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ABSTRACT This article proposes boosting the multiplication performance for convolutional neural network
(CNN) inference using a precision prediction preprocessor which controls various precision approximate
multipliers. Previously, utilizing approximate multipliers for CNN inference was proposed to enhance the
power, speed, and area at a cost of a tolerable drop in the accuracy. Low precision approximate multipliers can
achieve massive performance gains; however, utilizing them is not feasible due to the large accuracy loss they
cause. To maximize the multiplication performance gains while minimizing the accuracy loss, this article
proposes using a tiny two-class precision controller to utilize low and high precision approximate multipliers
hybridly. The performance benefits for the proposed concept are presented for multi-core multi-precision
architectures and single-core reconfigurable architectures. Additionally, a design for a merged reconfigurable
approximate multiplier with two precisions is proposed for utilization in single-core architectures. For
performance comparison, several segments-based approximate multipliers with different precisions were
synthesized using CMOS 15nm technology. For accuracy evaluation, the concept was simulated on VGG19,
Xception, and DenseNet201 using the ImageNetV2 dataset. This article will demonstrate that the proposed
concept can achieve significant performance gains with a minimal accuracy loss when compared to designs
that utilize exact multipliers or single-precision approximate multipliers.

INDEX TERMS Approximate computing, approximate multiplier, CNN accelerator, deep learning, recon-

figurable approximate multiplier, precision prediction.

I. INTRODUCTION

Approximate computing is emerging as a viable way to
achieve significant performance enhancement in terms of
power, speed, and area for computationally heavy digital
system on chip (SoC) designs [1]-[5]. Even though a sig-
nificant performance enhancement can be achieved using
approximate computing, these techniques have the obvious
cost of certain levels of inaccuracy in the output. However, for
large systems, what matters is the impact of the approximate
computing on the accuracy of the entire system and not on
each sub-module that resides within the system. Approx-
imate multipliers are one of the most common operators
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for approximate computing. These multipliers produce an
approximated output for the multiplication which contains a
certain inaccuracy, However, they can achieve significant per-
formance gains in terms of power, speed, and area compared
to exact multipliers when utilized in SoC design. Improv-
ing the performance by increasing the speed and lowering
the power allows for reducing the energy consumption per
operation. Several approximate multiplier designs have been
proposed in the literature such as [6]-[12].

Image recognition using deep learning [13] has been
booming in the last few years. Using fixed-point arithmetic
to improve the performance of convolutional neural network
(CNN) accelerators was proposed by the industry as can be
seen in the articles published by Qualcomm in [14] and IBM
in [15]. Additionally, several application-specific integrated
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circuit (ASIC) designs for fixed-point CNN accelerators have
been proposed in the literature such as [16]-[19]. Using a
16-bit base for the design of ASIC CNN accelerators is
common as can be seen in [16]-[18]. Additionally, several
field-programmable gate array (FPGA) designs for 16-bit
based fixed-point CNN accelerators have been proposed such
as [20]-[22].

Based on the architectures in [16]-[22], CNN accelerators
are designed using arrays of processing elements (PEs), at the
core of each PE, a multiply and accumulate (MAC) unit
exists. Hence, the multiplier is a primary component in the
design of CNN accelerators, and any improvement in the
performance of the multiplier will scale up to improve the per-
formance of the entire accelerator. The focus of CNN acceler-
ators has been on improving the inference performance. This
is because CNN training is usually done once using powerful
graphics processing units (GPUs), following that inference is
performed thousands or even millions of times before a model
update or retraining is required.

The utilization of approximate multipliers in the hardware
design of convolutional neural networks (CNNs) has been
proposed previously to enhance the performance in terms of
power, speed, and area [23]-[28]. Moreover, using a reconfig-
urable approximate multiplier based on calculating the error
variance was proposed in [29]. Lower precision approximate
multipliers can achieve higher performance gains as can be
seen in [23]-[27]. However, this performance enhancement
has a cost of a drop in the CNN accuracy which is inversely
proportional to the precision. This creates a trade-off in terms
of how much performance gains can be achieved vs. how
much accuracy can be sacrificed. Hence, utilizing low preci-
sion approximate multipliers might not be feasible when the
accuracy loss is large. Based on the challenge that this trade-
off presents, this article proposes the concept of predicting
and dynamically configuring the precision of approximate
multipliers for CNN inference. This article will demonstrate
that the impact of approximate multipliers’ precision on the
inference accuracy varies widely between the different image
classes. An image class contains a group of images that
belong to the same category. (e.g: hen, bee, zebra ... etc). For
certain image classes, the CNN achieves a lower accuracy
when lowering the approximate multiplier precision, for other
image classes the CNN accuracy stays constant, and interest-
ingly, in other smaller percentages of image classes, the CNN
achieves higher accuracy with lower precision approximate
multipliers. Reaching this finding was accomplished exper-
imentally, were utilizing lower precision approximate mul-
tiplier results in a more optimal CNN solution for certain
image classes. Accordingly, the image classes in a dataset
can be divided into two precision categories, a low precision
category which contains image classes that can be predicted
with the same CNN accuracy or better using lower precision
approximate multipliers, and a high precision category which
contains the rest of the image classes.

