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ABSTRACT S-Nitrosylation modification is one of the most important post-translational modifications; it
plays a critical role in a vast variety of biological processes and is related to various diseases. Identification
of S-Nitrosylation sites in proteins is crucial for understanding and controlling basic biological processes.
The conventional experimental identification methods are laborious and cost in-efficient. To overcome these
issues, computational biological approaches are under consideration, including use of machine learning
and deep learning algorithms. All existing S-Nitrosylation predictors use the handicraft feature extraction
method and could be improved upon. We propose an end-to-end deep learning based S-Nitrosylation site
predictor with an embedded layer and bidirectional long short-term memory. The proposed method uses
protein sequences as inputs without any need for complex features interventions. This sequence-based
protein prediction method is associated with a significant improvement in identification of S-Nitrosylation
sites. More specifically, the best prediction of the proposed architecture showed an improvement of in MCC
3% on 5-fold cross validation and 5% on an independent test dataset. Finally, the user-friendly publicly
available webserver is accessible at http://nsclbio.jbnu.ac.kr/tools/RecSNO/.

INDEX TERMS Post-translational modification, s-nitrosylation, deep learning, BiLSTM.

I. INTRODUCTION
Protein post-translational modifications (PTMs) are impor-
tant cellular regulatory processes that happen after protein
synthesis. PTMs play a very important role in protein
mutations, thus altering the regulation of many cellular
functions [1] and the physical and chemical properties of
proteins. The PTM process begins when amodification group
is added to one or more amino acids [2] which alters the
properties of a protein. S-Nitrosylation(SNO) is one of the
most important and universal ubiquitous PTMs [3]. SNO
involves a covalent interaction of nitric oxide (NO) with
the thiol group of a cysteine residue [4]–[7]. NO plays
an important role in the cardiovascular system [8] and
is considered a good source of NO bioactivity [9]. Vari-
ous studies have proposed that SNO can modify protein

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Salehzadeh-Yazdi .

stability [9], trafficking [10], [11], and activity [12]; studies
have also shown that it plays an important role in a vari-
ety of biological processes including transcriptional regula-
tion [9], apoptosis [12], cell death [13], cell signaling [14],
redox signaling [15], the immune response [16], and chro-
matin remodeling [17]. SNO has also been implicated in
a wide range of human disease states [5], such as can-
cer [18], amyotrophic lateral sclerosis (ALS) [19], chronic
renal failure [20], cardiovascular disease [21], age-related
diseases [22] and neurodegenerative diseases [23] like
Alzheimer’s [24] and Parkinson’s [12], [25]. Recent stud-
ies suggest that SNO is a promising target for therapeutic
against cancer and some neurodegenerative diseases [18],
[26]–[28]. Therefore, protein SNO site prediction is very
important and helpful for drug development [28]–[30]
and understanding of basic biological processes [9], [12],
[14], [17]. Protein SNO sites have been identified by
many conventional experimental techniques, including BST
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(biotin switch assay) [31], SNO-RAC (SNO-resin assisted
capture) [32], and SNOSID (SNO-Cys site identifica-
tion) [33], [34]. BST comprises three steps [35] and
has been successfully used to predict a large number
of S-nitrosylated proteins in different species, such as
H.sapiens [36], A. thaliana [37], and M.musculus [38].
SNO-RAC is a BST-based methodology that combines
the reduction, labeling, and pull-down steps through of
thiol-reactivity [32]; and is used to inspect the process
of S-nitrosylation/denitrosylation in intact cells. SNOSID
has also been used to determine the locations of SNO
sites in MS-derived data [39]. However, these large scale
experimental screening techniques for protein SNO site
detection are time-consuming, laborious, and economically
costly [9], [12]. So, it is necessary to invest in options that
can be used to screen proteins for potential PTM SNO sites
in a less cost and time effective manner. In recent years,
machine learning and deep learning have begun to play a
vital role in the computational prediction of protein SNO
sites [8], [40]–[43].

