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ABSTRACT Cervical cancer is a potentially life-threatening disease marked by health practitioners. The late
diagnosis and treatment, being quite challenging, stake the precious lives of patients. In both developed and
undeveloped states, the formal screening for disease identification suffers due to its medical cost, unavailable
health facilities, society norms, and late appearance of symptoms. Machine intelligence is cost-effective,
computationally inexpensive, and early diagnosis of several types of diseases, including cervical cancer. The
patients are not required to pass through contemporary and tedious medical procedures, and early diagnosis
of cervical cancer is quite handy with machine-intelligent solutions. The problem with the current machine
classification methods for disease identification is the reliance on a single classifier’s prediction accuracy.
The adoption of single classification methods doesn’t ensure the optimum prediction due to bias, over-fitting,
mishandling of noisy data, and outliers. This research study proposes an Ensemble classification method
based on majority voting for an accurate diagnosis addressing the patient’s medical conditions or symptoms.
The study experiments a wide range of available classifiers, namely Decision Tree (DT), Support Vector
Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN), Naive Bayes (NB), Multiple Perceptron
(MP), J48 Trees, and Logistic Regression (LR) classifiers. The study records a significant enhancement
in prediction accuracy of 94% that outperforms the prediction accuracies of single classification methods
tested on the same benchmarked datasets. Thus, the proposed model bestows a second opinion to health
practitioners for disease identification and timely treatment.

INDEX TERMS Cervical cancer, machine intelligence, classification algorithms, support vector machine,
Naïve Bayes, random forest, decision trees, K-nearest neighbors, ensemble classification.

I. INTRODUCTION
Cancer is one of the fatal diseases of today [1]. Specific
abnormal behavior of affected cells characterizes the dis-
ease. Cancerous cells start damaging normal tissues, hence
affecting their normal functions [2]. Cancer also has a high
potential of spreading to other parts of the body. Therefore,
a failure to detect cancer at an early stage may lead to
death in several cases. Depending on the type of cancer,
there is generally a higher probability of survival if cancer
is detected early [3]. Cervical cancer is one of the most
common types of cancer in women, mostly caused by HPV
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(Human Papilloma Virus). Several studies have shown that
early detection of cervical cancer can significantly impact
patients’ treatment and recovery [4], [5]. Commonly used
techniques for the detection of cervical cancer include Pap
smear (Papanicolaou test) [6], HPV DNA genotyping [7],
HCII (Hybrid Capture II), hybrid capture [8], [9] and South-
ern blot hybridization assay [10]. In this regard, the latest
invention is biosensors that carry colossal potential because
of low cost, speedy results, and ease of use [11], [12]. Each
one of these techniques has its limitations. The pap smear
test’s significant shortcomings include a high false negative
rate [13], low sensitivity, and high cost [13]. The southern
blot hybridization assay test is time-consuming and has low
sensitivity [14]. HPVDNAgenotyping requires a long time to
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FIGURE 1. Research trend related to the adoption of machine learning for cervical cancer diagnosis.

perform the test and is relatively expensive [15]. HCII hybrid
capture is one of the most advanced techniques for the early
detection of cervical cancer. However, its main limitation is
its ability to detect only 13 strains of HPV [16]. Biomedical
sensors suffer from several operational constraints, such as
lack of electrode reusability, operational stability, and limited
lifetime [17]. These limitations of existing methods advocate
the need for better strategies for the early detection of cervical
cancer.

Reference [18] defines machine learning as ‘‘computa-
tional methods using experience to improve performance or
to make accurate predictions.’’ Machine learning techniques
are quite applicable across a broad spectrum of domains
such as personal [19], finance [20], large enterprises [21],
government [22], military [23], and even space science [24].
Machine learning techniques have been successfully used
in the medical domain [25], [26]. Various machine learning
solutions are appealing formultiple types of cancer [27]–[29],
and cervical cancer is no exception [30], [31]. The existing
approaches used for the detection of cervical cancer mostly
focus on a single classifier. As Ensemble techniques can
usually produce better results in specific problems [32], this
work proposes to use Ensemble techniques for cervical cancer
detection from two publicly available datasets. The work
approach utilizes several classifiers, including Decision Tree,
Support Vector Machine, Random Forest, K-Nearest Neigh-
bor, Naive Bayes, Multiple Perceptron, J48 Trees, and Logis-
tic Regression. The majority voting mechanism classifies the
target attribute. The rest of the paper is organized as follows.
Section 2 presents a critical analysis of recent works related
to cervical cancer identification. Section 3 elaborates on the
methodology in this work. Section 4 presents the results, and
section 5 concludes the research.