To predict the adequate processing precision for each
image as low or high, this article proposes using a tiny
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FIGURE 1. High-level demonstration of the proposed concept.

two-class CNN preprocessing precision controller. The con-
troller can be utilized in a system that contains multiple
approximate-multiplier based CNN inference accelerators
with different precisions, or in a single CNN inference accel-
erator built with precision reconfigurable approximate mul-
tipliers. The controller’s objective is to maximize the overall
performance gains by maximizing the usage of lower preci-
sion approximate multipliers whenever this does not cause an
additional accuracy loss. This article proposes a methodology
which augments the performance of CNN inference using
the concept of the precision controller to enable the utiliza-
tion of existing low precision and high precision approxi-
mate multiplier hybridly. It also proposes a new precision
reconfigurable approximate multiplier to utilize the precision
controller concept in single-core designs. Fig. 1 illustrates a
high-level design for the proposed concept which includes a
preprocessing precision controller which controllers a CNN
network complied on inference accelerators with reconfig-
urable approximate multipliers.

To demonstrate the performance gains of the proposed
concept in terms of power, speed, and area, several approx-
imate multiplier designs using the static segment method
(SSM) and the dynamic segment method (DSM) with
different precisions were synthesized using CMOS 15nm
technology. For CNN accuracy analysis and comparison,
Keras [30] was used to simulate the proposed design on
VGG19 [31], Xception [32], and DenseNet201 [33] using
ImageNetV2 TopImages dataset [34]. Two architectures for
utilizing the proposed concept are presented in this article.
The first is a multi-core architecture that uses approximate-
multiplier based CNN inference accelerators with various
precisions, and the second is using a single-core accelerator
built with precision reconfigurable approximate multipliers.
To enable the utilization of the proposed concept in single-
core designs, a new merged reconfigurable approximate mul-
tiplier with two precisions is proposed. This is an additional
research contribution that the article presents. Using both
architectures, this article will demonstrate that the proposed
concept can achieve significant performance enhancements
with minimal accuracy loss compared architectures with
16-bit exact signed multipliers or a single-precision approx-
imate multiplier. All simulations were based on a 16-bit
representation as it is common in CNN accelerators as can
be seen in [16]-[18] and [20]-[22].

This article is structured as follows: In section II the
architecture of the segment based approximate multipliers
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using the static segment method (SSM) and the dynamic
segment method (DSM) is presented. Section III presents
the concept of training the precision prediction preprocessing
controller. Section IV presents the baseline performance and
accuracy simulation SSM and DSM approximate multipliers
with various segment sizes using VGG19, Xception, and
DenseNet201. Section V illustrates how the proposed concept
of using a precision controller with reconfigurable approxi-
mate multipliers can be utilized in both multi-core and single-
core architectures. Section VI concludes the research findings
of this article.

Il. SEGMENT BASED APPROXIMATE MULTIPLIERS
Several approximate multipliers techniques are proposed
in the literature such Segmentation, High Radix, Round-
ing, and Perforation [35]. The proposed concept of using
a pre-processing precision controller can be applied to any
approximate multiplier technique with controllable precision.
Nevertheless, segment-based approximate multipliers using
both SSM and DSM were selected for the simulation to
present the precision controller concept in this article. This
provides a comparison between a high precession multiplier
(the DSM) and lower power and area one (the SSM). The
DSM based multiplier using DRUM’s design [7] can provide
notably high accuracy, although it has a larger area and energy
consumption compared to other multipliers such as [6], [8],
and [9]. On the other hand, the SSM based multiplier [6] has
a more efficient circuit compared to other approximate mul-
tipliers such as [7]-[9]. Moreover, the segment-based tech-
nique allows of an efficient implementation for the merged
reconfigurable approximate multiplier which is presented in
this article. Segment based approximate multiplication is one
of the efficient and simple techniques used to design approx-
imate multipliers. Using this technique, only a segment of
the multiplicand is passed to the multiplier to approximate
the multiplication. This allows for the multiplication of n x n
number using an m x m multiplier, where m< n. As an exam-
ple, a 16 x 16 bit multiplication can be approximated using
an 8 x &8 bit multiplier with a byte segment or even 4 x 4 bit
multiplier with a nibble segment. Controlling the precision of
these multipliers is performed by adjusting segment size (m).
Fig. 2 demonstrates the general design of a segment based
approximate multiplier for an n x n number.

Several techniques for the segment selection have been
proposed in the literature, this includes the segment static
segment method (SSM) which was adopted in the approxi-
mate multiplier design Narayanamoorthy ef al. in [6] and the
dynamic segment method (DSM) which was also proposed
by [6] and was implemented in the approximate multiplier
design DRUM in [7]. Based on [6], [7], an inversely propor-
tional relationship exists between the segment size and the
achieved performance gains.

Using an SSM segmenter, an n-bit integer number is
divided into a static i (m-bit) segments with a (k) offset
between the starting bits of two consecutive segments. The
m-bit segment with the leading one is selected to approximate
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FIGURE 4. SSM segmentation example using k = 4.

the multiplication. Fig 3. demonstrates the circuit implemen-
tation of the SSM segmenter. As can be seen from the Fig 3.,
the SSM segmenter consists of a multiplexer (MUX) to select
between the (i) segment. On the selection lines, the m-bits of
each segment are passed through an OR gate.