Several machine learning based predictors have been
developed for predictions of SNO site identifications; some of
these are GPS-SNO [8], SNOSite [43], iSNO-PseAAC [42],
and preSNO [40]. The GPS-SNO predictor is a group-based
prediction (GPS) algorithm developed with a training dataset
that consisting of 504 experimentally verified SNO sites
in 327 unique proteins [8]. The iSNO-PseAAC predictor
is a SVM-based and uses, a training dataset that consists
of 731 SNO sites in 438 proteins [42]. The SNOSite pre-
dictor,which is also based on SVM, is applied to generate
a predictive model for each maximal dependence decompo-
sition (MDD)-clustered motif, and was developed using a
training dataset that consisting of 586 sites in 384 unique
proteins [43]. Xie et al. [41], developed the DeepNitro pre-
dictor based on a deep learning methodology; the system
applies fully-connected layers on the concatenated features of
amino acid pair composition and a position specific scoring
matrix (PSSM). DeepNitro was the first time predictor to
use a large dataset, which was collected from the scientific
literature and, contained 4762 SNO sites in 3113 unique
proteins [41]. Before that point, no such dataset was available
for good prediction or evaluationwith an independent dataset;
many samples from older datasets were verified as positive,
which were then considered false-negative results in the older
methods [40]. Recently, the preSNOpredictor was developed,
which use the same dataset as DeepNitro, by integrating SVM
and random forest (RF) methods [40]. Each of the afore-
mentioned approaches has unique benefits, and each one has
played a significant role in the study of protein S-nitrosylation
site forecasting. However, these models still have some com-
plications and leave room for improvement. These existing
machine learning based tools make predictions using tradi-
tional shallow machine learning methods, which fail to learn
the basic biological features of protein modification due to
a lack of consensus sequences [41]. These existing tools are
unable to extract high level features from an input sequence

and are reliant on handicraft features. By contrast, a com-
putational architecture based on deep learning is capable of
extracting the essential features of a sequence without any
human intervention, leading to an accurate and robust com-
putational model. Deep learning based models are associated
with extraordinary advancements in the fields of natural lan-
guage processing [44], speech recognition [45], energy load
forecasting [46], image recognition [47] and computational
biology [48]–[51]. However Recently, advanced machine
learning techniques based on deep forest models were pro-
posed such as DTI-CDF [52] and LMI-DForest [53]. These
methods are promising and can be further studied for our task.

In recent years, deep learning (DL) based methods have
been used to predict the PTM sites in cellular proteins.
Typical applications include DeepSuccinylSite [54], Musit-
eDeep [55], DeepRMethylSite [56], and DeepPhos [57].
In DL, a suitable raw vector is given to the architecture
and transformed into highly abstract features by propagating
through whole model. These approaches are an end-to-end
forecasters that never require an additional feature extraction
stage. The DL-based method DeepNitro was used to predict
SNO sites [41]. DeepNitro used a handicraft feature extrac-
tion method for feature extraction and input these features
into dense layers, which does not yield the full benefit of
DL-based automatic feature extraction. In the current study,
we introduce a DL-based predictor that, integrates the advan-
tages of both an embedding layer [58] and bidirectional
short-term memory (BiLSTM) [59]. The proposed predictor
uses only protein sequences as inputs, resulting in real-time
sequenced-based protein prediction. Also, this technique is an
end-to-end that does not needs an additional feature-extracted
step.The experimental results show that our approach attains
better performance than previous works [8], [40]–[43].

II. BENCHMARK DATASET
In this study, we used the dataset fromXie et al. [41], which a
high quality dataset based on extensive literature research and
previously reported datasets. In the dataset, the experimen-
tally confirmed S-nitrosylation sites taken as positive samples
and all other sites are taken as negative samples. In many
studies [57], [60], [61], construction of a negative dataset as
above with erroneous data will affect the prediction perfor-
mance [40]. We utilized the dataset from Hasan et al. [40],
which was prepared from the above mentioned dataset con-
taining 3113 unique proteins with 4762 SNO sites. In gen-
eral, a high degree of homology in the training dataset, can
cause overfitting, which may affect the generalization ability
of the classifier [60]. To avoid this problem, the protein
sequences were filtered with an identity cut-off of 30% using
CD-HIT [62]. That is, if more than 30% of the residues in
a protein sequence were the same, only one of them was
retained and the others were discarded. After removal of
redundant proteins, the remaining 2192 protein sequence was
truncated with a centered cysteine (C) to create a fragment.
The fragment length was calculated as 2Rn + 1, where
Rn is equal number of residues for the left and right side.