II. RELATED WORK
Cervical cancer has been marked as the third most life-
threatening disease in females worldwide [33]. This disease
is mainly caused by HPV that creates a tumor in the infected
region [34]. Health practitioners suggest timely screening and
vaccination cure the disease. HPV infection is the root cause
of this disease in almost 99.7% of cervical cancer cases.
Besides, it is one of the frequent cancers in females that
arose to an estimated 528,000 cases recorded in 2012 [35].
The current cancer research demands timely diagnosis and
accurate identification of disease.

Figure 1 presents an exciting research trend that describes
the employment of machine learning adoption for cervi-
cal cancer diagnosis. It is viable that machine intelligence
exploits on a large scale to identify cervical cancer with time.
In the last five years, based on this disease’s seriousness
and its timely identification, there is a significant increase
in machine intelligence research towards cervical cancer pre-
diction. Hence, machine learning applications are compelling
and influential in the early diagnosis of cervical cancer related
to the biomedical field [36]. Such intelligent applications of
machine learning much help to provide a second opinion to
health practitioners. Here, we give the prevailing solutions
of cervical cancer diagnosis employed using machine intelli-
gence, Table 1 presents an overview of machine intelligence
solutions for the prediction of cervical cancer. Most cervical
cancer diagnosis solutions rely on the pap-smear test, cervical
image analysis, and general disease symptoms. Different
research scenarios apply a variety of classification algo-
rithms. Most of the existing research adopted a single classi-
fier used at particular datasets of cervical cancer patients and
evaluates the performance of a single classification against
the other classifiers. A few cited works can be noticed that

VOLUME 9, 2021 12375



Q. M. Ilyas, M. Ahmad: Enhanced Ensemble Diagnosis of Cervical Cancer: A Pursuit of Machine Intelligence

adopted ensemble classification with different strategies to
enhance individual classifiers’ prediction accuracy. The pre-
processing, feature selection, and dimension reduction also
significantly contributed to optimizing classification meth-
ods’ prediction accuracy. Thus, this research study proposes
a new ensemble classifier that integrates individual weak
classifiers’ prediction outcomes with the majority voting to
produce a robust ensemble classification model.

III. METHODOLOGY
The optimal identification of cervical cancer is very much
dependent on the individual classifier’s performance. In the
literature, we have seen that the classifier’s performance
positively correlates with the orientation of data samples in
outliers and missing attribute values. It is also evident that
some classifiers outperform some smaller or medium-sized
data points. Still, their performance degrades at larger data
points, especially when the data points have larger standard
deviations. Since an optimum diagnosis of cervical cancer is
essential for health practitioners to suggest the best possible
treatments, the early and accurate detection of the disease
requires a robust and resilient solution. This study adopts an
ensemble classification method based on a significant voting
policy to adopt the best classification outcomes for cervical
cancer prediction. The study adopts a wide range of avail-
able classifiers, namely Decision Tree (DT), Support Vector
Machine (SVM), Random Forest (RF), K-Nearest Neighbor
(KNN), Naive Bayes (NB), Multiple Perceptron (MP), J48
Trees, and Logistic Regression (LR) classifiers.

The figure presents the proposed framework for cervical
cancer prediction. As a holistic picture, cervical cancer is
predicted by integrating different classifiers’ classification
outcomes through a majority voting scheme to produce an
optimal result.

Let us consider a feature set S = {X1,X2,X3,X4, . . . . . . .
Xn} of n data points ∀n ≤ N , where N is the total number
of available features in S. let us apply feature reduction
filter F on S∀SF = {X1,X2,X3,X4, . . . . . . .Xm}. We consider
(Xj, Yj) points ∀j ≤ N .

f (Yj) = Sign(QTXj+ b) (1)

Xi = Yi(QTXi+ b) (2)

QTXi+ b ≥ 1 if Yi = 1 (3)

QTXi+ b ≤ −1 if Yi = −1 (4)

Equations (1) through (4) describe the linear association of
supported vector points whose distance of interest from the
hyperplane becomes,

d =
y(QTX + b)
‖w‖

(5)

The margin that separates the points,

m =
2
‖w‖

(6)

For decision tree classification, we take,

Entropy = −
n∑
1
pi log(pi) with Gini index = 1 −

n∑
1=1

p2i .