Fig 4. illustrates an example of the possible segments for
SSM using k = 4 for with segment sizes of m = 8§ and m =
4. The example shows the segmentation based on a signed
16-bit integer number. This slightly differs compared to the
presented unsigned format in [6].

Fig 5. shows an example for an SSM based approximate
multiplication using m = 8. As can be seen in Fig 5., the 16 x
16 bit number can be estimated using two SSM segmenters,
an 8§ x 8 bit multiplier, a shifter, and an XOR for the sign bit.
For the most significant segment, the sign bit is replaced by
zero to create equal size segments.
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FIGURE 6. The DSM segmenter.

The DSM segmenter is more complicated and costly com-
pared to the SSM segmenter. The DSM segmenter detects the
leading one in an n-bit number then extracts the following
m-1 bits to enable the utilization of an m x m bit multipliers
to approximate n X n bit multiplication. The DSM method
as originally proposed by [6] but was further improved in
the approximate multiplier DRUM [7]. DRUM’s approximate
multiplier works by detecting the leading one in the num-
ber then extracting the following m-2 bits, any remaining
truncated portion is estimated by setting the segment’s least
significant bit (LSB) to ‘1’. Fig 6. shows the circuit imple-
mentation for the DSM segmenter. The segmenter consists of
a leading one detector (LOD) circuit in addition to an encoder
and a MUX.

Fig.7. shows an example of the DSM segmentation based
on DRUM for both m = 8 and m = 4. As can be seen in Fig. 7,
the segment starts with the leading one, followed by the next
m-2 bits. The segment’s LSB is set to ‘1’ to approximate the
remaining truncated bits assuming a uniform distribution for
the operands [7].
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FIGURE 8. DSM approximate multiplication example for m = 8.

Fig. 8 shows an example of the DSM multiplication using
m = 8. As can be seen in the figure, both /6 x 16 input num-
bers are segmented by extracting the leading one followed by
the next m-2 bits while the segments LSB bit is set to ‘1°.
Following the segmentation, an 8§ x & bit multiplier is used
then the multiplier’s output is shifted. For the sign bit, an XOR
is used.

Ill. BUILDING A PRECISION

PREPROCESSING CONTROLLER

As previously discussed, utilizing a low precision approx-
imate multiplier in CNN inference will not be feasible if
it leads to large accuracy loss despite the massive perfor-
mance gains it can achieve. As an example, an SSM approx-
imate multiplier with m = 4 can achieve a 153% speed
increase, an 88% power reduction, and an 82% area reduc-
tion compared to an exact multiplier. However, using it in
VGG19 inference based on ImageNetV2 causes a 15.3%
accuracy loss compared to an exact multiplier as will be seen
in the next section. This dilemma has created a motivation for
finding a solution that allows for partial utilization of these
multipliers only when the accuracy loss is minimal. A solu-
tion was found after studying the impact of the approximate
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multiplier precision on each image class individually, it was
found that the CNN’s inference accuracy with low preci-
sion approximate multipliers varies widely between image
classes. Surprisingly, certain image classes can be classi-
fied with higher accuracy using low precision approximate
multipliers such as m = 4 compared to higher precision
approximate multipliers such as m = 8. For another set of
image classes, there was no difference in CNN classification
accuracy between low and high precision approximate mul-
tipliers. The remaining larger set of image classes achieves
better classification using a higher precision approximate
multiplier.

To utilize this important finding in improving the over-
all performance by maximizing the usage of low precision
approximate multipliers while minimizing the cost in terms
of accuracy loss, a preprocessing precision controller was
developed to predict the adequate precision category for the
input image. This allows for the development of a system that
contains approximate multipliers with different precisions
or precision reconfigurable approximate multipliers. Such a
system can maximize performance by utilizing low precision
approximate multipliers only when achieving a better or the
same CNN classification accuracy is predicted. This pre-
processing controller is a two-class tiny CNN network that
can predict the adequate approximate multiplier precision
as either low or high. The exact segment sizes for what is
considered low and what is considered high will depend on
how the training was performed.

To train a preprocessing precision controller a labeled
dataset with the adequate approximate multiplier precision
for each image class must be created for each CNN network.
To do that, the CNN predictions for each image using dif-
ferent approximate multiplier precisions should be obtained.
Following that, if it was determined that on average an image
class can be classified with the same or better accuracy using
the lower precision mode, the entire images in this class will
be labeled ‘0’. If using higher precision mode achieves better
classification accuracy for that image class, the entire images
in that class will be labeled as ‘1’. Fig. 9 illustrates using a
flowchart the process for developing a precision preprocess-
ing controller for the CNN’s approximate multipliers. Using
the illustrated process in Fig. 9, a precision controller with
different precisions (m) was trained for VGG19, Xception,
and DenseNet201 using a subset of ImageNet [36]. The train-
ing set consisted of 50 images from each image class with
a total of 50000 images, while the cross-validation test set
consisted of 10 images from each image class with a total
of 10000 images. For the final accuracy evaluation, the con-
troller along with the image classification CNN networks
were tested using ImageNetV2 Top-Images dataset which
consists of 10000 images using both SSM and DSM.

