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ABSTRACT Linear inequality (LI) plays an important role in many fields of science and engineering.
Recently, a typical neural dynamics called zeroing dynamics (ZD) has been reported for online solution of
time-varying LI (TVLI). On the basis of the previous work, the discrete-time form of the ZD with superior
computational property is studied in this paper. Specifically, a Taylor-type difference rule is first presented
for the first-order derivative approximation. By utilizing such a difference rule to discrete the previous ZD
model, the new discrete-time ZD (DTZD) algorithm is thus established and proposed for TVLI solving. Such
an algorithm performs better computational performance than the existing DTZD algorithm. Theoretical
results show that the proposed DTZD algorithm has a quadruplicate error pattern on solving the TVLI.
Comparative numerical results with two illustrative examples further substantiate the efficacy and superiority
of the proposed DTZD algorithm over the existing DTZD algorithm.

INDEX TERMS Zeroing dynamics (ZD), discrete-time algorithm, time-varying linear inequality (TVLI),
difference rule, numerical validation.

I. INTRODUCTION
In recent years, linear inequality (LI) has attracted consid-
erable attention in different scientific and engineering fields.
It has been viewed as a powerful formulation and design tech-
nique for many problems [1]–[7]. In mathematics, the linear
inequality problem is generally formulated as follows:

Ax 6 b, (1)

where coefficient matrix A ∈ Rn×n and vector b ∈ Rn are
constant, and x ∈ Rn is the unknown vector to be obtained.
To solve (1), many numerical algorithms and neural

networks have been developed and investigated [4]–[13].
For example, in [8], different iterative methods were pre-
sented by Yang et al. to solve the LI system. In [9],
three continuous-time neural networks were developed by
Cichocki and Bargiela for LI solving. In [10], the imple-
mentation of a relaxation-projection algorithm by artificial
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neural networks to solve sets of linear inequalities was inves-
tigated by Labonte. Note that these approaches are designed
intrinsically to solve the static LI, i.e., in the form of (1).
As many systems in practical applications always change
as time evolves, the corresponding LI should be the time-
varying one with coefficients being time-varying [i.e., A(t)
and b(t) with t > 0]. When the aforementioned approaches
are exploited directly to solve the time-varying LI (TVLI),
they may be less effective [15]–[20].

Aiming at solving TVLI, a typical neural dynamics called
Zhang dynamics (ZD) has been developed and investigated
by Zhang et al. [15]–[20]. Especially, in [20], by intro-
ducing a nonnegative vector, the TVLI was converted to a
matrix-vector equation. Then, by exploiting the exponent-
type design formula, the continuous-time ZD (CTZD) model
depicted in an explicit dynamics was developed. Its effi-
cacy was substantiated via theoretical and simulation results.
In [21], the discrete-time form of this CTZD model, namely
discrete-time ZD (DTZD) algorithm, was further studied by
utilizing the Euler-type difference rule [22]. Both theoretical
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and numerical results indicated that such a DTZD algorithm
has an O(τ 2) error pattern when solving TVLI, where τ
denotes the sampling gap. That is, the computational error
in the steady-state reduces by 100 times, as the value of τ
decreases by 10 times.

Recently, a new Taylor-type difference rule has been con-
structed in [23], which has been proven to has a smaller trun-
cation error than the Euler-type difference rule [22] for the
first-order derivative approximation, i.e., O(τ 3) versus O(τ ).
Moreover, the results shown in [23] have revealed that the
Taylor-type difference rule can achieve better performance
on CTZD discretization, as compared with the Euler-type dif-
ference rule. Thus, in this paper, by utilizing the Taylor-type
difference rule, the new discrete-time ZD (DTZD) algorithm
is proposed for TVLI solving. The theoretical and numer-
ical results are presented to substantiate the efficacy and
superiority of the proposed DTZD algorithm. These results
further indicate that the computational error in the steady-
state for the proposed algorithm is in the order O(τ 4). That
is, decreasing the value of τ by 10 times leads to reduction of
the computational error in the steady-state by 10000 times.
In this sense, the proposed DTZD algorithm is superior to
the previous DTZD algorithm for TVLI solving. It is worth
pointing out that this paper is the first attempt to provide a
numerical algorithm with O(τ 4) error pattern for generating
a time-varying solution to the TVLI. This paper presents a
valuable insight into the development of the new numerical
algorithm with high precision for solving time-varying linear
and/or nonlinear inequality.