VOLUME 9, 2021 6675



A. Siraj et al.: RecSNO: Prediction of Protein S-Nitrosylation Sites Using a Recurrent Neural Network

After many trial value of Rn considered as 20. If the left or
right side of the centered residue(C) was less than the Rn, then
we used a pseudo-amino acid ‘‘−’’ to fulfill the sequence.
We used the same dependent and independent datasets as
Hasan et al. [40] to retrieve protein sequences from the
uniprot database (https://www.uniprot.org/) [63].By this frag-
ments strategy, we obtained 3734 positive and 20548 negative
residues. From these fragments randomly 20% selected as the
independent dataset contain 351 positive and 3168 negative
sites, and for balance training of model, training dataset
contains 3383 positive and 3365 negative sites [40]. All frag-
ments used for training and independent testing are available
on our web server (http://nsclbio.jbnu.ac.kr/tools/RecSNO/).

III. METHODS
Unlike traditional machine learning methods, our DL-based
method reduces the need for manual feature extraction. A pre-
requisite for this approach is that the sequence data must be
encoded in a form that is readable by our DL model. To this
end, we utilized an embedding encoding technique [54],
[58] and extracted features from this encoded matrix using
BiLSTM. To decrease the number of dimensions, we used a
max-pooling layer after feature extraction. The extracted fea-
tures are further feed into the fully connected layer. Finally,
SNO sites are predicted through a softmax output layer, con-
sidering categorical entropy.

A. EMBEDDING ENCODING
In the natural language processing (NLP) task, dictionary
words or phrases in a sentence are mapped in to vectors of
real numbers. Like Fu et al. [58], we regard each protein as a
sentence and the residues in the protein sequence as ‘‘words’’.
The amino acid residues and pseudo-amino acid ‘‘−’’ are
converted into index base integers ranging from 1 to 23. These
integers are then passed as inputs to the embedding layer,
which maps these inputs into low dimensional vectors using a
lookup table that learns from the data. The embedding weight
matrix is initialized with random weights and learns better
in subsequent epochs during training. The output dimension
and input size are the main arguments of the embedding layer.
Embedding encoding is a more beneficial method, as shown
in DeepGO [64]; it has inherent advantages over one-hot
encoding as it capture the semantic correlations of peptides
within the protein sequence.

B. BIDIRECTIONAL LSTM
BiLSTM [65] is a type of recurrent neural network(RNN)
based on LSTM [66]. The BiLSTM architecture used to
process sequence data relies on two distinct hidden layers,
from the forward and backward directions, to trace preceding
and succeeding contextual features as shown in Figure 1.
The features extracted by BiLSTM can more realistically
represent the actual semantics of the text. BiLSTM provides
the information gathered from past and future memory con-
currently from the data because of the forward and backward
hidden layers. The implementation of the forward hidden

FIGURE 1. BiLSTM.

FIGURE 2. LSTM.

layer is the same as LSTM; this solved the problem of van-
ishing gradients due the use of memory blocks, which are
self-connected hidden units. LSTM is used to trace long-term
dependencies with the help ofmemory blocks and three gates.
As shown in Figure 2, LSTM updates its hidden state (ht )
using historical hidden state features (ht−1) with a forwarding
approach and performs nonlinear transformation of the input
(xt ) using the candidate cell state (Kt ). The result of Kt and
cell state at the last timestamp (ct−1) is used to update the cell
state (ct ). The LSTM gates include (1) an input gate (IG),
which control the importance of new information that, will
be saved to memory; (2) a forget gate (FG), which controls
the importance of a memory that needs to be forgotten or
remembered; and (3) output gate (OG), Which gauges new
cell state and provide the output. In these gates, nonlinear
activation functions are used to transform the values in the
range of 0 to 1; we used a sigmoid activation function for
this purpose. Finally, the result of the OG and cell state at
the current time is used to update the hidden state, which is
the output of LSTM. The backward hidden layer updates its
hidden state using future information (ht+1) with a backward
approach [67].

C. PROPOSED ARCHITECTURE
Here, we develop a DL-based classifier for SNO pre-
diction using a combined word embedding and BiLSTM
approach. This classifier contains six layers, as shown
in Figure 3. These layers include: (1) an input layer, in which
a residue fragment of length 41 (including the pseudo-amino
acid ‘−’) is converted via integer encoding; (2) an embedding
layer, which is used to represent properties in the form of
a word vector such that, every peptide in the sequence is
converted into a 64-dimensional word vector; (3) two con-
secutive BiLSTM layers, one with 32-memory units and the
other with 24. The first BiLSTM layer takes n-dimensional
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FIGURE 3. Proposed model architecture.

word vectors as input and extracts the features of those inputs.
The result of the first BiLSTM layer is passed as input to
the second BiLSTM layer, which extracts the features more
deeply; (4) a max-pooling layer, which reduces the dimen-
sions to half. The max-pooling layer preserves the features
with maximum values in pool size; and (5) a prediction
layer, which contains two neurons activated by the ‘soft-
max’ activation function and, provides a probability score for
each class. We use dropout layers with different probabili-
ties. After finding the best hyper-parameters for each layer
with grid search, the hyper-parameter setting information for
each layer is defined (shown in Table 1), except the given
hyper-parameters values for each layer set as default. The
details of the grid search hyper-parameters are given in the
supplementary file (Section A).

