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ABSTRACT Fine-grained image recognition is a highly challenging problem due to subtle differences
between images. There are many attempts to solve fine-grained image recognition problems using data
augmentation, jointly optimizing deep metric learning. CutMix is one of the excellent data augmentation
strategies which crops and merges to generate new images. However, it sometimes generates meaningless
and obscured object images that degrade recognition performance.We propose a novel framework that solves
the above problem and expands the CutMix leveraging localizing method. Also, we improve the recognition
accuracy to joint optimizing with a pairwise margin loss using generated images from the improved CutMix.
There are some images similar to the reference image among the generated images. They are generated by
replacing similar parts from the reference image. Those generated images should not be located much farther
than themargin value in embedding space because those generated images and a reference image have similar
semantic meaning. However, the conventional margin loss can not consider those images which are located
much farther than the margin. To solve this problem, we propose an additional margin loss to consider those
generated images. The proposed framework consists of two stages: the part localization-aware CutMix and
an adaptive pairwise margin loss. The proposed method achieves state-of-the-art performance on the CUB-
200-2011, FGVC-Aircraft, Stanford Cars, and DeepFashion datasets. Furthermore, extensive experiments
demonstrate that each stage improves the final performance.

INDEX TERMS Adaptive margin, deep neural networks, fine-grained image recognition, metric learning,
image augmentation, image generation.

I. INTRODUCTION
Fine-grained image recognition is a highly challenging prob-
lem. In the coarse-level image recognition task, the trained
network distinguishes between coarse-level objects (such
as a tree and a car). Coarse-level image recognition has
been studied for a long time and has now achieved a very
low recognition error than a human being [1], [2]. How-
ever, the fine-grained image recognition task attempts to
classify a specific level among 200 subcategories (for the
CUB-200-2011 dataset), using only subtle differences
between images. Another problem is that some images in
the different subcategories look similar (having low inter-
variance, as shown in Fig. 1(a)), and others within the
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same subcategory look different (having high intra-variance,
as shown in Fig. 1(b)). Furthermore, Fig. 1(a) shows that
the fine-grained image recognition is a challenging task for
different subcategories, with subtle differences that can only
be classified by bird experts.

There are many ways to solve these problems, e.g., aug-
mentation and deep metric learning. Many data augmentation
methods [3]–[5] have focused on the generalization of deep
neural networkmodels. Devries and Taylor [3] erased random
areas to prevent a CNN from focusing on specific areas
or on small areas to too great an extent. Zhang et al. [4]
proposed Mixup, which mixes two images and two labels
using interpolation. However, the output image of Mixup is
unnatural. Yun et al. [5] addressed this weakness of Mixup
and proposed CutMix, to improve the model generalization
by replacing each image with random patch regions and
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FIGURE 1. (a) Small variance among different classes, (b) Large variance in the same class.

labels. However, CutMix sometimes produces meaningless
and obscured object images during image generation (as
shown in Fig. 2(b)). In extreme cases of CutMix, most areas
may be composed of the background. Since the object region
plays a most important role in the image recognition task,
it is inevitable that failure cases cause degrading recognition
performance.

Deep metric learning fits well with the fine-grained image
recognition task since it captures the semantic similarity
between images. Previous researches [6], [7] have shown
improved recognition accuracy with jointly optimizing clas-
sification loss with deep metric learning.

We propose a novel framework that solves the above prob-
lem and expands the CutMix to obtain better accuracy than
existing jointly optimizing methods. The proposed method
consists of two stages. In the first stage, we overcome the
limitation of CutMix algorithm, combined with the existing
part localization method [8], for fine-grained image recog-
nition. The existing part localization method localizes three
parts from the input image using a channel grouping network.
To prevent failure cases, we replace parts images with other
images’ discriminative parts which correspond to the same
part instead of cropping random areas when merging two
different images.

In the conventional pairwise loss, one of the famous deep
metric learning, the margin value plays a role in determining
which different samples push away from the reference image.
Since the margin value determines the samples to be pushed
away, selecting margin is important and hard to determine.
However, most deep metric learning methods select the mar-
gin value by empirical experiments. To improve this issue,
in the second stage of our framework, we propose an adap-
tive margin using the distribution of the generated negative
samples from the improved CutMix outputs.