The rest of this paper is organized into four sections.
Section II shows the previous results for TVLI solving.
In section III, the DTZD algorithm proposed in this paper
is presented, together with theoretical results. Section IV
provides comparative numerical results that are synthesized
using the proposed DTZD algorithm and the existing DTZD
algorithm in [21]. Section V concludes this paper final
remark.

II. TIME-VARYING LINEAR INEQUALITY
In this section, the TVLI problem is formulated. Then,
the CTZD model and the DTZD algorithm in the previous
work [19]–[21] are presented for TVLI solving.

A. PROBLEM FORMULATION
The following problem of TVLI is studied in this paper:

A(t)x(t) 6 b(t), (2)

where A(t) ∈ Rn×n and b(t) ∈ Rn are smoothly time-varying
coefficients, and x(t) ∈ Rn is the unknown vector to be
obtained. In this paper, a feasible solution x(t) needs to be
determined to make (2) hold true for any tk = kτ with
k = 0, 1, 2, · · · . To guarantee the existence of x(t), A(t) (2)
is assumed to be nonsingular at any tk = kτ .
In [19], [20], by introducing a time-varying nonnegative

vector 3(t) ∈ Rn, the TVLI (2) is transformed into the

following matrix-vector equation:

A(t)x(t)− b(t)+3(t) = 0, (3)

where 3(t) = y(t)
⊙

y(t) with the multiplication operator⊙
denoting the Hadamard product [19], [20]. Note that the

time-varying vector y(t) ∈ Rn also needs to be automatically
determined during the solving process of (3).

B. CTZD MODEL
To solve the TVLI (2), on the basis of (3), the error function
is defined as e(t) = A(t)x(t) − b(t) + 3(t) = A(t)x(t) −
b(t)+D(t)y(t) ∈ Rn, where the diagonal matrix D(t) denotes
D(t) = diag{y1(t), y2(t), · · · , yn(t)} ∈ Rn×n. To make this
error function converge to zero, the following exponent-type
design formula is exploited [24]:

ė(t) = −γ e(t), (4)

where ė(t) denotes the time derivative of e(t), and γ > 0 ∈ R
is the design parameter that affects the solution convergence.
By expanding (4), the following computational model is
obtained:

A(t)ẋ(t)+ 2D(t)ẏ(t) = −Ȧ(t)x(t)+ ḃ(t)

−γ (A(t)x(t)− b(t)+ D(t)y(t)), (5)

where ẋ(t), ẏ(t), Ȧ(t), and ḃ(t) denote the time derivatives
of x(t), y(t), A(t), and b(t), respectively. By defining u(t) =
[xT(t), yT(t)]T ∈ R2n with superscript T denoting the trans-
pose operator, (5) is reformulated as follows:

u̇(t) = W †(t)(P(t)u(t)+ ḃ(t))− γW †(t)(Q(t)u(t)− b(t)),

(6)

where u̇(t) ∈ R2n denotes the time derivative of u(t), W (t) =
[A(t), 2D(t)] ∈ Rn×2n, P(t) = [−Ȧ(t), 0] ∈ Rn×2n, and
Q(t) = [A(t),D(t)] ∈ Rn×2n. In addition, W †(t) denotes the
pseudoinverse ofW (t) [25]. (6) is the CTZDmodel presented
in [20] to solve the TVLI (2), of which the neuron structure
is shown in Fig. 1. Both theoretical and simulation results
indicate the efficacy of (6).

C. DTZD ALGORITHM
For the purposes of potential hardware implementation and
numerical algorithm development [22], [23], [26], [27], the
discrete-time form of the CTZD model (6) studied in [21].

