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ABSTRACT It is becoming increasingly clear that RNA 5-hydroxymethylcytosine (5hmC), which plays
an important role in several biological processes, is one of the most important objects of study in the field
of RNA epigenetics. Biochemical experiments using various sequencing-based technologies are capable of
achieving high-throughput identification of 5hmC, but current methods are labor-intensive, costly, and time-
consuming. There is an imperative need to develop more efficient and robust computational methods to
replace, or at least complement, such high-throughput methods. Although one such machine learning-based
model to achieve this has already been developed, its performance is limited. In this study, we developed
iRhm5CNN, an efficient and reliable computational predictive model for the identification of RNA 5hmC
sites. Our model is based on a convolution neural network (CNN) that extracts the most reliable feature
from the RNA sequence inevitably. The results of our experiments show significant outperformance across
all evaluation metrics of our proposed architecture when compared to the only existing state of the
art computational model in all the evaluation metrics. The proposed model can be accessed for free at
http://nsclbio.jbnu.ac.kr/tools/iRhm5CNN/.

INDEX TERMS Post-transcriptional modification, RNA 5-hydroxymethylcytosine, sequence analysis,
convolutional neural network, deep learning.

I. INTRODUCTION
RNA epigenetics and epitranscriptomics are attract-
ing increasing attention among researchers examining
post-transcriptional modifications [1], [2]. These RNA mod-
ifications play a decisive role in the maturation and trans-
lation of mRNA, and regulation of RNA splicing [3].
5-hydroxymethylcytosine is one of more than 170 distinct
RNA modifications that may be found across all three
domains of life, including Archae, Bacteria, and Eukarya
[3], [4]. Racz et al. [5] initially detected 5hmC in wheat
seedlings, though it has subsequently been identified in
human and mammalian tissues [6], [7]. The 5hmC modifi-
cation is formed by the oxidization of m5C, which is oxi-
dizable by Tet-family enzymes into 5hmC [7]. Additionally,
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hydroxymethylcytosine RNA immunoprecipitation sequenc-
ing (hMeRIP-seq) reveals that Tet-family enzymes are most
likely to oxidize m5C modifications in coding regions,
suggesting that 5hmC is almost certainly situated in the
introns and exons of coding transcripts [8]. Delatte et al.
[9] observed an abundance of 5hmC modifications in the
brain of Drosophila. Similarly, Miao et al. [10] used a dot
blot analysis to determine that the brainstem, cerebellum,
and hippocampus encompassed high levels of 5hmC mod-
ification and observed that 5hmC modification declined in
MPTP-induced Parkinson’s disease model in mice. Collec-
tively, these outcomes intimate that the RNA 5hmC modi-
fication plays an important regulatory role in microRNA or
protein expression in brain tissue, and that 5hmC contributes
to the epigenetic regulation of gene expression bymodulating
RNA-protein interactions [11]. Determining the distribution
of 5hmC in the transcriptome of various species is a critical
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step towards further understanding its biological functions in
multiple species. Gaining insight into the functions of 5hmC
and its presence in mammals would be appealing because
of potential derivatives and precursors of this modification
in RNA.

Unfortunately, the limits of hMeRIP-seq and wet lab
experimentation, including the high-price of experimental
materials, as well as the time and labor-intensive nature
of prolonging experiments, have made it difficult to iden-
tify 5hmC sites across the genome efficiently. Given the
escalating availability of genomics samples generated in the
post-genomics period, however, computational models can
fill the gap and provide accurate, efficient, and cost-effective
identification of 5hmC modification sites.

Recently, Liu et al. proposed iRNA5hmC, a computa-
tional model with a machine learning identifier based on
a support vector machine (SVM) as a classifier to predict
primary RNA sequences [12]. This model utilized the k-mer
spectrum and positional nucleotide binary vector as a fea-
ture representation technique. The task of improving the
low predictive performance of their model, however, was
left to future research. The performance of iRNA5hmC can
be further enhanced by proposing alternative robust com-
putational methods. The existing method, which is based
on domain knowledge, relies on drawn-out hand-designed
input features. To overcome this constraint deep learning
techniques could be effective alternative computational meth-
ods that are consequentially capable of learning the features
by utilizing multiple levels of abstraction [13]–[15]. Com-
putational models based on deep learning have proved to
be very efficient and effective at image recognition [16],
[17], information retrieval [18], natural language process-
ing [19], speech recognition [20], [21], and computational
biology [22]–[37]. Considering the effectiveness of deep
learning methods in the field of computational biology; CNN
implementation is the most popular implementation of deep
learning.