Fig. 10 demonstrates the architecture of the preprocessing
precision controller. The controller is a tiny CNN that has two
output nodes with Softmax activation and contains three 2D
convolution layers. These layers have shapes of (224,224,3),
(56,56,6), and (14,14,12) consecutively. Following each
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convolutional layer, a (4 x 4) max-pooling layer exists.
ReLU [37] activation was used in all the layers. The con-
troller was designed to have a minimal overhead in terms of
the number of parameters and the multiply and accumulate
(MAC) operations. Therefore, the smallest possible design
with the least parameters but with an acceptable accuracy was
selected. Table 1 details the controller overhead compared to
VGG19, Xception, and DenseNet201.

As can be seen in Table 1, the controller parameters over-
head is as low as 0.008% in the case of VGGNetl19 and
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TABLE 1. Precision controller overhead comparison.

Total Total Controller Controller
Network Param MACs Param. MACs
) Overhead Overhead
Controller 1130 4. 7™M N/A N/A
VGGI19[31] 143.7M | 19.64G 0.0008% 0.0239%
Xception[32] 22.9M 8.404G 0.0049% 0.0559%
DenseNet201[33] 20.2M 3.347G 0.0056% 0.1404%

as high as 0.0056% in the case of DenseNet201. In terms
of the MACs, overhead is as low as 0.0239% in the case
of VGGNetl9 and as high as 0.1404% in the case of
DenseNet201. Based on these numbers, the preprocessing
precision controller overhead can be considered negligible.
The next section will present a performance comparison
between the SSM and the DSM approximate multipliers
using m = 4, m = 6, and m = 8 against the exact multiplier.
Also, it will present the inference accuracy simulation for
using these approximate multipliers using VGG19, Xception,
and DenseNet201. Section V will build on section III and
section IV to demonstrate how the precision controller can be
utilized in multi-core and single-core architectures. Section V
will also present the achieved controller accuracy for each
network and accordingly, the achieved image classification
accuracy with hybrid precision approximate multipliers.

IV. BASELINE PERFORMANCE AND ACCURACY

To demonstrate and compare the performance gains that the
SSM and DSM approximate multipliers can achieve, they
were implemented using Verilog hardware description lan-
guage (HDL) using Nangate 15nm FinFET standard cell
library [38]. The Verilog implementation was synthesized
using Synopsys Design Compiler. The analysis is applied
to check the setup violations of the multipliers. The delay-
annotated netlists of the multipliers are simulated using
Modelism SE to verify their operations. In this implemen-
tation, the delay, power, and area using m = 4, m = 6,
and m = & precisions were obtained. Table 2 details the
SSM performance and performance gains compared to an
exact multiplier for each precision. Table 3 details the DSM
performance and performance gains compared to an exact
multiplier for each precision.

As can be seen from Table 2 and Table 3 , both the SSM and
DSM can achieve significant performance gains compared to
the exact multiplier. These gains are inversely proportional to
the segment size (m). The SSM multipliers can achieve higher
performance gains compared to the DSM multipliers due to
having a simpler segmenter as was presented in Section II.

To evaluate the impact of the SSM and DSM approxi-
mate multiplication techniques on the CNN’s inference accu-
racy, a simulation for these techniques were performed using
three popular CNN networks, the VGG19, Xception, and
DenseNet201. Pretrained models using ImageNet for these
CNN networks are available as part of the deep learning plat-
form Keras [30]. For the inference simulation, ImagenetV?2
Top-Images [34] dataset was used. ImageNetV2 is a new test
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set built based on the ImageNet benchmark and was released
primarily for inference accuracy evaluation. ImageNetV2
contains 10000 images based on 1000 different classes which
are identical to the classes in the ImageNet dataset.

To simulate the impact of the approximate multiplication
on the inference accuracy, Keras’s custom layer functionality
was utilized. This functionality allows for the addition of
custom mathematical or logical operations anywhere inside
the CNN. By utilizing this functionality, the SSM and DSM
segmenters were simulated by creating segmentation layers.
These segmentation layers were injected before all convo-
lution layers and fully connected layers. In these layers,
the previous layer’s outputs were scaled and cast to Intl6
numbers, then using bitwise operations, the segmenter was
simulated by masking the numbers using a mask which was
created based on the segment size (m). For the model weight,
all weights were scaled, cast, and masked to simulate the
segmentation before starting the inference.

Table 4 lists the achieved CNN inference accuracy for
VGG19, Xception, and DenseNet201 using the SSM tech-
nique with m = 4, m = 6, and m = 8 precisions. Table 5
lists similar information but by utilizing the DSM technique.
In both tables, the approximate multipliers’ accuracies are
compared against the accuracy of an exact signed Int16 mul-
tiplier. In both tables, the accuracy loss compared to an exact
multiplier is listed between brackets.

As can be seen in Table 4 and Table 5 , the inference accu-
racy loss for all simulated networks increases when reducing
the precision (m). Nevertheless, the inference accuracy loss
using approximate multipliers with m = § was very minimal.
In the case of DSM, the accuracy loss was 0.21% for VGG19,
0.23% for Xception, and 0.59% for DenseNet201. For SSM,
the difference was a bit higher with 0.47% for VGG19, 0.62%
for Xception, and 1.49% for DenseNet201. Using SSM with
a precision of m = 4, the accuracy losses were signifi-
cant where the losses were 15.31%, 18.42%, and 50.45%
for VGG19, Xception, and DenseNet201, respectively. The
losses were also significant using DSM as can be seen in
Table 5.