Specifically, by utilizing the Euler-type difference rule [22]
discretize (6), the following DTZD algorithm for solving the
TVLI (2) is obtained [21]:

uk+1 = uk + τW
†
k (Pkuk + ḃk )− hW

†
k (Qkuk − bk ), (7)

where uk = u(tk = kτ ), W †
k = W †(tk = kτ ), Pk =

P(tk = kτ ), Qk = Q(tk = kτ ), bk = b(tk = kτ ), and
ḃk = ḃ(tk = kτ ). In addition, h = γ τ > 0 ∈ R denotes
the step size, τ > 0 ∈ R denotes the sampling gap, and k =
0, 1, 2, · · · denotes the iteration number. As demonstrated
in [21], given an initial state u0 for the DTZD algorithm (7),

7986 VOLUME 9, 2021



J. Cai et al.: Discrete-Time Zeroing Dynamics With Quadruplicate Error Pattern for TVLI

FIGURE 1. Neuron structure of in the CTZD model (6) to solve the TVLI (2),
where ν = 2n, and ui is the i th (with i = 1,2, · · · , ν) neuron element of
(6). The weights w̄ik , pkj , and qkj represent the ikth (with k = 1,2, · · · ,n)
element of W †(t), the kj th element of P(t), and the kj th element of Q(t).
The thresholds ḃk and bk represent the kth elements of ḃ(t) and b(t).

its computational error is convergent, which combines with a
small the steady-state error, thereby showing the effectiveness
of (7). The theoretical and numerical results presented in [21]
also indicate that the DTZD algorithm (7) has an O(τ 2) error
pattern when solving (2).

III. NEW DTZD ALGORITHM
In this section, by utilizing the Taylor-type difference
rule [23], a new DTZD algorithm with superior computa-
tional performance is developed for TVLI solving.
Proposition: The Taylor-type difference rule utilized in this

paper is formulated as follows [23]:

u̇k ≈
24uk+1 − 5uk − 12uk−1 − 6uk−2 − 4uk−3 + 3uk−4

48τ
,

(8)

where τ = tk+1 − tk = tk − tk−1 = tk−1 − tk−2 = tk−2 −
tk−3 = tk−3 − tk−4, and k = 4, 5, 6, · · · .
By using (8) to discretize the CTZD model (6), the new

DTZD algorithm proposed in this paper for solving the TVLI
(2) is thus obtained as follows:

uk+1 =
5
24
uk +

1
2
uk−1 +

1
4
uk−2 +

1
6
uk−3 −

1
8
uk−4

+2τW †
k (Pkuk + ḃk )− hW

†
k (Qkuk − bk ), (9)

where the step sized h = 2γ τ > 0 ∈ R. Comparing
the proposed DTZD algorithm (9) with the previous DTZD
algorithm (7), we can find that the former is a five-step
iteration, whereas the latter is a one-step iteration. The differ-
ence on structures for such two algorithms leads to different
computational performances on TVLI solving (which will be
presented in Section IV).

For the proposed DTZD algorithm (9), five initial states
(i.e., u0, u1, u2, u3, and u4) are needed. To initiate the iterative

computation of (9), the previous DTZD algorithm (7) is used.
Specifically, given an initial state u0, the other four initial
states for (9) are obtained through the following iterations
[i.e., the first to fourth iterations of (7)]:

u1 = u0 + τW
†
0 (P0u0 + ḃ0)− hW

†
0 (Q0u0 − b0),

u2 = u1 + τW
†
1 (P1u1 + ḃ1)− hW

†
k (Q1u1 − b1),

u3 = u2 + τW
†
2 (P2u2 + ḃ2)− hW

†
k (Q2u2 − b2),

u4 = u3 + τW
†
3 (P3u3 + ḃ3)− hW

†
k (Q3u3 − b3).

Then, the procedure of the proposed DTZD algorithm (9) to
solve the TVLI (2) is provided as follows.

i. Initialization:
Given time duration T , sampling gap τ , and step size h.
Initialize t0, u0, A0, Ȧ0, b0, and ḃ0.
ReceiveW †