In this study, we propose a simple and effective CNN
based architecture for the identification of RNA 5hmC
sites that utilizes only the primary RNA sequences shown
in Figure 1. The primary RNA sequences are represented
as the one-hot encoding. Our experiment also includes
another most basic representation of the chemical com-
ponents of nucleotides, concerning their chemical proper-
ties including functional groups, hydrogen bonds, and ring
structures. The CNN architecture extracts the most impor-
tant features from the primary RNA sequence represen-
tations, resulting in consistently accurate identification of
the RNA 5hmC sites. The optimum hyperparameters were
selected based on the grid search algorithm. The performance
of our proposed method was evaluated using a subsam-
pling (k-fold cross-validation) method where the value of
k was set to five. Finally, a user-friendly publicly available
web server is accessible at http://nsclbio.jbnu.ac.kr/tools/
iRhm5CNN/.

FIGURE 1. The detailed architecture of the iRhm5CNN model.

II. MATERIALS AND METHODS
This section consists of the benchmark dataset, the proposed
model, and the performance evaluation.

A. BENCHMARK DATASET
The dataset used in the study was prepared and utilized
by Liu et al. [12] and is available at http://server.malab.cn/
iRNA5hmC/Download.html. The balance dataset consisted
of 1324 samples. The 662 sequences having 5hmC in the
center were regarded as positive samples collected from
Delatte et al. [9]. Where the sequence similarity is less
than 80%. The remaining randomly selected 662 sequences
identified as having the intermediate cytosine (utilizing the
method of hMeRIP-seq) were not identified as 5hmC and
were regarded as negative samples. The length of each sample
was 41 nucleotides.

B. THE PROPOSED MODEL
The proposed architecture iRhm5CNN is a simplified
CNN-based deep learning model as shown in Figure 1. CNN
is a popular deep learning technique, with a well-deserved
reputation for exceptional results and generalization. CNN
extracts the most important features from an RNA sequence
representation without any intervention of hand-designed
features. The primary RNA sequence is represented as a
one-hot vector input to the CNN architecture, with each
RNA sequence, comprised of four nucleotides bases includ-
ing Adenine (A), Cytosine (C), Guanine (G) and Uracil (U),
being represented by vectors (1, 0, 0, 0), (0, 0, 1, 0),
(0, 0, 0, 1), and (0, 1, 0, 0), respectively.

In general, CNNs are comprised of layers, including a
convolution layer, a normalization layer, a pooling layer, and
a fully connected layer. The most optimal hyperparameters
are selected using the grid search algorithm based on a
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TABLE 1. The ranges of the optimum hyper-parameters.

manually defined range of hyperparameters. The local fea-
tures of the input are extracted by the convolution layer, which
has numerous convolutional units and parameters optimized
using backpropagation [38]. The Rectified linear unit (ReLU)
is used as an activation function for the convolution layer, fol-
lowed by the group normalization layer, which is an effective
alternative to batch normalization for dealing with a small
batch size [39]. Normalization, which acts as a regularization
technique, is performed in groups, and the group size selected
for this study is two. The one-dimensional max-pooling layer
with a pool size of two is utilized after the normalization
layer. The max-pooling layer reduces the dimensionality and
redundancy of the features from the previous layer. The
max-pooling layer is followed by a dropout layer that has
a dropout probability of 0.4. During training, the dropout
layer randomly switches off the effect of some neurons to
avoid overfitting [40]. The dropout layer is followed by a
fully connected layer that uses ReLU as an activation function
and L2 regularization with a value of 1 × 10−2. The L2
regularization on bias and weight is the most sophisticated
and effective techniques for mitigating overfitting, as L2 reg-
ularization penalizes the model with larger weights [41]. The
last layer is the sigmoid activation function, which assigns
probabilities to the outputs for the results to be mapped
as 5hmC site or non-5hmC site. The range of optimum
hyper-parameters for the grid search method are enlisted
in Table 1.