For both the SSM and the DSM, DenseNet201 had a
significant drop in accuracy when the precision was dropped
from m = 6 to m = 4. In the case of SSM, the accuracy
loss increased from 4.7% to 50.45%, while for DSM, the loss
increased from 3.5% to 46.61%. This eliminated the possi-
bility of utilizing the case of m = 4 for DenseNet201 in any
hybrid precision design as the loss is very large.

V. USING THE PRECISION PREPROCESSOR TO CONTROL
VARIOUS PRECISIONS APPROXIMATE MULTIPLIERS

A. MULTI-CORE ARCHITECTURE

As CNN networks vary in terms of input shape, depth, and the
number of filters, ASIC CNN accelerators are designed using
a large-scale integration of PEs. This allows the accelerators
to be reconfigurable which allows for the compilation of the
CNN network that the user wants to deploy. The core compo-
nent in the PE is the multiplier. This design can be seen in the
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TABLE 2. The SSM [6] approximate multiplier performance compared to an exact multiplier.

Design Delay (ps) Power (W) Area (um’) increse Reduction Reduction
Exact 330.8 230.1 337.03 N/A N/A N/A
m=8 206.06 69.22 108.28 60.54% 69.92% 67.87%
m=6 182.75 52.09 83.705 81.01% 77.36% 75.16%
m=4 130.91 27.66 60.65 152.69% 87.98% 82.00%

TABLE 3. The DSM (Based on DRUM [7]) approximate multiplier performance compared to an exact multiplier.

Design Delay (ps) Power (uW) Area (') incrense Reduction Reduction
Exact 330.8 230.1 337.03 N/A N/A N/A
m=§ 305.26 181.9 204.16 8.37% 20.95% 39.42%
m=6 261.61 1333 170.289 26.45% 42.07% 49.47%
m=4 199.98 65.63 125.154 65.42% 71.48% 62.87%

TABLE 4. CNN inference accuracy using the SSM [6] approximate multiplication.

Xception[32]

DenseNet-201[33]

Top-1 Accuracy

Top-5 Accuracy

Top-1 Accuracy

Top-5 Accuracy

80.78%

95.92%

79.9%

95.59%

79.88% (-0.90%)

95.11% (-0.81%)

78.41% (-1.49%)

94.38% (-1.21%)

71.51% (-9.27%)

89.56% (-6.36%)

75.20% (-4.70%)

92.39% (-3.20%)

. VGG-19[31]

Design Top-1 Accuracy Top-5 Accuracy
Exact 73.59% 92.28%
m=8 73.12% (-0.47%) 92.06% (-0.62%)
m=6 64.94% (-8.65%) 88.23% (-4.45%)
m=4 58.28% (-15.31%) 85.78% (-6.90%)

62.36% (-18.42%)

85.22% (-10.70%)

29.45% (-50.45%)

62.58% (-33.01%)

TABLE 5. CNN inference accuracy using the DSM (Based on DRUM [7]) approximate multiplication.

Xception [32]

DenseNet-201 [33]

Top-1 Accuracy

Top-5 Accuracy

Top-1 Accuracy

Top-5 Accuracy

80.78%

95.92%

79.9%

95.59%

80.55% (-0.23%)

95.61% (-0.31%)

79.31% (-0.59%)

95.38% (-0.21%)

72.13% (-8.65%)

91.06% (-4.86%)

76.40% (-3.50%)

93.54% (-2.05%)

. VGG-19 [31]

Design Top-1 Accuracy Top-5 Accuracy
Exact 73.59% 92.28%
m=8 73.38% (-0.21%) 92.15% (-0.13%)
m=6 66.86% (-6.73%) 89.39% (-2.89%)
m=4 62.20% (-11.39%) 88.31% (-3.97%)

63.36% (-17.42%)

86.65% (-9.27%)

33.29% (-46.61%)

65.20% (-30.39%)

fixed-point CNN accelerators such as [16]-[22]. In addition
to the floating-point accelerators such as [39], [40].

The proposed concept of using a preprocessing precision
controller with approximate multiplier-based CNN acceler-
ators can be utilized in a large system such as a cluster
of inference accelerators. Such a cluster can contain hun-
dreds or thousands of approximate multiplier-based CNN
inference accelerators with various precisions and can be
deployed in a data center or in a cloud backbone. Once a
CNN model is compiled on the cluster for inference, a small
overhead of PEs can be allocated for the deployment of the
preprocessing precision controller as well. As was presented
in Table 1, the controller overhead is negligible and can as low
as 0.008% in the case of VGGNet19 and as high as 0.0.056%
in the case of DenseNet201. While the overhead in terms of
the MACs is as low as 0.0239% in the case of VGGNet19 and
as high as 0.1404% in the case of DenseNet201. If needed,
the controller can be mimicked to (i) number of controllers to
allow for parallel inference of the compiled model. The con-
troller training can occur as part of the model’s compilation
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on the cluster or prior to that where the controller’s param-
eters and shape can be provided alongside with the model’s
parameter and shape.

For each compiled network, (n) low precision accelerators
(p) high precision accelerators can be allocated. The (n/p)
ratio can be determined based on the expected usage of the
low vs. high precision for that model. The allocated accelera-
tors can be shared among different complied CNN networks.
The cluster resource manager and scheduler will handle the
sharing of the various accelerators among the various com-
plied CNN networks. The design of hardware accelerators
in data centers is discussed in [41]. Fig. 11 provides a high-
level illustration of how preprocessing precision controllers
can be used with multiple approximate-multiplier based CNN
accelerators with various precisions in a cluster.