0 , P0, and Q0.
Compute ‖e0‖2 = ‖Q0u0 − b0‖2.
ii. First Loop (with k = 0, 1, 2, 3):
Compute uk+1 through (7).
ReceiveW †

k+1, Pk+1, and Qk+1.
Compute ‖ek+1‖2 = ‖Qk+1uk+1 − bk+1‖2.
iii. Second Loop (with k = 4, · · · , int(T )/τ ):
Compute uk+1 through (9).
ReceiveW †

k+1, Pk+1, and Qk+1.
Compute ‖ek+1‖2 = ‖Qk+1uk+1 − bk+1‖2.
iv. Output:
Save uk and ‖ek‖2, and plot figures.
With regard to the proposed DTZD algorithm (9), its accu-

racy can be measured by the computational error ‖ek‖2 =
‖Qkuk − bk‖2. Evidently, ‖ek‖2 = 0 yields Qkuk − bk =
Akxk −bk +Dkyk = 0. As defined in Section II,−Dkyk 6 0,
then Akxk − bk = −Dkyk 6 0, and further Akxk 6 bk .
Evidently, if the computational error of (9) possesses the con-
vergence characteristic and the steady-state error (i.e., ‖ek‖2
with a large k) is small enough, then it can be concluded that
the solution of xk computed by (9) is exactly a time-varying
solution of the TVLI (2). Besides, the following theoretical
results on the computational property of the proposed DTZD
algorithm (9) are given.
Lemma 1: The proposed DTZD algorithm (9) is a conver-

gent method.
Proof: It can be analyzed via zero-stability and

consistency [28]. �
Lemma 2: Consider a solvable TVLI (2). The computa-

tional error of the proposed DTZD algorithm (9) in the
steady-state is of order O(τ 4).

Proof: It can be generalized from the previous
work [23]. �
In sum, these results have theoretically guaranteed the

superior computational performance of the proposed DTZD
algorithm (9) for TVLI solving.

IV. COMPARATIVE NUMERICAL RESULTS
In this section, numerical experiments with two examples
are conducted to substantiate the efficacy and superiority of
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FIGURE 2. Numerical results synthesized using the proposed DTZD algorithm (9) with h = 0.5 and τ = 0.01 to solve (2). (a) State trajectories of
xk ∈ R4 with tk = kτ . (b) State trajectories of yk ∈ R4 with tk = kτ . (c) Computational errors. (d) Testing errors εk = Ak xk − bk ∈ R4.

the proposed DTZD algorithm (9) for solving the TVLI (2),
as compared with the previous DTZD algorithm (7)
Example 1: In this example, we consider the TVLI (2) with

the following coefficients:

A(t) =


4+ sin(3t) cos(3t) cos(3t)/2 cos(3t)/3
cos(3t) 4+ sin(3t) cos(3t) cos(3t)/2
cos(3t)/2 cos(3t) 4+ sin(3t) cos(3t)
cos(3t)/3 cos(3t)/2 cos(3t) 4+ sin(3t)

 ,

b(t) =


sin(3t)
cos(3t)

sin(3t)+ cos(3t)
sin(3t)− cos(3t)

 .
To solve this TVLI, the proposed DTZD algorithm (9),
of which the state vector is uk = [xTk , y

T
k ]

T
∈ R8, is exploited.

The related results are given in Figs. 2–4 and Table 1.
Fig. 2 shows the numerical results synthesized using the

proposed DTZD algorithm (9) with h = 0.5 and τ =
0.01. As seen from Fig. 2(a) and (b), starting from six

randomly-generated initial states, the state trajectories of xk
[being the first 4 elements of uk in (9)] and yk [being the rest
elements of uk ] always change with time tk = kτ . From
Fig. 2(c), we can observe that the computational errors of
(9) possess the characteristic of convergence, where ‖ek‖2 is
calculated as ‖ek‖2 = ‖Akxk − bk + Dkyk‖2. In addition,
Fig. 2(c) shows that the corresponding computational errors
in the steady-state (i.e., ‖ek‖2 with a large k) are small enough
with the order being 10−5. This statement means that xk and
yk in Fig. 2(a) and (b) satisfy (3), which further means that
the solution of xk computed by (9) is exactly a time-varying
solution to the TVLI (2). For better understanding, a testing
error is defined as εk = Akxk − bk , and Fig. 2(d) shows its
profiles. As seen from Fig. 2(d), all elements of εk are less
than or equal to zero. That is, εk = Akxk − bk 6 0, and then
Akxk 6 bk , thereby indicating that the xk solution in Fig. 2(a)
is an exact solution to (2). Evidently, these numerical results
substantiate the efficacy of the proposed DTZD algorithm (9)
for TVLI solving.
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TABLE 1. Steady-state computational errors of the previous DTZD algorithm (7) and the proposed DTZD algorithm (9) using different values of h and τ to
solve the TVLI (2).