Next, to improve better recognition accuracy than the
previous jointly optimizing method, we leverage the gener-
ated images from the first stage with pairwise margin loss.
As shown in Fig. 4, the parts localization-aware CutMix
module generates many images. There are some similar
images with the reference image among the generated images
because they are generated by replacing similar parts from the
reference image. The similarity leads to a similar semantic
meaning with the reference image even though those gen-
erated images belong to a different class with the reference
image. Those images should not be located much farther than
the margin value in embedding space because the generated
images and a reference image have similar semantic mean-
ing. However, the conventional margin loss only pushes the
samples out within the margin and does not consider those
generated images which have similar semantic meaning with
the reference image. To solve this problem, we propose an
additional loss term in pairwise margin loss which pulls the
samples to the reference image. (see the red boxes in Fig. 5).
To summarize, the contributions of this work are as

follows:
• To overcome the disadvantages of the CutMix method
and improve the fine-grained image recognition perfor-
mance, we enhance CutMix with our proposed ‘‘part
localization-aware CutMix module’’ using an existing
weakly supervised part localization method.

• Beyond conventional pairwise loss, we propose an adap-
tive margin and additional pairwise loss term to improve
fine-grained image recognition accuracy using gener-
ated images from the first stage.

• We achieve the state-of-the-art performance on four
standard benchmark datasets (CUB-200-2011, FGVC-
Aircraft, Stanford Cars, and DeepFashion), where the
proposed framework consistently outperforms existing
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FIGURE 2. A visual comparison of CutMix and the proposed method: (a) Two images to be augmented by cropping and merging.
(b) Examples of failure cases for CutMix. (c) Examples of the proposed method leveraging the existing part localization method.

methods. The importance and necessity of each objec-
tive function are also demonstrated.

In Section II, a brief review of related works on
fine-grained image recognition is presented. Section III
introduces the proposed method, ‘‘part localization-aware
CutMix’’ and an ‘‘adaptive pairwise margin loss.’’ The exper-
imental results and discussion are presented in Section IV,
and finally, Section V presents the conclusions of this paper.

II. RELATED WORKS
A. FINE-GRAINED IMAGE RECOGNITION
Deep learning has shown potential for feature learn-
ing and has achieved substantial progress on fine-grained
image recognition tasks. Early works on fine-grained
image recognition used a general coarse-level recognition
approach. However, existing approaches using Convolutional
Neural Networks (CNNs) are not apt for fine-grained image
recognition due to subtle differences that are hard to clas-
sify. Previous works [9]–[14] have directly exploited parts
annotation information to enhance the object recognition
performance by using classifiers for every part. However,
human-annotated training data is highly expensive to obtain
since experts must concentrate on the data manually. Subse-
quent works based on weakly supervised learning [15]–[17]
have attempted to find distinct parts without part annotation,
using selective search [18] or a Region-Convolutional Neu-
ral Network (R-CNN) [19]. In particular, Peng et al. [20]
have proposed a framework that selects the discrimi-
native parts of images from a selective search result
using ‘‘parts-object’’ constraints. So too, Zheng et al. [8]
have induced part attention by activating feature chan-
nels and have trained networks utilizing this attention
information.

Other approaches include the method of Chen et al. [21],
which has proposed leveraging additional puzzle images
with an adversarial loss to capture subtle local differ-
ences between the original images and the puzzle images.
Zhuang et al. [22] have also proposed an attentive

pairwise interaction framework, inspired by the human
mechanism, to identify contrastive clues by comparing two
images. Recently, Ji et al. [23] have proposed an attention
convolutional binary neural tree that characterizes a coarse-
to-fine hierarchical model.

On the other hand, we propose a novel framework that
improves CutMix and leverages the discriminative parts
of images obtained using the weakly supervised learning
method, achieving state-of-the-art recognition performance.

