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ABSTRACT The main purpose of this work is to solve the problem of electromagnetic scattering from a
chiral cylinder of arbitrary cross-section above an infinite perfect electric conducting (PEC) plane. Using
image theory, this problem is reduced to two chiral cylinders in free-space. Surface equivalence principle
is used to obtain three different equivalent problems for this two-cylinder problem. Then, the method of
moments is used to solve these equivalent problems numerically. It is known that the image of a chiral body
through a ground plane is another chiral body with the same permittivity and permeability but opposite
chirality. Using this property, the two-body problem in the moment method may be reduced to a one-
body problem with a complicated moment matrix. Computed numerical results include scattered fields and
equivalent surface currents on the cylinder.

INDEX TERMS Image of chiral material, scattering from chiral cylinders above a ground plane.

I. INTRODUCTION 20
The chiral bodies have been studied by many researchers
in the last half-century [1]-[12]. Electromagnetic scat-
tering from chiral bodies in free space has also been 0
studied [13]-[16]. The scattering behavior of a target above

a PEC plane can be very different than the behavior in free- 5-0 o

space [17]-[32]. Because of the presence of a cross-polarized < 20¢

component, the scattered field from a chiral cylinder, even in 30|

free-space, is shown to be quite different than the field scat- = Fresspace, Copol

tered from a similar dielectric cylinder [13], [14]. It would be 1) P Free-space, X-pol .l

then interesting to see the scattering behavior in the presence it pEC ::::2; g?p-glm - an ey

of a PEC plane, and that is the motivation behind this work. '500 20 40 60 80 100 120 140 160 180

Fig. 1 is a sample of the results computed by the method used ¢ [Deg]

here. It clearly shows how different the scattering behavior
can be with the presence of a PEC plane. The details of the
method used here are explained in the following sections.

It is shown in [33] that the image of a chiral body above a

FIGURE 1. Bi-static RCS of a chiral cylinder in free-space and when it is
placed above a ground plane, TM excitation, ¢/ = 90°,
er=4,pr =1,y =0.002,r =0.51o,d = 0.5.

PEC plane is a chiral body with the same permittivity (¢) and
permeability (). However, the real chiral admittance of the
image body is negative of the chiral admittance of the original
body. The problem of scattering from a three-dimensional
chiral body above a PEC plane is solved in [34] by using
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image theory and a hybrid FEM-BI procedure. We are not
aware of any work solving the problem of electromagnetic
scattering from a chiral cylinder of arbitrary cross-section
placed above a PEC plane.

The purpose of this work is to solve the problem of electro-
magnetic scattering from a chiral cylinder of arbitrary cross-
section above an infinite PEC plane. This problem is shown
in Fig. 2. Here, a chiral cylinder of arbitrary cross-section S
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FIGURE 2. The original problem: A chiral cylinder above a ground plane
illuminated by a plane wave.

is placed above an infinite PEC plane and is illuminated by a
known incident plane wave. The purpose is to find the total
field at any point above the plane. This problem is solved
by first using the image theory to obtain two chiral cylin-
ders in free-space. Then, the surface equivalence principle
is used to obtain a set of coupled integral equations for the
unknown equivalent surface currents on these two cylinders.
Then, the Method of Moments (MoM) is used to solve these
integral equations numerically. The moment matrix for this
two-cylinder problem is unnecessarily large. The properties
of the image body and the image source are used to reduce
the size of the moment matrix. This matrix is named as the
Enhanced Moment Matrix.

Various different constitutive relations are used for chiral
materials [3]-[6]. Here, we use the following,

D =¢E —jyB (D
and
B=uH+jyuE 2

where, y is known as the chiral admittance.

The chiral cylinder in Fig. 2 is characterized by
(€1, L1, ¥1), where €7 is the permittivity of the body, w1 is
the permeability, and y; is the chiral admittance. It is placed
above a PEC plane at y = 0, and is illuminated by an incident
plane wave (E¢, Hz'c). The subscript R is used to show that
this incident plane wave is due to a real impressed source.
This incident wave is either a TM or a TE wave with an
angle of incidence ¢'. The cylinder is surrounded by free-
space (€g, o). The surfaces of the ground plane and cylinder
are denoted by S, and S respectively. The purpose is to find
the total fields (Eq, Hop) external to the cylinder, and (E{, H;)
internal to the cylinder.

Il. SCATTERING FROM TWO CHIRAL CYLINDERS OF
ARBITRARY CROSS-SECTIONS
Consider the problem of electromagnetic scattering from two
cylinders illuminated by two different plane waves as shown
in Fig. 3. The cylinders may have different cross-sections S
and $7, and different material parameters (€, u, y).