FIGURE 3. Numerical results synthesized using the proposed DTZD algorithm (9) with h = 0.5 and τ = 0.001 to solve (2). (a) State trajectories of
xk ∈ R4 with tk = kτ . (b) Computational errors.

By decreasing the value of τ (i.e., from 0.01 to 0.001),
the proposed DTZD algorithm (9) is tested, and the results
are presented in Fig. 3. As seen from Fig. 3(a), the state
trajectories of xk , starting from six randomly-generated initial
states, are always changing. In addition, Fig. 3(b) shows that
the computational errors of (9) also possess the convergence
characteristic, and the corresponding steady-state errors are
much smaller [in comparison with those in Fig. 2(c)] and
are in the order 10−9. These results demonstrate again that
the proposed DTZD algorithm (9) is effective on solving
the TVLI (2). More importantly, comparing Fig. 2(c) with
Fig. 3(b), we can obtain that (9) exhibits excellent com-
putational performance by fixing h and decreasing τ . That
is, as the τ value decreases by 10 times, the computa-
tional error of (9) in the steady-state reduces by 10000
times. Thus, τ should be set to be small enough for the
proposed DTZD algorithm (9) to achieve the precision
requirement.

For further investigation and comparison, we investigate
the previous DTZD algorithm (7) and the proposed DTZD

algorithm (9) with the same initial state (i.e., u0 = 0.1 ∈ R8)
and using different values of h and τ to solve the TVLI (2).
The corresponding numerical results are presented in Table 1
and Fig. 4, which indicate that such two DTZD algorithms
are effective on solving (2) in view of a small computational
error. In addition, as shown in Fig. 4, in the same condition,
the proposed DTZD algorithm (9) has a better computational
property than the previous DTZD algorithm (7) for TVLI
solving. Moreover, the following results are summarized
from Table 1 and Fig. 4.
• As to the previous DTZD algorithm (7), its compu-
tational error in the steady-state changes in an O(τ 2)
manner; i.e., decreasing τ decreases by 10 times leads
to the reduction of the steady-state computational error
by 100 times.

• As to the proposed DTZD algorithm (9), its compu-
tational error in the steady-state changes in an O(τ 4)
manner; i.e., decreasing τ decreases by 10 times leads
to the reduction of the steady-state computational error
by 10000 times.
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FIGURE 4. Computational errors of the previous DTZD algorithm (7) and the proposed DTZD algorithm (9) with h = 0.4 and using different values of τ
to solve (2). (a) Via (7) with τ = 0.01. (b) Via (9) with τ = 0.01. (c) Via (7) with τ = 0.001. (d) Via (9) with τ = 0.001.

• As to such two DTZD algorithms, their computational
performances can be further improved by increasing the
value of h.

On the basis of these results, it can be concluded that the com-
putational performance of (9) is improved more effectively
than that of (7) by decreasing the value of τ . In this sense,
the proposed DTZD algorithm (9) is superior to the previous
DTZD algorithm (7).

In sum, the above numerical results (i.e., Figs. 2–4 and
Table 1) have substantiated the efficacy and superiority of the
proposed DTZD algorithm (9) for TVLI solving.
Example 2: In this example, the proposed DTZD algorithm

(9) is extended to solving the following time-varying linear
matrix inequality (TVLMI) [14]:

M (t)X (t)N (t) 6 C(t), (10)

where M (t) ∈ Rm×m, N (t) ∈ Rn×n, and C(t) ∈ Rm×n

are smoothly time-varying matrices, and X (t) ∈ Rm×n is
the unknown matrix to be obtained. Note that the above

inequality ‘‘6’’ is satisfied, if and only if each element of the
left matrix is less than or equal to that of the right matrix.
On the basis of the Kronecker-product and vectorization
techniques [14], [25], online solution of the TVLMI (10) is
equivalent to solving the TVLI as follows:

(NT(t)⊗M (t))vec(X (t)) 6 vec(C(t)), (11)

where ⊗ denotes the Kronecker product and vec(·) denotes
the vectorization operator. Thus, the proposed DTZD algo-
rithm (9) is exploited to solve the above TVLI (11) so as to
achieve the purpose of solving the TVLMI (10).