To demonstrate the performance benefits of the hybrid
use of approximate multipliers with various precisions based
on precision prediction, preprocessing precision controllers
were trained using a subset of ImageNet for VGGI19,
Xception, and DenseNet201 by following the process in
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TABLE 6. Performance and accuracy for the hybrid use of approximate multipliers with various precisions compared to an exact multiplier.

Hvbrid Multiplication | Multiplication Speed Power CNN Accuracy | Precision Low
Network Seg. Prgcision Delay Power Increase Reduction Top-1 Loss vs. Controller | Precision
Type (ps) (W) VvS. Accuracy Exact Accuracy | Utilization
Modes Exact vs. Exact
VGG19 [31] SSM | m=4&38 174.422 51.723 89.66% 77.52% 72.13% 1.46% 79.4% 42.1%
VGG19 [31] DSM | m=4 &8 260.305 132.253 27.08% 42.52% 72.61% 0.98% 80.2% 42.7%
Xception[32] SSM | m=4 &8 180.734 55.214 83.03% 76.00% 78.20% 2.58% 78.1% 33.7%
Xception[32] DSM | m=4 &8 269.254 142.136 22.86% 38.23% 79.37% 1.41% 78.6% 34.2%
DenseNet201[33] [ SSM | m=6 & 8 191.957 58.856 72.33% 74.42% 78.76% 1.14% 77.9% 60.5%
DenseNet201[33] | DSM | m=6 & 8 278.153 151.719 18.93% 34.06% 79.52% 0.38% 78.5% 62.1%
Mimagebatch/ | [~ 0 "~ =7 I™ Precision | precision prediction is not ideal. Nevertheless, the accuracy
stream | | Allocate al Preprocessors . . . .
| | Manager& | controller | loss and performance gains calculations in Table 6 includes
. Scheduler Controller (1) simulating this imperfection in the controller. Table 6
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FIGURE 11. Using preprocessing precision controllers with multiple
approximate-multiplier based CNN accelerators with various precisions in
a cluster.

Fig 9. For each network both, the SSM and the DSM tech-
niques were simulated. Table 6 details the performance gains
in terms of power and speed that the hybrid use of approxi-
mate multiplier with various precisions can achieve compared
to an exact multiplier. For VGG19 and Xception the controller
was trained to select either a precision of m = 4 or precision
of m = 8. In the case of the DenseNet201, the lower precision
was selected as m = 6 because m = 4 had extremely low
accuracy. As can be seen in Table 6 , using a hybrid of approx-
imate multipliers with various precisions can achieve large
performance gains with minimal accuracy loss compared to
exact multipliers. Overall, the SSM achieves significantly
higher speed and lower power compared to the DSM in all
the cases, however, the cost in terms of the network’s accuracy
loss is higher.

For each simulation in Table 6 , the accuracy of the pre-
cision controller is listed as well. As can be seen from the
table, the controller’s accuracy ranges between 77.9% and
80.2% depending on the network, the segmentation type, and
the precision modes. Therefore, the approximate multiplier
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includes the low mode utilization percentage which repre-
sents the actual usage of the low precision mode including
the false positives. If an ideal controller with 100% accuracy
existed, the hybrid precision accuracy will surpass the accu-
racy of an exact multiplication. That is because a subset of
image classes can be classified with better accuracy using
lower precision approximate multipliers compared to higher
precision approximate multipliers or even exact multipliers.

Using hybrid approximate multipliers with predicted preci-
sion can also achieve a better performance-accuracy trade-off
compared to using a single-precision approximate multiplier.
This is illustrated in Fig. 12 where the performance gains and
the accuracy loss compared to the exact multiplier are plotted
for both designs. Fig. 12 contains a sub-plot for each scenario
listed in Table 6. An example can be seen in Fig. 12 (a),
where the hybrid SSM multiplier with m = (4&38) achieved an
89.66% speed increase and a 77.52% power reduction which
is better compared to the performance gains for the case of
m = 6 with an 81.01% speed increase and a 77.36% power
reduction. Nevertheless, the network’s accuracy loss was only
1.5% in the case of m = (4&8) compared to 8.7% in the case
of m = 6. From the energy perspective, the SSM multiplier
with m = (4&8) can achieve an 88.15% energy reduction
compared to 87.49% in the case of m = 6. The energy of
each multiplier was obtained by calculating the product of
the power and the delay.

Another example can be seen in the case of DenseNet201 in
Fig. (12) (c) and (f), wherein both the SSM and the DSM,
using hybrid approximate multiplier precisions with m =
(6&8) achieved better performance gains with lower accuracy
loss compared to the case of m = 8. Having a lower accuracy
loss in the hybrid configuration might be surprising. How-
ever, this is due to having a subset of image classes which
can be classified with better accuracy using m = 6 compared
to m = 8 as explained previously.