It is shown in [33] that the problem of Fig. 3 would
be electromagnetically equivalent to the problem in Fig. 2
(for y > 0), if:
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FIGURE 3. Scattering from two arbitrarily shaped chiral cylinders with
different parameters excited by two different incident waves.

(1) Sy is the mirror image of Sy,

(ii) tangential component of E}”" is negative of the tangen-

tial component of EZ“ aty = 0,

(iii) €) = €], U2 = U1, and

iv) y2=—n1.
In this “electromagnetic image problem”, the PEC plane
of Fig. 2 is replaced by an image cylinder characterized
by (€1, 41, —y1) and an image plane wave (E"¢, H;”c). The
subscript / is used to show that this incident plane wave is
due to an image impressed source.

In this section, we will present the procedure to solve the
two-cylinder problem shown in Fig. 3, where the cylinders are
assumed to be arbitrary. We will use surface equivalence prin-
ciple to obtain some coupled integral equations for unknown
equivalent surface electric and magnetic currents. We will
then solve these integral equations numerically by using
MoM. We will also present some results. All computed results
are given for the cases where the above three conditions ((i)
to (iii)) are satisfied. However, in some cases, y» is assumed
to be equal to y1, and in some special cases y; is taken to be

—Y1-

A. INTEGRAL EQUATIONS
Here, surface equivalence principle is used to obtain three
equivalent problems for three different regions of Fig. 3.

1) EXTERNAL EQUIVALENCE

Fig. 4 shows an equivalent problem for the problem of Fig. 3
external to the surfaces S; and S>. Here, the whole space
is characterized by (g, o). The two incident plane waves
of Fig. 3 are also kept in Fig. 4. The total fields inside
the fictitious surfaces S1 and S, of Fig. 4 are assumed to
be zero. The total fields at any point outside these surfaces
are assumed to be the same as the total field (Eg, Hp) at
the same point of Fig. 3. To support the discontinuities of
the fields at the surface S;, equivalent electric and magnetic
surface currents (J1, M) are placed on this surface. Similarly,
equivalent electric and magnetic surface currents (J», M) are
placed on the surface S>. When the fields radiated by these
four currents are added to the incident fields in Fig. 4, the
result is equal to (Eg, Hp) at any point external to S and S»

VOLUME 9, 2021



A. Altaf et al.: Scattering From Chiral Cylinders of Arbitrary Cross-Sections Above a Ground Plane

IEEE Access

(B )

(E=0=H) .,

(51!11]/1) (€1, 11,71)
51:...;- (B, Hy)
e (—Jy, —My)

FIGURE 5. Internal equivalence for the real body.

of Fig. 3. However, at any point inside these two surfaces, the
sum is equal to zero. In other words,

E),(J1, M) + EL (Jo, M)

= —[E§°+E[],, on S;
and
ED,(J1, M) +E), (J2, Mp)

= ;;’C+E',"°‘]m” on S5 (4

Here, the subscript fan denotes the tangential component and
the superscript “0”” denotes that surface currents are radiating
in an unbounded external medium (e, o). S, and S, refer
to the surface just inside S; and S», respectively. Obviously,
similar equations apply for the tangential components of the
magnetic field.

2) INTERNAL EQUIVALENCE FOR THE UPPER BODY

Fig. 5 shows an equivalent problem for the problem of Fig. 3
internal to the surface S1. Here, the whole space is character-
ized by (€1, w1, y1). The two incident plane waves of Fig. 3
are absent here in Fig. 5. The total fields outside the fictitious
surface S; of Fig. 5 are assumed to be zero. The total fields
at any point inside S are assumed to be the same as the
total field (E;, Hy) at the same point of Fig. 3. To support
the discontinuities of the fields at the surface S, equivalent
electric and magnetic surface currents (—J1, —M) are placed
on this surface. The fields radiated by these two currents (in
the unbounded medium (€1, u1, y1)) are the same as (Eq, Hj)
at any point inside Sy of Fig. 3. However, at any point outside
S1, the fields radiated by these currents are zero. In other
words,

E,,Ji,M)=0 on S 5)
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FIGURE 6. Internal equivalence for the image body.

where, the superscirpt “1” denotes that surface currents
are radiating in an unbounded medium characterized by
(€1, u1, v1), and Sf' refers to the surface just outside Sj.
Obviously, a similar equation applies for the tangential com-
ponents of the magnetic field.