Here the entropy helped us find the spread of data with
the required Gini index between 0 and 1. For the sake of
random forest implementation, we consider the classification
problem of classifying Xn data points ∀n ≤ N , such that
the majority vote classified the Xn points into required target
output classes. Naïve Bayes classification considered Xn data
points with n inputs such that,

P(y |X ) =
P(X |y ) ∗ P(y)

P(X )
(7)

For Xn data points, the KNN calculates,

d(X ,Y ) = d(Y ,X )

=

√
(x1 − y1)2 + (x2 − y2)2 + . . . ..(xn − yn)2 (8)

The logistic regression implements the classification by cal-
culating the cost function,

Cost(c) = (−1
/
s)

s∑
j=1

(yj log(yj)+ (1− yj) log(1− yj)) (9)

For multiplayer perceptron, we have chosen an appropriate
learning rate. We also tested different weights for gradi-
ent descent. We observed that logistic sigmoid is a proper
replacement of step function for simple perceptron process.
Besides, we also noted that the range of logistic function
between 0 and 1 helped the descent to learn faster. Depending
on the noise in Xn data points, we scaled the training patterns
employing different k-fold cross validations to achieve unbi-
ased outcomes.

Figure 3 presents the methodological steps in analyzing
cervical cancer data to classify the disease. Let’s us consider n
data points defined as D= {D1, D2, D3, Di}, i<=N. For the
sake of achieving best classification, it is important to remove
the outliers and noisy attributes from Xn data points such that
n <= N.

We apply the k-fold cross-validation and segment the Di
data points into an aggregate of training, test, and validation
segments for i <= N. Later, we analyze Di instances with
the chosen classifiers, namely SVM, DT, RF, NB, KNN, J48,
MP, and LR classifiers for each Di in D. We then define a
filter DF to analyze the individual performance of classifiers
for i <= N. Finally, ensemble classification outcomes are
achieved by a Majority Voting Filter to CLFy (y <= 8).

IV. RESULTS AND DISCUSSION
For cervical cancer diagnosis, this research employs two
publicly available cervical cancer datasets. The first dataset,
‘‘Cervical Cancer Behavior Risk Dataset,’’ was contributed
by [75]. This dataset contains 20 attributes, including the class
attribute. The second dataset, ‘‘Cervical cancer (Risk Factors)
Dataset,’’ was contributed by [76] and experimented with by
several researchers [37], [51], [77]–[79]. The dataset con-
tains 36 attributes and 858 subjects. The contributor reported
several missing values since the respondents left some
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TABLE 1. An overview of machine intelligence solutions for cervical cancer identification.
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TABLE 1. (Continued.) An overview of machine intelligence solutions for cervical cancer identification.

FIGURE 2. The proposed framework for cervical cancer prediction.

queries unanswered. Since machine intelligence algorithms’
performance significantly correlates with data quality, this

research performed necessary preprocessing to accommo-
date the missing information. We applied an unsupervised
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FIGURE 3. The sequence of steps of the methodology.
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FIGURE 4. Percentage of missing data in specific attributes of the dataset.

filter that replaces the missing nominal and numeric
attributes with modes and medians and skipped the class
attribute.

Figure 4 presents the percentage of missing data related to
specific attributes in the dataset. It is explicit that attribute
numbers 27 and 28 contain 92% missing values. These
attributes relate to the time of first and last diagnosis per-
formed with certain subjects. Attribute numbers 8 to 25
have about 12% missing information. Such features rep-
resent the data against queries that were not answered by
the subjects due to privacy reasons. The noise in the data
directly impacts machine learning and information min-
ing predictive systems’ performance. It has been reported
in the literature that preprocessing is a crucial phase that
consumes about 60% of the overall project time in clean-
ing the data, i.e., smoothing, normalization, and correlation
aspects. The fundamental classification and prediction mea-
sures require a well-preprocessed set of inputs for excellent
outcomes.

Table 2 shows the rank wise selection of attributes con-
cerning merit (significance of feature set correlated with the
class attribute). This feature selection bases on 10-fold cross-
validation (stratified with a single seed and with no missing
data) of correlated traits and supervised selection of features
(with missing data). We can see that the rank of attributes in
both scenarios is almost similar.