On the cluster level, an additional performance advantage
can be also achieved in terms of the total area. The area
is proportional to the approximate multiplier precision as
per Table 2 and Table 3. Therefore, building a cluster using
(n) accelerators with high precision approximate multipliers

7227



IEEE Access

I. Hammad et al.: CNN Inference Using a Preprocessing Precision Controller and Approximate Multipliers

H Speed Increase

VGG19-SSM
N N
3 2
o N
a a
N o N <
< o 3 o
8 E5 8% = 5 &3
~ T M o S S N ]
> pr I 0 N 5 @ (Y 2 KN
~ ~ b 8 ~
X 3 g
" 3 8 g 3 g
b ©° S 5 - N
[ | = [ | =
M=4 M=6 M=(4&8) M=8 M=4 M=6
(a)
N N
X2 x
Id 8 d
u,; ~ I.l'; ~
© ©
X N N
S A 5
59 §¥ . 5
3 2 3 5 3
& N N . q s &f .
" 3 R~ N 2
pa [ B n g X ©
. s wIN I '
o P
| | B | |
M=4 M=6 M=(4&8) M=8 M=4 M=6

(d)

W Power Reduction

Xception-SSM

m Accuracy Loss

DenseNet201-SSM

xX

[22]

©

o

wn

-

o

R ¢ By R °o ¢
8§ < 3 "? 38 5 3 28
g3 52 Sy =R S g
b s 8 s *0 R R s 3
o 8 o

X R 8 N X
3 S = 3 e
~ S < - -
M=(4&8) M=8 M=4 M=6 M=(6&8) M=8

(b)

Xception-DSM

DenseNet201-DSM

I 71.48%

X
o
<
3
X
., 5 g
g ¢ .3 %
N xq S
o o3 Re ]
g" A < 23 =
i @ g o @
N c S N ] o S
é':N < * ?EN
g 2% 3 ¥ 2p3
3 °°I"4 - I i °°I-rz
o o o
- 1 - [ 1 B
=(4&8) M=8 M=4 M=6 M=(6&38) M=8

®

FIGURE 12. Performance gains and accuracy loss using hybrid and single precision approximate multipliers compared to an exact multiplier.

only will require more area than a cluster which contains
(n) accelerators built using various approximate multipliers
precisions.

B. SINGLE-CORE RECONFIGURABLE ARCHITECTURE
Utilizing the proposed concept of predicting and configuring
the precision of approximate-multiplier based CNN accel-
erators is not limited to the multi-core architecture. This
section will present how a reconfigurable approximate mul-
tiplier with two precisions can be implemented to allow for
the utilization of the concept in single-core systems. This
will expand the proposed concept to include the design of
approximate multiplier-based CNN accelerators for embed-
ded systems and low power applications such as [42], [43].

Fig 13. demonstrates how a reconfigurable approximate
multiplier with two precisions can be implemented inside
each MAC unit. Using this design either the high or the low
precision approximate multiplier will be power up or down
based on the precision controller signal “CN”. Tri-state
buffers are used to control the multiplier’s output flow.

As can be seen from Fig. 13, this architecture requires
implementing two approximate multipliers with high and low
precisions inside the MAC. This will result in area over-
head compared to a single-precision approximate multiplier
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design. Nevertheless, this hybrid reconfigurable precision
design can achieve better performance in terms of speed
and power compared to the single-precision design. Also,
its total area is still less than an exact multiplier design.
Optimizing the design in Fig. 13 can be achieved by designing
amerged reconfigurable approximate multiplier that supports
two precisions.

Fig. 14 shows a proposed design for a merged recon-
figurable approximate multiplier that supports precisions of
m = (4&8). As can be seen from the figure, the merged
reconfigurable multiplier can be designed using four (4 x 4)
bit multipliers, segmenters, a shifter, tri-state buffers for flow
control, and an XOR for the sign bit. This multiplier will be
partially turned off when m = 4 is activated using a VDDxCN
control signal allowing for higher speed and lower power
execution. In terms of component sharing, one 4 x4 multiplier
is shared between the two precision, in addition to the shifter,
the merged segmenter, and the sign bit XOR. Fig. 14 illus-
trates a generic merged reconfigurable multiplier for both the
SSM and DSM, the difference between these two techniques
is contained in the design of the merged segmenter. Table 7
lists the performance comparison between the merged and the
separated reconfigurable design using VGG19 and based on
the low precision utilization rate as per Table 6.
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TABLE 7. Performance comparison for single-core the separated and merged reconfigurable designs using vgg19.

. . Speed Power Area Accurac
Hybrid Dfmgn Type Seg. Delay Power Are? Incrl::ase VS. Reduction Reduction Loss '
for m=(4&8) Type (ps) (W) (wm) Exact vs. Exact vs. Exact
Separated SSM 175.240 52.641 171.100 88.77% 77.12% 49.23% 1.46%
Merged SSM 181.239 55.223 114.930 82.52% 76.00% 66.20% 1.46%
Separated DSM 262.312 137.203 332.114 26.11% 40.37% 1.46% 0.98%
Merged DSM 273.432 146.410 214.980 20.98% 36.37% 36.21% 0.98%
A[l4:0]i $ B[14:0]
—
I ] e Segmenter |¢— CN Segmenter [@— CN
t4 14 14 14
4 X A[15] B[15] )
'd ™~
Precision VDD x TN o A §
Controller
li w1 AHY.YBH ALY YBH AH BL BLYYAL A-bit
X1 -
N \ x Multipliers
VDD x CN ——1
Yy
=

: - +—lll

VDD x €N

VDD x CN ——

m=high

FIGURE 13. Reconfigurable design with two separated approximate
multipliers.