3) INTERNAL EQUIVALENCE FOR THE LOWER BODY

Fig. 6 shows an equivalent problem for the problem of Fig. 3
internal to the surface S>. Here, the whole space is character-
ized by (€2, w2, y2). The two incident plane waves of Fig. 3
are absent here in Fig. 6. The total fields outside the fictitious
surface S of Fig. 6 are assumed to be zero. The total fields
at any point inside S, are assumed to be the same as the
total field (E», Hp) at the same point of Fig. 3. To support
the discontinuities of the fields at the surface S;, equivalent
electric and magnetic surface currents (—J2, —M>) are placed
on this surface. The fields radiated by these two currents are
the same as (E,, H) at any point inside S>. However, at any
point outside S7, the fields radiated by these currents are zero.
In other words,

EZ,,(Jo,Mp) =0 on S (6)

where, the superscript 2’ denotes that surface currents
are radiating in an unbounded medium characterized by
(€2, n2, ¥2), and S2+ refers to the surface just outside S,.
Obviously, a similar equation applies for the tangential com-
ponents of the magnetic field.

B. APPLICATION OF THE MOMENT METHOD

Equations (3) to (6) represent four coupled integral equa-
tions for the four unknown currents (J1, My, Jo, M»). These
equations are called EFIE (Electric Field Integral Equations).
They are solved here numerically by using the method of
moments. First, the cross-sections S; and S; are each approx-
imated by N linear segments. On each segment there are
four unknown currents: the z— and lateral component of
the electric current, and z— and lateral component of the
magnetic current. Pulses are used as expansion functions
for these unknown currents and an approximate Galerkin’s
method is used for testing. The details are given in [35], [36].
The resulting moment equation is shown in (7), at the bottom
of the next page.

The 8N x 8N matrix on the left-hand side of (7) is known
as the Moment Matrix. Each element of this moment matrix
is an N x N sub-matrix. The first letter in the name of
the sub-matrices in (7) denotes the component of the field.
The second letter denotes the source of the field, while the
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subscript of the second letter denotes the component of the
source current. The third number (1 or 2) represents the
surface of the body where the field is computed. The fourth
number (1 or 2) represents the surface of the body where the
source current resides. Finally, the last number denotes the
unbounded medium (0, 1, or 2) in which the source radiates.

For instance, an element in the m™ row and the n column
of the sub-matrix ZJz110 is the z-component of the electric
field on the m™ segment of Sy, produced by Jz on the n'" seg-
ment of S|, when this Jz radiates in the unbounded medium
(€0, 1to)- This element is given by,

el / H Kol poy, 0"l (®)
n

Here, 19 and ko denote the wave impedance and the wave
number of free-space respectively. C,, represents the n'h
segment on Sy, and /,,, represents the length of the m'™ field
segment on S;. The position vector p’ represents an arbitrary
point on C,,, and the position vector p ., represents the center
of the field segment Cy,, on Sy, and Héz) is the zeroth order
Hankel function of the second kind.

To compute the mn'" element of ZJ7120(m, n), we replace
Cp, in (8) with C,,. Similarly, when we replace in (8),
Iy, Cny, Pem, with [, Cp,, Pemy respectively, we obtain
Z)7220(m, n). The elements of ZJz210 contain the fields on
S> produced by the sources on ;.

The sub-matrices ZJ;110, ZMz110, ZJ;.120, ZMz120,
7J1.210,ZM7z210, ZJ1. 220, and ZM7z220 are identically zero.

The sub-matrices in the 2" row of (7) contain the lateral
field on S;, produced by different sources radiating in the
unbounded medium (eg, o). Therefore, LIz110, LMy 110,
LJz120, and LMy 120 are identically zero. Similarly, the sub-
matrices LJz210, LM; 210, LJz220, and LMj 220 are identi-
cally zero.

An element in the m" row and the n™ column of the sub-
matrix ZMp 110 is the z-component of the electric field on
the m"” segment of Sy, produced by My on the n”* segment of
S1, when this My radiates in the unbounded medium (&g, (o).
This element is given by,

kol —y
ZML110(m, n) = —j 04’”' / P .M
Cn1 |pcm1 - p |

x HP kol pem, — /DAl (9)

ZJ7110(m, n)=

same segment, and Hfz) is the first order Hankel function
of the second kind. The typical elements of the sub-matrices
ZM;.120, ZM; 210, and ZMy 220 have similar form as (9).

An element in the m™ row and the n” column of the sub-
matrix LJ1 110 is the lateral component of the electric field on
the m segment of Sy, produced by Ji. on the n* segment of
S1, when this Ji radiates in the unbounded medium (eg, o).

