AUs,
Cv = 25 AUs, c1,s = 1AU, c1,e = 2 AUs, and c2,e = 5 AUs
are presented.

The results of the simulation are presented in Figs. 3–
5 in the form of dots with a confidence interval of 95%,
calculated with Student’s t-distribution for five series, with
1,000,000 calls each (of the class that generated the lowest
number of calls) in each series. For each point of the simu-
lation, the confidence interval is at least two orders of mag-
nitude lower than the results of the simulation. The obtained
results are presented as a function of traffic offered per one
AU of the system:

a =

∑M
i=1 Ai,u
Cr

. (35)

The presented results confirm the satisfactory accuracy
of the proposed model. The accuracy does not depend on
the ratio of the real capacity Cr to the total capacity Cv,
which takes into account the virtual part of the capacity of
the system. The blocking probabilities of calls of stream
traffic depend on the real capacity of the system and on the
mixture of offered traffic as well. In the case of elastic traffic,
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the blocking probabilities depend also on the virtual capacity.
The greater virtual capacity of the system the smaller value
of blocking probability of calls of elastic traffic. It is also
worth to point that greater virtual capacity of the system
means greater compression of calls of elastic traffic as well
as proportional increase of theirs service time. The model is
easily programmable and can be a useful tool in engineering
practice when assessing the QoS of IP networks. In the next
stage of our research, the model will be expanded to a model
for queueing systems with stream and elastic traffic.

IV. SUMMARY
The presented paper proposes an analytical model of a com-
munications system with a mixture of stream and elastic
traffic. Such a mixture is typical for modern networks. The
results obtained by the model are compared with the results
of a digital simulation, which confirms the validity of all the
theoretical assumptions of the model. The model can be used
for the analysis of modern network systems with constant and
variable bit rate streams.
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