Fig 15. Ilustrates the performance-accuracy trade-off for
various approximate multiplier precisions compared to an
exact multiplier based on VGG19. As can be seen in the
figure, the reconfigurable approximate multiplier achieves a
better performance-accuracy trade-off compared to single-
precision approximate multipliers. The SSM m = (4&8)
merged design achieves an 82.52% speed increase, a 76%
power reduction, and a 65.9% area reduction with a 1.46%
accuracy loss compared to an exact multiplier. On the other
hand, the DSM m = (4&38) merged design achieves a 20.98%
speed increase, a 36.37% power reduction, and a 36.21% area
reduction with a 0.98% accuracy loss compared to an exact
multiplier. The merged m = (4&8) reconfigurable designs
have a slight area overhead and a slightly higher accuracy loss
compared to a single-precision design with m = 8. Neverthe-
less, the performance gains in terms of speed and power are
large.

Fig. 16 illustrates the speed and power performance
gains of the hybrid m = (4&8) designs compared to a
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( Shifter )
Sign bit 31i

FIGURE 14. Reconfigurable design with a merged approximate multiplier
for m = (4&8).

single-precision design with m = 8. As can be seen in the fig-
ure, the SSM m = (4&8) merged design can achieve a 13.7%
speed increase and 25.35% power reduction compared to a
single-precision design with m = 8. For DSM, the gains are
an 11.64% increase in speed and a 24.24% power reduction.
This is an additional energy savings of 29.83% in the case
of merged SSM and 27.9% in the case of merged DSM. The
cost in terms of the area overhead is 5.3% for DSM merged
design and 6.1% for SSM merged design. While the accuracy
loss difference is 0.77% for DSM merged design and 0.99%
for SSM merged design.

For cases where reducing the area is less important,
the hybrid separated design can be utilized to achieve higher
speed and power lower and therefore lower energy consump-
tion. The SSM separated m = (4&8) design can achieve a
higher speed gain and a comparable power reduction com-
pared to the case of m = 6 with far less accuracy loss.
The SSM separated m = (4&8) design achieved a speed
increase of 88.77% and a power reduction of 77.12% and an
accuracy loss of 1.46% which is better than m = 6 with a
speed increase of 81.01% and 77.36%. and an accuracy loss
of 8.65%.
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FIGURE 16. Hybrid m = (4&8) performance gains compared to a
single-precision with m = 8 based on VGG19.

Overall, the merged hybrid design achieves more balanced
power-speed-area gains compared to the separated hybrid
design. Nevertheless, the merged design achieves lower gains
in terms of the speed increase and the power reduction and
therefore in energy saving. Hence, for designs that prioritize
increasing the speed or reducing the energy consumption over
reducing the area, the separated design might be a better
option.

VI. CONCLUSION

This article proposed a new architecture for improving the
multiplication performance for CNN inference. The proposed
architecture consists of a preprocessing precision controller
at the system level and approximate multipliers with vari-
ous precisions at the PE level. The proposed preprocessing
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controller determines the adequate precision for the network’s
approximate multipliers to classify the input image. The
precision controller concept was inspired after discover-
ing that a subset of image classes can be classified with
the same or better accuracy using lower precision approxi-
mate multipliers. Based on this finding, the controller was
trained to determine if the input image belongs to that sub-
set or not. The controller is built using a tiny two-class
CNN which has a negligible overhead in terms of parameters
and MACs compared to the controlled image classification
CNN. A performance analysis was presented based on the
SSM and DSM methods using CMOS 15nm technology.
Additionally, an accuracy analysis using VGG19, Xception,
and DenseNet201 was presented. Overall, utilizing the SSM
achieves a better performance-accuracy trade-off compared
to using the DSM. As an example, for VGG-19 using a
multi-core hybrid design with m = (4&8), the SSM achieves
89.66% speed increase and 77.52% power reduction with
an accuracy loss of 1.46% compared to a speed increase of
27.08% and power reduction of 42.52% and an accuracy loss
of 0.98% in the case of the DSM. Additionally, the total area
of two DSM multipliers with m = (4&8) is 94.9% larger than
two SSM multipliers with m = (4&8). Using the DSM is
an option if minimizing the accuracy loss is critical for the
designer. Maximizing the benefits of the proposed design can
be achieved in a multi-core architecture with a large number
of CNN inference accelerators, where the accelerators are
built using different approximate multiplier precisions. Using
the multi-core architecture, the proposed concept can achieve
significant performance gains compared to designs with exact
multipliers. Additionally, it can achieve a significantly bet-
ter performance-accuracy trade-off compared to designs that
uses single-precision approximate multipliers. This article
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has also presented the performance benefits of utilizing the
proposed concept in single-core designs. To optimize this
utilization, a new merged approximate multiplier with two
configurable precisions was proposed. The proposed concept
of using a tiny preprocessing controller to determine the
adequate processing precision is not limited to the DSM and
SSM architectures and can be expanded to other approximate
multiplier designs, also it is expandable beyond approximate
multipliers. The concept can be investigated in floating-point
designs to control cores with variable precisions. It is also not
limited to image classification and can be explored to improve
the hardware performance of other problems such as video
and audio classification.
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