The 8N x 1 column matrix on the left-hand side of (7)
contains the unknown expansion coefficients. The N x 1
sub-matrices a and e contain the expansion coefficients for
Jz on §1 and §», respectively. Similarly, b and f contain
the expansion coefficients for Ji, and ¢ and g contain the
expansion coefficients for Mz, and finally, d and & contain
the expansion coefficients for My .

The m™ element of N x 1 sub-matrix —Zinc1 on the right-
hand side of (7) is equal to the negative of the z-component
of the total incident electric field on the m” segment of S;.
Similarly, the sub-matrix —Zinc2 contains the negative of the
z-component of the total incident electric field on S,. The m™”
element of the sub-matrices —Lincl and —Linc2 represent
the lateral component of the total incident electric field on
the m"* segment of S| and S5 respectively.

Two internal equivalent problems shown in Fig. 5 and
Fig. 6 are represented by the last four rows of the moment
matrix in (7).

An element in the m"” row and the n column of the sub-
matrix ZJz111 is the z-component of the electric field on the
m™ segment of Sy, produced by Jz on the n segment of S,
when this Jz radiates in the unbounded medium (€1, @1, y1)-
This element is given by,

I}
Zi1110m m) = =2 iy / HE? (| p o, — o'l
C

n

th

by [ HUnlpey, — o0} (10)
C)ll

where, 1, is the wave impedance associated with the chiral
medium (€1, i1, y1) and is given by the following,

n

ey = e
LT+ mn)?

’:—l‘. The two wave number 4| and 4, associated

(11

Here, n; =
with the chiral material (e1, i1, y) are given by the follow-

ing,
Here, fiy = f,, % Z is the unit vector normal to the source £
segment C,, on Sy, and 7,, is the unit vector tangent to the hy = opryr ++/(k1)? + (@p1y1)? (12)
[2J,110 ZJ 110 ZMz110 ZMp110 ZJz120 ZIJL120 ZMz120 ZMp120] [al [ —Zincl]
LJz110 LJp110 LMz110 LMp110 LJz120 LJp120 LMz120 LMp120 b —Lincl
717210  ZJ 210 ZMz210 ZM;210 ZJz220 Z)1220 ZMz220 ZMp220 [¢ —Zinc2
LJz210 LJ 210 LMz210 LMp210 LJz220 LJp220 LMz220 LM;p220 d _ —Linc2 @
Z)z111  ZJ 111 ZMz111  ZMp 111 0 0 0 0 e 0
Liz111  LJp111 LMgz111  LMpl11 0 0 0 0 f 0
0 0 0 0 717222 7] 222 ZMz222 ZM;222 g 0
L0 0 0 0 LJz222 L3222 LMz222 LMi222| |[h]| | 0O |
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and

hy = —wpryr + 4/ (k)? + (@p1y1)?. (13)

ki = w /e (14)

where,

An element in the m™ row and the n* column of the sub-
matrix ZJ; 111 is the z-component of the electric field on the
m™ segment of S1, produced by Ji on the n™ segment of Sj,
when this Ji, radiates in the unbounded medium (€1, (1, y1).

An element in the m™ row and the n* column of the sub-
matrix LJp 111 is the lateral component of the electric field
on the m™ segment of Sy, produced by Ji. on the n” seg-
ment of S, when this Ji radiates in the unbounded medium
(€1, 11, Y1)

The elements in the sub-matrices in the last two rows of
the moment matrix of (7) contain the fields computed in the
unbounded chiral medium (€3, ©2, y2), when these fields are
radiated by these surface currents (J,, M»>). The expressions
for such elements are similar to those in (10) to (14). For
example,

Z32222(m, n) = —""Zgﬂ{ha / H (131 ey — 0/l
C”Z
/ @ N
thy | HP (alogn, - oD} (15)
Cny
where, 7., is the wave impedance associated with the chiral
medium (€3, 12, y2) and is given by the following,

12

ey = e
P T+ (pn)?

‘:—22. The two wave number /3 and /4 associated

(16)

Here, ny =
with the chiral material (€3, (12, y2) are given by the follow-

ing,
hs = wp2yr + 4/ (k2)? + (wp2y2)? (17)
and
hy = —op2ys + 1/ (k2)? + (wu2y2)?. (13)
where,

ky = w\/ernr. (19)

The approximations used and the other details related to
computation of the above matrix elements are given in [36].