TABLE 1. Proposed model layer details.

In our proposed model, We used batch size of 12 and
applied Adam optimizer to our framework, which merges
the dividend of both the adaptive gradient algorithm and
root mean square propagation, resulting in effective train-
ing [68]. We also used early stopping to monitor validation
loss with a patience of 5 for stop training because further
training would increase the variance of the model and lead
to overfitting. We also used a learning rate schedular after
20 epochs, which decreased the learning rate by multiply-
ing it by (e−1). The architecture was implemented using

the Keras (https://keras.io/) deep learning library. Since we
used softmax-based prediction, a categorical cross-entropy
function was used as the loss function and the results were
obtained by applying a threshold of 0.5.

D. MODEL EVALUATION AND PERFORMANCE METRICS
The present study uses stratified k-fold cross validation,
the folds are generally formed in such a way as to be consisted
of almost the same proportion of predictor labels as original
dataset. Studies have shown that stratified cross validation
generates comparative upshots with lower bias and lower
variance when compared to regular cross validation [69].
we used 5-fold strategy, in which the data are divided into
5 equal bunches by which one part is used for validation and
the remaining four parts are used for training. The technique
persists untill each fold is sorted out as validation data and
assesses the performance of themodel using different types of
matrices, including a confusion matrix, matthew’s correlation
coefficient (MCC), receiver operating characteristics (ROC)
curve and precision-recall curve (PRC). A confusion matrix
is one of the basic matrix used to assess the quality of the clas-
sification predictor. A confusion matrix envisages the results
in the form of a matrix where each column constitutes the
predicted result and each row indicates the actual class of the
sample. A confusion matrix relies on four values, the number
of true positives (Tp), the number of true negatives (Tn),
the number of false-positive (Fp), and the number of false
negatives (Fn). Another performancematrices used confusion
matrix as.

Sensitivity =
Tp

Tp + Fn

Specificity =
Tn

Tn + Fp

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn

MCC =
(Tp)(Tn)− (Fp)(Fn)√

(Tp + Fp)(Tp + Fn)(Tn + Fn)(Tn + Fp)

(1)

Sensitivity (SN) is a measure of the accurate positive rate
and Specificity (SP) represents the true negative rate of the
classifier. Accuracy (ACC) is the proportion of all accurately
predicted samples, both positive and negative. MCC is a
balanced measure in which true and false negatives are both
used in the evaluation.The area under the ROC curve is used
to indicate the degree of quality and separability of the clas-
sification models. The PRC is the tradeoff between precision
and recall using different threshold. The higher area under the
curve is the representation of both the high recall and the high
precision. As the high value of precision is due to a low false
positive rate,while the high recall is due to low false negative
rate.

IV. RESULTS AND DISCUSSION
A. OPTIMAL WINDOW SIZE AND ENCODING SCHEME
The length of the amino acid sequence given to the learning
construction model is also an important hyper-parameter.
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TABLE 2. Comparison of encoding techniques on different fragment
length.

FIGURE 4. 5-fold cross validation ROC-AUC comparisons of different
fragments length. (a) Embedding Encoding. (b) Combine one-hot and PCA
encoding.

The general range for protein chain length is (21-41) for
prediction of PTM sites. We previously performed experi-
ments on fragment of different lengths (21 to 45) and using
different encoding schemes, including word embedding and
combined one-hot and PCA encoding. A PCA vector is a
5 dimensional quantitative representation of 20 amino acids
and is derived from multi-dimensional scaling of 237 physic-
ochemical properties [70]. As shown in Table 2 and Figure 4,

we identified 41 as the optimal length; this length was also
used in previous SNO studies [40], [41]. Details of the per-
formance of other encoding schemes and models are given in
the supplementary file (Sections A and B).