Mathematically the architecture is expressed in the follow-
ing Equations.

Conv(X )jk = ReLU
( Z−1∑

s=0

I−1∑
n=0

W k
snXj+ s, n

)
(1)

The one-dimensional convolution layer is expressed in
Equation 1 where input as an RNA sequence is X , index of
the filter is k , and j denotes the index of the output position.
Each W k is convolution filter having Z × I weight matrix,
where Z represents the size of the filter while I denotes the
number of input channels.

ReLU (x) =

{
x if x > 0
0 if x ≤ 0

(2)

The ReLU activation function used in the architecture is
given in Equation 2.

d = ReLU
(
wd+1

d∑
k=1

mkwkzk

)
(3)

The fully connected layer along with dropout operationmk
having the probability of p which is sampled from Bernoulli
distribution is mathematically expressed in Equation 3, where
zk is a 1×d dimensional feature vector, wk is the weights of
the zk from the previous layer, and wd+1 is the additive bias
term.

Sigmoid(x) =
1

1+ e−x
(4)

The sigmoid activation function is shown in Equation 4
where x is the input of function.
The Keras framework (available at https://keras.io/) was

utilized for the construction of iRhm5CNN. Adam, which
has a learning rate of 0.001, was used as an optimizer for
the proposed model. Binary cross-entropy [42] was used as
a loss function which measures the discrepancy between the
probability distributions of principal class [41]. The maxi-
mum numbers of epochs for trainingwere 81with a batch size
of 32. The early stopping on validation loss with the patience
level of 15 was utilized to avoid overfitting which stops the
training updates when there is no improvement in the loss
for 15 epochs. Also, the Plateau learning rate reducer with
the reduction factor of 0.01 was utilized. The patience level
of the reducer was 10 epochs to reduce the learning rate with
the factor of 0.01 if there was no improvement in validation
loss after 10 epochs.

C. PERFORMANCE EVALUATION
The performance of the proposed model was quantitatively
evaluated using the four metrics named as accuracy (ACC),
sensitivity (SN), specificity (SP), and Matthews correlation
coefficient (MCC), which are mathematically represented as:

ACC =
TP+ TN

TP+ TN + FN + FP
(5)

SN =
TP

TP+ FN
(6)

SP =
TN

TN + FP
(7)

MCC =
TP× TN − FP× FN

√
(TP+ FN )(TP+ FP)(TN + FP)(TN + FN )

(8)

where TP (true positive) is the number of positive samples
correctly identified; TN (true negative) is the number of
negative samples correctly identified; FN (false negative)
is the number of positive samples incorrectly identified as
negative samples, and FP (false positive) is the number of
negative samples incorrectly identified as positive samples.
The range of values for accuracy, sensitivity, and specificity

VOLUME 9, 2021 8493



S. D. Ali et al.: Prediction of RNA 5hmC Modifications Using Deep Learning

FIGURE 2. The illustration of the ROC along with area under the curve
(AUC).

varies between [0, 1], whereas the range for theMatthews cor-
relation coefficient is [−1, 1]. Higher values indicate superior
performance.

Moreover, the receiver operating characteristics (ROC)
curve showing the trade-off between the true positive and
false positive rate is utilized. The precision-recall (PR) curve
is used to demonstrate the trade-off between the true positive
rate and the positive predictive values of a classifier through
different probability thresholds. The area under the ROC
curves and the PR curves is a significant indicator of the
predictive efficiency of the binary classifiers. Finally, the
confusion matrix is shown which is the visual representation
of performance.

III. RESULTS AND DISCUSSION
The k-fold cross-validation technique is utilized to evaluate
the robustness and sensitivity of the proposed computational
model. The outcomes of k-fold cross-validation are fairly
unbiased [43]. K-fold cross-validation is quite effective at
proving the effectiveness of certain computational models
using a benchmark dataset, as the results obtained are eval-
uated using k number of different training and validation
sets [44]. The value of k is set to be 5. Among 5 folds
three folds were utilized for training, one-fold for valida-
tion, and the remaining one fold for testing of the proposed
model. The proposed model predicted RNA 5hmC sites with
81.20% accuracy, 82.03% sensitivity, 80.37% specificity, and
an MCC of 0.62. These results are summarized in Table 3.
A graphical representation of performance showing the area
under the ROC curve is 0.89 and under the PR curve is 0.88
is presented in Figures 2 and 3 respectively. The confusion
matrix is provided in Figure 4.