C. NUMERICAL RESULTS OF TWO CHIRAL CYLINDERS

Consider a system of two circular chiral cylinders as shown in
Fig. 7. The cylinders could have completely different cross-
sections. However, in this section, the cylinder in the lower
half-space is deliberately chosen to be the mirror image of
the upper cylinder. The radius r of the cylinders is 0.5A¢,
and the distance d from the center of the cylinders toy = 0
plane is Ao, which is assumed to be 1m. Both cylinders have
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FIGURE 7. Two circular chiral cylinders illuminated by two plane waves.
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FIGURE 8. Magnitude of the total tangential electric field at y = 0 plane
of Fig. 7.

€, =4, u, = 1. Three different values will be assumed for
their chiral admittance y:

) y1=y2=00,

(i1) y1 = y2 = 0.0005, and

>iii) y; = —y2 = 0.0005.
The system is illuminated by two TM plane waves. Eg’” is
equal to Z1 (V/m) with incident angle ¢' = 90° and E}" is
equal to -Z1 (V/m) with incident angle ¢' = —90°. To use
MoM, each cylinder is approximated by N = 90 segments.

Using MoM, we first computed the equivalent surface
currents (which are not shown here), and then we can find
the fields produced by these currents at any point.

Fig. 8 shows the magnitude of the total tangential electric
field (v/|Ex|? + |E,|?) at y = O plane of the problem shown
in Fig. 7. This field is the sum of the two incident fields
and the fields radiated by the equivalent surface currents on
both cylinders, when these currents radiate in the unbounded
medium (€g, o), as suggested by Fig. 4.

The red curve in Fig. 8 (for the case y; = y» = 0) shows
that the total tangential electric field is zero at y = O plane.
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We also noticed that the currents (not shown here) in the lower
cylinder are the images of those on the upper cylinder. These
results are expected and agree very well with those presented
in [37]. Therefore, it is verified that the image of a dielectric
cylinder above a PEC plane is the same dielectric cylinder.

The same results are observed for the dashed black curve
in Fig. 8 (for the case y; = —y» = 0.0005), and therefore
we can conclude that the image of a chiral cylinder through a
PEC plane is another chiral cylinder with real chirality equal
to negative of chirality of the original cylinder.

The blue curve in Fig. 8 (for the case y; = y» = 0.0005)
shows that the total tangential electric field isnot zeroaty = 0
plane. We also observed that the currents (not shown here)
on the lower cylinder are not the image of those on the upper
cylinder. Therefore, we can conclude that the image of a chiral
cylinder through a PEC plane is not another chiral cylinder
with the same parameters.

ill. ENHANCED MOMENT MATRIX

As mentioned before, the moment matrix in (7) is unnecessar-
ily large. When correct image theory is used, the equivalent
surface currents on the image cylinder are the image of the
equivalent currents on the real cylinder. Then, the number of
unknowns in (7) would reduce to 4N (from 8N).

To further demonstrate the relationship between the equiv-
alent surface currents on two chiral cylinders, we consider
the simple problem shown in Fig. 9. Both cylinders have
(e =4, uy = 1), and the side lengths (L, and Ly) are 0.21¢.
These cylinders are placed at a distance d = 0.5A¢ away from
the y = O plane. Here, the cylinders are the mirror image of
each other and each is approximated by N = 3 segments.
(Segment-4 is the image of segment-1, segment-5 is the image
of segment-2, and segment-6 is the image of segment-3). The
two incident fields are also the image of each other.

The computed results for the surface currents are shown in
Table 1 for the case of simple dielectric €, = 4, i, = 1, and
y1 = y2 = 0. In this case, the lower body is the correct image
of the upper body. Hence, we expect that the currents on the
lower body should be the image of the currents on the upper
body. We see from Table 1 that Jz on an image segment is
negative of Jz on the corresponding original segment. That is,
Jz4 = —Jz1 = —3.4401 + j0.2069, Jz5s = —Jz2 = 0.7328 +
j0.1839, and Jzg = —Jz3 = —0.5142 + j0.5561. Therefore,
we can see that for the simple dielectric case the expected
relationship,

entN =—ap, m=1,---,N) (20
is satisfied.

Note also that M4 = Mp; = —0.3748 + j0.0208 in
Table 1. According to image theory, the actual My, current on
segment-6 must be negative of the Mp, current on segment-3.
Since, the arrow on segment-6 is in opposite direction to the
arrow on segment-3, we see from Table 1 that M g = M3 =
—0.6372 — j1.3132. Similarly, we see that My 5 is the image
of Mp,. Therefore, we can see that for the simple dielectric
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FIGURE 9. Two triangular chiral cylinders illuminated by two plane waves.

case the expected relationship,

hpyny =dp, (n=1,---,N) 21

is satisfied.