In the numerical experiments, we consider the TVLMI (10)
with the following coefficients:

M (t) =


m1(t) m2(t) m3(t) m4(t) m5(t)
m2(t) m1(t) m2(t) m3(t) m4(t)
m3(t) m2(t) m1(t) m2(t) m3(t)
m4(t) m3(t) m2(t) m1(t) m2(t)
m5(t) m4(t) m3(t) m2(t) m1(t)

 ,
7990 VOLUME 9, 2021
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FIGURE 5. Numerical results synthesized using the proposed DTZD algorithm (9) with h = 0.5 and τ = 0.01 to solve (10). (a) State trajectories of
Xk ∈ R5×2 with tk = kτ . (b) Computational errors.

FIGURE 6. Numerical results synthesized using the proposed DTZD algorithm (9) with h = 0.5 and τ = 0.001 to solve (10). (a) State trajectories of
Xk ∈ R5×2 with tk = kτ . (b) Computational errors.

N (t) =
[

sin(t) cos(t)
− cos(t) sin(t)

]
,

C(t) =


sin(t) cos(t)
cos(t) sin(t)

sin(t)+ cos(t) sin(t) cos(t)
sin(t)− cos(t) exp(−t)
sin(t)+ exp(−t) cos(t)+ exp(−t)

 ,

where m1(t) = 5 + sin(t), and mk (t) = cos(t)/(k − 1)
with k = 2, 3, 4, 5. The related numerical results synthesized
using the proposed DTZD algorithm (9) are presented in
Figs. 5 and 6.

Specifically, Fig. 5(a) shows that, as synthesized by (9)
with h = 0.4 and τ = 0.01, the state trajectories of Xk
are changing. Fig. 5(b) shows that the computational errors
of (9) exhibit the convergence characteristic, where ‖ek‖2

is calculated as ‖ek‖2 = ‖(NT
k ⊗ Mk )vec(Xk ) − vec(Ck ) +

Dkyk‖2. Fig. 5(b) also indicates that the computational errors
in the steady-state are small and are in the order 10−7. This
statement means that the solution of Xk computed by (9) is
exactly a time-varying solution to (10), i.e., MkXkNk 6 Ck .
These numerical results substantiate that the proposed DTZD
algorithm (9) is effective on solving the TVLMI (10).

With the value of h fixed, the proposed DTZD algorithm
(9) is tested by decreasing the value of τ . Fig. 6 shows the
corresponding results, which demonstrate again the efficacy
of (9) for TVLMI solving (in terms of a small computational
error). In addition, it follows from Fig. 5(b) and Fig. 6(b) that
the computational error of (9) in the steady-state decreases
from 10−7 to 10−11 as τ decreases from 0.01 to 0.001. That
is, when solving the TVLMI (10), the computational perfor-
mance of (9) is still improved by decreasing the value of τ .
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Thus, it can be concluded once again that τ is an important
parameter in the proposed DTZD algorithm (9) and should be
set appropriately to be a small value.

In sum, the above numerical results (i.e., Figs. 5 and 6) have
substantiated the efficacy of the proposed DTZD algorithm
(9) for TVLMI solving [as an extension study of (9) on
solving the TVLI (2)].

V. CONCLUSION
In this paper, by utilizing the Taylor-type difference rule (8),
the new DTZD algorithm (9) has been proposed and inves-
tigated to solve the TVLI (2). The theoretical results have
also been presented to show the computational properties of
such an algorithm. Comparative numerical results with two
examples have further substantiated the efficacy and superi-
ority of the proposed DTZD algorithm (9) for TVLI solving,
in comparison with the DTZD algorithm (7) in the previous
work [21]. Both theoretical and numerical results have indi-
cated that the computational error of (9) in the steady-state
changes in an O(τ 4) manner, showing that its computational
performance is improved effectively by decreasing the value
of τ .

One future research direction involves the construction
of new Taylor-type difference rules for designing more
DTZD algorithms to solve the TVLI (2). Another future
research direction involves the study of designing new DTZD
algorithms with anti-noise capability. In a follow-up study,
the proposed DTZD algorithm (9) will be further investigated
by using different activation functions [24].
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