B. EXPERIMENTS ON DIFFERENT DEEP LEARNING
ARCHITECTURES
We looked at other deep learning architectures with encoding
schemes including embedding, ProtVec [71] and one-hot,
and other architectures including convolution neural net-
work (CNN), LSTM, and BiLSTM. ProtVec is type of word
embedding similar to word2vec [72] using 3-mer residue to
construct a hundred dimension vector. We also used a com-
bination of one-hot and PCA, and a combination of one-hot
and embedding as inputs for a CNN-based architecture. The
details of these methods are given in the supplementary
file, sections B and C, respectively, while the results of
5-fold cross-validation and independent data testing are listed
in Table 3 and a comparison of the area under ROC curves is
shown in Fig 5. RecSNO provides better results than the other
architectures.

TABLE 3. Comparison of RecSNO with other deep learning architectures.

C. CROSS-VALIDATION PERFORMANCE
Our ultimate predictor, RecSNO, makes use of embedding
with window and dimension sizes of 41 and 64, respec-
tively.We employed 5-fold cross-validation to test the results.
For an accurate comparison, we used the same training and
testing dataset as were used for the preSNO model. The
outcomes are shown in Table 4. RecSNO exhibits robust-
ness; the performance metrics were as follows: sensitivity,
0.79; specificity, 0.66; accuracy, 0.72; MCC, 0.45; AUC,
0.79 and PRC, 0.75. as sown in Fig 6 and Fig 7 respectively.
In terms of sensitivity, accuracy, and MCC, our predictor
is superior to preSNO. Considering that the MCC is often
used as a substitute for overall model performance, it was
preferred slightly over the other evaluation parameters [73].
The preSNO predictor is biased towards the negative class,
but our proposed model overcomes this problem and gives
more balanced results.

D. INDEPENDENT DATASET COMPARISON WITH
EXISTING PREDICTORS
The performance of RecSNO was compared with that of
existing SNO site predictors using an independent test set
for reasons that were highlighted earlier, in the Benchmark
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FIGURE 5. ROC-AUC comparisons of different deep learning architectures.
(a) 5-fold cross validation. (b) Independent data results.

TABLE 4. Comparison of RecSNO with recent existing predictor.

FIGURE 6. AUCs of 5 folds cross validation.

Dataset section. We examined five existing publicly avail-
able SNO predictors, including GPS-SNO [8], SNOSite [43],
iSNOPseAAC [42], DeepNitro [41], and PreSNO [40].

FIGURE 7. AUPRCs of 5 folds cross validation.

TABLE 5. Independent dataset comparison of RecSNO with existing
predictors.

FIGURE 8. Independent AUC-ROC result.

We evaluated the independent sample prediction results in
terms of specificity, sensitivity, accuracy, MCC, and AUC.
As shown in Table 5, our deep learning predictor, RecSNO,
had a sensitivity of 0.77, specificity of 0.71, accuracy of 0.71,
MCCof 0.30, andROC-AUCof 0.80 as shown in Fig 8. These
findings reveal that our model offers the best output in terms
of sensitivity, MCC and AUC. Other predictors show large
differences between sensitivity and specificity because they
are prejudiced towards one or the other. The proposed model
gives balanced results to solve this problem and achieves a
high true positive rate. The proposed RecSNO model gives
reliable forecasts compared to existing computational SNO
methods.

V. WEB SERVER
The web server for proposed model is freely accessi-
ble at http://nsclbio.jbnu.ac.kr/tools/RecSNO/. Where single
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FIGURE 9. The home page of the web server. (a) Finding a s-nitrosylation
site for a single sequence. (b) Finding s-nitrosylation site in a fast file and
downloading the dataset for training and independent.

protein sequence can be used as the input or the file con-
taining sequences in fasta format upload. Figure 9 shows
the home page of the web server where dataset is also
available.The webserver is constructed using Flask library in
Python.

VI. CONCLUSION
In the current study, we construct a computational tool,
RecSNO, to identify SNO sites. Although RecSNO gives
accurate and better predictions than other published predic-
tors in aspects of 5-fold cross-validation and independent
tests, it still has some issues that should be considered in
future work. The structural preferences of S-nitrosylation
sites should be considered in greater detail because tertiary
structure is a key feature for the occurrence of protein nitrosy-
lation sites, and was not taken into account in this study [61].
Notably, we did use the RNN-based method BiLSTM to
measure contextual dependencies in nitrosylation sequences.
Compared to previous works that used handicraft features,
the proposed method uncovers high-level features and has
enhanced prediction capability for protein SNO sites. Rec-
SNO may prove to be very useful for biologists attempting to
identify SNO sites and understand their role in diseases. The
web application of our tool is provided for public use.
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