The computed results for the surface currents are shown in
Table 2 for the case of two chiral cylinders withe, = 4, u, =
1, and y1 = —y» = 0.0005. In this case, the lower chiral
body is the correct image of the upper chiral body. Therefore,
the equivalent currents on the lower body must be the image
of the currents on the upper body. This is correctly shown in
Table 2. Therefore, for the correct image problem, in addition
to (20) and (21) the following equations are satisfied.

fn+N=_bn7 (nzlv'.’N) (22)
and

8n+N = Cn (n:l,,N) (23)

The computed results for the surface currents are shown
in Table 3 for the case of two identical chiral cylinders with
€ =4, u, = 1, and y; = y» = 0.0005. Without going
into the details, we see that (22) and (23) are not satisfied
in this case. Hence, we can quickly conclude that the lower
body with y; = y» cannot be the correct image of the original
body.

Let us go back to Fig. 3. Let us assume that it represents
the correct image problem. That is, S, is the mirror image
of S1, the parameters of S, are equal to (e, u1, —y1), and
the incident field (E{*, H") is the image field of the origi-
nal field (ER¢, HZ¢). Then, from the preceding discussions,
it was concluded that the equivalent surface currents on S; are
the image of currents on S7. Then, knowinga,,n =1,..., N,
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TABLE 1. TM excitation, Dielectric Case.

Currents Y2 =71 =0
Seg-1 (S1) Seg-4 (S2) Seg-2 (S1) Seg-5 (S2) Seg-3 (S1) Seg-6 (S2)
Jz 3.4401 - j0.2069 -3.4401 + j0.2069 -0.7328 - j0.1839 | 0.7328 +j0.1839 0.5142 - j0.5561 -0.5142 +j0.5561
Jr 0 0 0 0 0 0
Mgz 0 0 0 0 0 0
M, -0.3748 +j0.0208 | -0.3748 +j0.0208 -0.5655 - j1.3531 | -0.5655 -j1.3531 -0.6372 -j1.3132 | -0.6372-j1.3132

TABLE 2. TM excitation, Chiral Case (Opposite Chiral Admittance).

Currents Seg-1(S1) Seg-4 (S2) Seg-2 (Sl’)\/2 7156g-5 (S2) Seg-3 (S1) Seg-6 (S2)
Jz 3.2520 -j0.2121 -3.2520 +j0.2121 -0.8314 -j0.1334 | 0.8314 +j0.1334 0.3985 -j0.4583 | -0.3985 +j0.4583
Jr 0.1305 +j0.1165 -0.1305 - j0.1165 -0.0490 +j0.0580 | 0.0490 - j0.0580 0.0554 +j0.0599 | -0.0554 - j0.0599
Mz 0.0861 +j0.0139 0.0861 +j0.0139 0.0040 +j0.0919 | 0.0040 +j0.0919 0.0643 +j0.0799 | 0.0643 +j0.0799
M, -0.3235 +j0.0827 | -0.3235 +j0.0827 -0.4409 - j1.3418 | -0.4409 -j1.3418 | -0.5091 -j1.3083 | -0.5091 - j1.3083

TABLE 3. TM excitation, Chiral Case (Same Chiral Admittance).

Currents Seg-1(S1) Seg-4 (S2) Seg-2 (81)72 7 Seg-5 (S2) Seg-3 (S1) Seg-6 (S2)
Jz 3.3523 -j0.1889 -3.3523 +j0.1889 -0.7711 - j0.1465 | 0.7711 +j0.1465 0.4771 - j0.4932 -0.4771 +j0.4932
Jr -0.0863 - j0.1103 -0.0863 - j0.1103 0.0707 + j0.0506 0.0707 + j0.0506 0.0733 +j0.1874 0.0733 +j0.1874
Mgz -0.0333 - j0.0031 0.0333 +j0.0031 0.0709 +j0.0410 | -0.0709 - j0.0410 0.1133 +0.0516 -0.1133 -j0.0516
My, -0.3448 +j0.0461 -0.3448 +j0.0461 -0.5062 - j1.3663 | -0.5062 - j1.3663 -0.5765 - j1.3319 -0.5765 - j1.3319
oneknows e,,n = N+1, ..., 2N. Similarly, knowing b,,, one The above four equations, can be written in matrix form as

knows f;,, and knowing c,,, one knows g,,, and finally knowing
dy, one knows h,,. With these in mind, we can reduce the eight
equations in (7) to four equations as follows.