Figure 5 describes the attributes ranking achieved using
two criteria, i.e., cross-validation with a single seed and with
no missing data, and supervised the selection of features
with missing data. Since both measures have shown almost
the same attributes’ merits, we have opted for the attributes
mentioned above for performance analysis of different clas-
sification algorithms.

A. PERFORMANCE EVALUATION OF DIFFERENT
CLASSIFIERS
For the performance evaluation of different classifiers,
we adopted the following metrics,
a) True Negative (TN): The subject with no disease and the

prediction correctly predicts the same.
b) False Positive (FP): The subject with no disease, but the

prediction incorrectly predicts that it carries the disease.
c) False Negative (FN): The subject carries the disease, but

the prediction incorrectly predicts that the subject has no
disease

d) True Positive (TP): The subject carries the disease and
the prediction correctly predicts the same.

For the evaluation of the accuracy of the classification,
the values from the confusion matrix are used. Evaluation
metrics, i.e., specificity, sensitivity F1 score, precision, and
Recall, are calculated.
a) Specificity: It correctly predicts the individual with no

heart disease

Specificity =
TN

TN + FP
× 100% (10)

b) Sensitivity: It correctly predicts the individual with heart
disease

Sensitivity =
TP

TP+ FN
× 100% (11)

c) F1-Score:

F1− Score =
2TP

2TP+ FP+ FN
× 100% (12)

d) Precision:

Precision =
TP
PP
× 100% (13)
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TABLE 2. Selection of attributes using cross-validation and supervised criteria.

FIGURE 5. Ranking attributes based on correlated and supervised ranking criteria.

e) Recall:

Recall =
TP
AP
× 100% (14)

where, PP is the number of predicted positives, and AP
is the number of actual positives. We achieve the follow-
ing statistics by employing the above evaluations metrics.

In below tables, the terms F1 to F10 refer to 10-fold cross
validation.

1) PREDICTION ACCURACY
Table 3 presents the statistics related to 10-fold cross-
validation using different classifiers. The aggregate prediction
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FIGURE 6. The outperformance of Ensemble classifier in terms of prediction accuracy.

FIGURE 7. Performance measure in terms of precision.

TABLE 3. Prediction accuracy (percent).

accuracy has been highlighted in the last column. It is explicit
that the Ensemble classifier has performed better than the
individual classifiers.

Figure 6 previews the performance measure of different
classifiers. Ensemble classifiers produce 94% accuracy as
compared to the other individual classifiers. Decision tree
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TABLE 4. Performance evaluation in terms of precision measure.

FIGURE 8. Performance measure in terms of Recall.

classifier, multi-perceptron, andK-nearest neighbor glimpsed
a comparable prediction accuracy on the given datasets.

2) PRECISION
Similarly, we calculated the precision measure of classifica-
tion algorithms for the identification of cervical cancer.

Table 4 describes the performance evaluation statistics
against 10-fold cross-validation performed on cervical can-
cer datasets. The average precision has been calculated for
each classifier. We can see that the Ensemble classifier
achieved the highest precision as compared to other individ-
ual classifiers.

Figure 7 presents the Ensemble classifier’s outperformance
by achieving a precision factor of 0.97, significant than the
J48 classifier that gained a precision of 0.95. We can observe
that Naïve Bayes, multi-perceptron, and K-nearest neighbor
held a comparable precision executed on cervical cancer
datasets. The support vector classifier performed the least as
compared to other classifiers in these experiments.

3) RECALL
We evaluated the performance of different classifiers using
the ‘‘Recall’’ as a factor for performance evaluation of

classifiers; we achieved the following stats, Table 5 describes
the performance evaluation statistics in the context of
‘‘Recall’’ against 10-fold cross-validation performed on cer-
vical cancer datasets. From the aggregate score, it can be
observed that the ensemble classifier has better segregated
cervical cancer patients from non-cancerous subjects.

Figure 8 glimpses the excellence of ensemble classifier
with a recall factor of 0.97, significant than the support
vector machine and decision tree classifiers that gained
a comparable Recall factor of 0.96. We can observe that
multi-perceptron and K-nearest neighbor held a relative pre-
cision. Simultaneously, the J48 classifier performed the least
compared to Naïve Bayes and logistic regression classifiers
in these observations.