A. SEQUENCE ENCODING USING NUCLEOTIDE
CHEMICAL PROPERTIES
Each of the four RNA nucleotides A, C, G, U has differ-
ent chemical properties. The nucleotides are grouped into
three groups depending on their chemical properties; base
type, hydrogen bond strength, and functional (amino or keto)
group. Concerning the base type, A and G are purines with
two rings, while C and U are pyrimidines with one ring.

FIGURE 3. The illustration of the PR curve along with AUC.

FIGURE 4. Illustration of confusion matrix of proposed model.

The hydrogen bond between A and U is weak but strong
between C and G. As to functional groups, A and C belong
to the amino group while G and U are in the keto group.
Based on these three chemical criteria, each nucleotide in
the RNA sequence can be encoded in a three-dimensional
cartesian coordinate system. The coordinates are assigned
a value of 0 or 1. The first dimension reflects the base
type, with 1 indicating purines and 0 indicating pyrimidines.
Hydrogen bond strength is represented in the second dimen-
sion; 1 for a weak bond and 0 for a strong bond. The third
dimension represents the functional group, with 1 indicating
an amino group, and 0 indicating a keto group. Therefore, A,
C, G, and U are represented as (1, 1, 1), (0, 0, 1), (1, 0, 0),
and (0, 1, 0), respectively. The results of our proposed
method using feature-based sequence encoding for the RNA
sequences are summarized in Table 2. The ACC is 78.79%,
the SN is 81.44%, the SP is 76.13%, the MCC is 0.58, the
area under the ROC is 0.87, and under the PR is 0.86.

B. COMPARISON
We compared the outcomes of the proposed model with the
only existing machine learning-based computational model,
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TABLE 2. The performance of the proposed model iRhm5CNN using
different sequence representation methods.

TABLE 3. Performance comparison of proposed model iRhm5CNN
comparison with the existing computational model.

FIGURE 5. Illustration of comparison of existing models for predicting
RNA 5hmC sites.

iRNA5hmC [12] which utilizes the SVM algorithm, where
the features representation techniques are k-mer spectrum
and positional nucleotide binary vectors. iRNA5hmC was
evaluated using 5 folds cross-validation. The results of com-
parison are summarized in Table 3 and are illustrated in
Figure 5. The outcomes of our proposed method showed
significant improvement over iRNA5hmC. The empirical
success rate in Table 3 reflects the significant improve-
ment of our proposed model across all performance metrics
using the benchmark dataset; 15.72% improvement in the
accuracy, 14.36% improvement in the sensitivity, 17.08%
improvement in the specificity, and an MCC of 31%. The
significant improvement of the proposed model signifies that
automatic feature selection of CNN outperforms the only
existing machine learning-based method in all the perfor-
mance metrics.

IV. WEB-SERVER
Experimental scientists may use a web server to get their
desired results without engaging in complicated mathe-
matics. A web-server can document computationally eval-
uated outcomes [45]. These factors are responsible for
improving computational biology performance in the med-
ical sciences [46]. Considering the effectiveness of web
server a publicly available web-server can be accessible
at http://nsclbio.jbnu.ac.kr/tools/iRhm5CNN/ which is built
using python.

V. CONCLUSION
Accurate identification of RNA 5hmC is a necessary step
to the continued exploration of vast and diverse biological
functions. This study proposed an efficient and effective

computational tool (iRhm5CNN) for the identification of
5hmC using a deep learning framework. Our proposed model
uses a simple CNN architecture for appropriate feature
extraction followed by a fully connected layer to discriminate
between RNA 5hmC and non-5hmC sites. The proposed
model outperformed the existing state-of-the-art model, and
the outcomes confirm iRhm5CNN’s efficacy. We anticipate
that our developed computational model along with its pub-
licly available web server will be utilized for drug develop-
ment and academic research related to the investigation of
the functional procedures of 5hmC sites, including but not
limited to abnormalities in brain development.
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