Remembering that some of the sub-matrices in (7) are
identically zero, then by adding the 1*' row to the 5" row,
we get,

{212110 — 73,120 + Zlell}an i {ZJLlll}bn

+ {Zlell}cn + {ZMLIIO 4+ 7ZM; 120 + ZMLlll}d,,
= —Zincl (24)
Similarly, adding the 274 row to the 6™ row, we get,
{Llell}an 4 {LJL110 —LIL120 + LJLlll}bn

+ {LMZIIO +LMz120 + Llell}cn + {LMLm}dn
= —Lincl (25)
Adding the 3¢ row to the 7 row, we get,

{ZJZZIO — 73,220 — ZJZ222}an + {ZJL222}bn

+ { ZMzzzz}cn + [ZMLZIO + 7M. 220 + ZML222}dn
= —Zinc2 (26)

Finally, adding the 4" row to the 8™ row, we get,
HLJ2222}an + {LJLzlo —LJL220 — LJL222}bn

+ {LMZ210 + LM220 + LMZ222]cn + { LML222}d,,
— _Linc2 27)
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follows.

Zle ZJLI Zle ZMLI a —Zincl
Llz1 L1 LMzl LMl b| | —Lincl
Z)z2 712 ZMz2 ZMi2||c | | —Zinc2
Liz2 LJ2 LMz2 1IMi2| |(d —Linc2

(28)

The square matrix in (28) is 4N x 4N, and is called the
enhanced moment matrix. This matrix is much smaller than
8N x 8N moment matrix in (7). However, the elements of
the enhanced matrix are more complicated. For example, the
element in the m™ row and the n column of ZJz1 in (28)
is equal to the z-component of the electric field produced on
segment m™ of Sy. This field consists of three parts. The first
part is due to Jz on the n" segment of S1, when this current
radiates in the external medium (g, po). The second part is
due to the image of this Jz, when this image current radiates in
the external medium (€g, (o). Obviously, this image current
is equal to the negative of Jz, and resides on S». The third part
is due to Jz which resides on the m™ segment of S7, when this
Jz radiates in the unbounded medium (€1, w1, ¥1).

The numerical results presented in the following section
are computed using the enhanced moment matrix represented
by (28).

A. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical results for a chiral cylinder of arbi-
trary cross-section above a PEC plane illuminated by either a
TM or a TE plane wave with an angle of incidence (¢) are
presented. The frequency of the incident wave is assumed to
be 300 MHz. The results include currents and bi-static radar
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(Einc' HiTlC)
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FIGURE 10. A circular chiral cylinder above a PEC plane.

cross section (RCS). First, the expansion coefficients are
determined using (28). Then, the scattered fields can easily
be computed. The bi-static RCS for z— and ¢— directed
scattered fields is defined as,

o;(¢)
N
k() dn’\] ~ iko o™ cos(d—a™
= 4 Zlnl (an - %tn“%)e/ optlcost=™)
n=1
2N d ) 2
- Y b (an + o2 ¢)elko,0 2c050-0")| (29)
n=N+1 0
o ()
N
k() Cp Al A ik 0"t — oM
= Z Z_:lm(% +bntn'a¢)€] 0" cos(9—¢™1)
n=1
2N c 2
n D A iko 02 — o™
+ 3 ln2<%—bntn-a¢)e’ 0p"2cos=9")|  (30)

n=N+1
where, o denotes the bistatic radar scattering width, [, (/,,)
is the length of the n* segment on S} (S), 7! (#2) represents
the unit vector tangent to the nth segment (counter-clockwise
in the lateral direction) on Si (S2), ag is the unit vector in
the ¢-direction at the field point, ™! (p"2) and ¢! (¢"*2) are
the cylindrical coordinates of the center of the n segment on
S1 (82), no is the free-space wave impedance, and kg is the
free-space wavenumber.

The results for the problem of scattering from a chiral
cylinder above a PEC plane are not available in the litera-
ture. Therefore, we used various special cases to validate our
computed results. As an example, consider a circular chiral
cylinder placed above a PEC plane as shown in Fig. 10. The
radius r of the cylinder is 0.1Ag. The PEC plane is assumed
to be at y = 0. The distance d between the PEC plane and the
center of the cylinder is 0.5A¢. The cylinder is characterized
by ¢, = 4,u, = 1.5, and a variable chiral admittance
y. It is illuminated by a TM plane wave with ¢/ = 90°.
Fig. 11 and 12 show the co- and cross-polarized components
of the bi-static scattering width for various values of y.
It is seen from Fig. 11 that as y reduces to zero, the co-
polarized component of the scattering width of the chiral
cylinder approaches to that of a regular dielectric cylinder
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FIGURE 11. Co-polarized component of the bi-static RCS of a circular

chiral cylinder placed above a PEC plane. TM excitation, ¢/ = 90° for
various y values.
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FIGURE 12. Cross-polarized component of the bi-static RCS of a circular
chiral cylinder placed above a PEC plane. TM excitation, ¢/ = 90° for
various y values.
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FIGURE 13. Currents on the body for the system shown in Fig. 10,
TM excitation, ¢’ = 90°.