4) F-MEASURE
The performance measure of classification was also eval-
uated using another measure known as ‘‘F-measure.’’ We
achieved the following observation based on the outcomes
of the experiment, Table 6 describes the performance evalua-
tion measures related to ‘‘F-Measure’’ against 10-fold cross-
validations. We performed these validations with random
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TABLE 5. Performance evaluation in terms of Recall.

TABLE 6. Performance evaluation in terms of F-Measure.

FIGURE 9. Performance evaluation in the context of F-Measure.

sampling to ensure that the procedure adopts an unbi-
ased criterion for all the instances to be sampled ran-
domly. The average score depicts the ensemble classifier
achieving a better ‘‘F-measure’’ factor for cervical cancer
subjects.

Figure 9 presents the ‘‘F-Measure’’ scores of different
classifiers. The ensemble classifier achieved an F-Measure
score of 0.96, significant than the decision tree classifier
that gained an F-Measure of 0.95. The F-Measure values of
multi-perceptron and K-nearest neighbor held a comparable
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TABLE 7. Performance evaluation in terms of area under ROC curve.

FIGURE 10. Performance evaluation in terms of areas of classifiers under ROC curves.

precision. Simultaneously, the J48 classifier performed the
least compared to Naïve Bayes and logistic regression classi-
fiers in these observations.

5) AREA UNDER ROC (RECEIVER OPERATING
CHARACTERISTIC) CURVE
We also calculated the areas under different classifiers’ ROC
curve to ensure the outperformance of ensemble classification
for cervical cancer identification and diagnosis. We noticed
the following stats, Table 7 presents the performance evalu-
ation of different classifiers against the areas under the ROC
curves of classifiers. These areas were calculated for 10-
fold cross-validations performed on cervical cancer datasets.
Here, again we preferred the random sampling to diminish
the probability of unbiased outcomes of subjected instances.
We can notice that ensemble classification performed better
than the other classifiers.

Figure 10 portrays the areas under the ROC curves of
different classifiers. The ensemble classifier performed excel-
lent, achieving an aggregate score as an area of 0.97.
This evaluated score was found significantly better than

the multi-perceptron that gained an area of 0.95. The areas
under the curve for Naïve Bayes and logistic regression were
quite comparable. In comparison, the K-nearest neighbor per-
formed the least compared to J48 and decision tree classifiers
in these observations.

6) ROC CURVE ANALYSIS
The receiver operating characteristic curve analysis is also
considered a good evaluation measure to identify differ-
ent classification methods’ performance on input data.
We adopted the ROC curve analysis for the performance
evaluation of all classifiers in this study. We achieved the
following analysis, Figure 11 describes the receiver operating
characteristic curve analysis of classification methods in this
research. The ROC curve has been drawn against the true
positive rate and the false-positive rates. The ensemble curve
is shown in red color that portrays an optimal area under the
curve compared to other individual classifiers’ curves. The
ensemble curve is more inclined towards the left extreme
corner, i.e., the highest true positive rate values and the
least false-positive rates. The classifier J48 is comparable to
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FIGURE 11. ROC curve analysis of different classifiers.

the ensemble curve, while other classifiers’ ROC curves are
viably below the ensemble and J48 classifiers. The SVMclas-
sifier performed the least as compared to different individual
classifiers in ROC curve analysis.

V. CONCLUSION
The health 4.0 standards require efficient and robust cervi-
cal cancer diagnosis to save the precious lives of subjects.
Despite the challenges and issues that hinder the timely iden-
tification of disease, the current machine intelligent solutions
are considered robust. Still, the performance of individual
classification methods for cervical cancer identification is
also an issue. The particular classification methods are sensi-
tive to the nature of data, and a variety of classifiers generates
quite different results when exploited to the same datasets.
This research study presented an ensemble classification
method for cervical cancer diagnosis based on a significant
voting policy to adopt the best classification outcomes for
cervical cancer prediction. The study adopted a wide range
of available classifiers, namely Decision Tree (DT), Support
Vector Machine (SVM),0Random Forest (RF),0K-Nearest
Neighbor (KNN), Naive Bayes (NB), Multiple Perceptron
(MP), J48 Trees, and Logistic Regression (LR) classifiers.
The performance evaluation of the proposed ensemble clas-
sifier outperformed individual classifiers’ performance by
attaining the highest accuracy at 94% compared to other
classifiers. Health practitioners can adopt this research’s out-
comes to provide an expert and confident second opinion to
cervical cancer subjects to treat the disease better.
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