of ¢, = 4, u, = 1.5. The results for the dielectric cylinder
above a PEC plane is computed using the approach in [37].
Also, from Fig. 12 we see that as y approaches zero, the
cross-polarized component of the scattering width vanishes.
Based on this example, and various other special cases that
we considered (and not reported here), we have confidence
in our computed results.
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FIGURE 14. Bi-static RCS for the system shown in Fig. 10, TM excitation,
¢ =900.
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FIGURE 15. Currents on the body for the system shown in Fig. 10,
TE excitation, ¢/ = 90°.
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FIGURE 16. Bi-static RCS for the system shown in Fig. 10, TE excitation,
¢! =90°.

Fig. 13 shows the equivalent surface currents on the chiral
cylinder of Fig. 10, when ¢, = 4, u, = 1, y = 0.002, and is
illuminated by a TM plane wave with ¢’ = 90°. Fig. 14 shows
the bi-static RCS for the same setup. Fig. 15 and Fig. 16 show
the results when the same cylinder is illuminated by a TE
plane wave.

Fig. 17 and Fig. 18 show the bi-static RCS for various
different incident angles. Note that, the amplitude of the
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FIGURE 17. Co-polarized component of bi-static RCS for the system
shown in Fig. 10, TE excitation for various ¢’ values.
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FIGURE 18. Cross-polarized component of bi-static RCS for the system
shown in Fig. 10, TE excitation for various ¢’ values.
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FIGURE 19. A rectangular chiral cylinder above a PEC plane.

co-polarized component has maximum value at the emer-
gence angle as shown in Fig. 17.

Fig. 19 shows a rectangular cylinder of size 0.319 x 0.15X¢
above a PEC plane. It is placed at a distance d = 0.65)¢
above the PEC plane. The cylinder is characterized by (¢, =
4, iy = 2). The chiral admittance y of the cylinder is varied
from 0.0005 to 0.002 with a step of 0.0005. The cylinder
is illuminated by a TM plane wave with ¢/ = 60°. The
co- and cross-polarized components of bi-static RCS are
shown in Fig. 20 and Fig. 21.
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FIGURE 20. Co-polarized component of bi-static RCS for the system
shown in Fig. 19, TM excitation, ¢/ = 609, for various y values.
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FIGURE 21. Cross-polarized component of bi-static RCS for the system
shown in Fig. 19, TM excitation, ¢/ = 609, for various y values.
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FIGURE 22. Variation of the condition number of the moment matrix with
kob.

It is known that the EFIE formulation used here fails
to give a unique solution when a cylinder is of a spurious
“resonant size” [38]. In such cases the moment matrix is
highly ill-conditioned and the results computed using such
matrices may not be accurate. Therefore, to tell whether the
computed results are accurate or not, the condition number of
the moment matrix must be monitored.

To demonstrate the behavior of the condition number, con-
sider a rectangular chiral cylinder similar to the one in Fig. 19
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witha = 0.5b,d = Ay, and €, =4, u, = 1,and y = 0.0005.
Fig. 22 shows the variation of the condition number of the
moment matrix with kgb. Note that, when kgb = 3.63 or
kob = 3.64, the moment matrix is highly ill-conditioned.
Therefore, the result obtained under these conditions using
EFIE formulation given here may not be accurate. For the
cases considered above no abnormality was observed in the
value of the condition number. Therefore, we are confident
that these results are accurate.

IV. CONCLUSION

A simple moment solution is presented to compute the elec-
tromagnetic fields scattered from a chiral cylinder of arbitrary
cross-section above a PEC plane. The image theory is used
to replace the PEC plane by an image chiral cylinder and an
image source. Then, the method of moments is used to formu-
late the solution to this two-body problem. It was shown that
when the image body is legitimate, the two-body problem can
be reduced to a one-body problem with a more complicated
moment matrix. The condition number of this moment matrix
was monitored to ensure the accuracy of the computed results.
It was also observed that the computed results for the y = 0
case were in excellent agreement with the results obtained by
other researchers for the case of a simple dielectric cylinder.
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