B. DEEP METRIC LEARNING
Metric learning is designed to measure the similarity among
samples while using the optimal distance metric for learning
tasks. The seminal works in the field of deep metric learning
mainly concern facial recognition, person re-identification,
the ranking system, and fine-grained image recognition.
Koch et al. [24] have proposed a pairwise objective function
that trains a model with two shared networks by distinguish-
ing between samples which are and samples which are not in
the same class. So too, Schroff et al. [25] have proposed a
triplet objective function that learns a network using the rela-
tionship between three samples (a reference, a positive, and
a negative). Wang et al. [26] proposed a feature embedding
method using the semantic similarity between images after
carrying out patch clustering.

Other approaches [6], [7], [27] have solved the subtle
difference problems between the images using deep metric
learning by capturing the semantic similarity. Zhang et al. [6]
has shown that combining classification loss with triplet
loss had better recognition accuracy than using classification
loss alone. Cui et al. [7] have incorporated humans in the
loop for the training step, obtaining additional hard nega-
tive samples from the web crawling. Sun et al. [27] have
also proposed a multi-attention multi-class constraint with
a squeeze-excitation module. The constraints used in the
literature have produced multiple different negative sample
groups. It performs better recognition accuracy than using
one negative sample.
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FIGURE 3. An overview of the proposed framework. We obtain the various images from the part localization-aware CutMix module using the existing
localization method. The generated images are included in a positive set or negative set, depending on the replaced images. The indicator value selects
each set for training to jointly optimizing classification loss and proposed adaptive pairwise loss.

We propose an adaptive pairwise margin loss that con-
siders some generated images which have similar semantic
meaning with the reference image not previously considered,
using conventional pairwise margin loss with proposed an
additional constraint. The results demonstrate state-of-the-art
performance by jointly optimizing the classification loss and
the proposed adaptive pairwise margin loss.

III. PROPOSED METHOD
This paper proposes a new adaptive pairwise margin loss,
improving on the CutMix method, as shown in Fig. 3.
The proposed method utilizes the existing part localization
method with CutMix, to improve the fine-grained image
recognition task performance. The overall framework con-
sists of two stages: part localization-aware CutMix and an
adaptive pairwise margin loss. The part localization-aware
CutMix stage improves on CutMix by leveraging the existing
part localization method. In the adaptive pairwise margin
loss stage, a novel loss is proposed which improves the con-
ventional margin loss using the augmented images from the
first stage. We show the final result by jointly optimizing the
proposed adaptive pairwise margin loss with classification
loss in the last step.

A. PART LOCALIZATION-AWARE CutMix
CutMix is an augmentation strategy proposed by
Yun et al. [5], with the goal of generating new images (x̃, ỹ)
for training. The corresponding algorithm is described as
follows:

x̃ = M � xA + (1−M )� xB, (1)

ỹ = θyA + (1− θ )yB, (2)

M ∈ {0, 1}W×H , 0 < θ < 1, (3)

where xA and xB are training images, and yA and yB are their
labels, respectively. In the foregoing, x̃ and ỹ are generated
images, � is element-wise multiplication, and M denotes a
binary mask indicating where to drop out and where to fill in
using two images. CutMix decides the bounding box coordi-
nates and size of the cropping area by uniform sampling with
a random value θ .

However, as shown in Fig. 2(a) and (b), randomly selecting
box coordinates using the CutMix algorithm and cropping the
image often generates inappropriate images. In some cases,
important parts of the object are partly or fully occluded, and
some parts of the object may not even be visible. In extreme
cases of CutMix, most areas may be composed of the back-
ground. The inappropriate images influence the training step
negatively, causing a reduction in accuracy.

We propose a method that generates various images (x̃)
from one reference image by leveraging the methods from
existing research [8] to solve this problem.As shown in Fig. 4,
based on one reference image, many images are generated,
along with other images. Three images (xA, xB, and xC )
applied object localization method CAM [28] to remove
unnecessary background areas before processing. Three parts
of the images (xA, xB, and xC ) are obtained (Mpart1, Mpart2,
and Mpart3), and information about these parts (the size and
coordinates) are derived using the method from the exist-
ing work [8] (see the yellow and white boxes in Fig. 4).
We change parts of the reference image compared with other
images, replacing images in the same part deterministically,

VOLUME 9, 2021 8789



T. Kim et al.: Localization-Aware Adaptive Pairwise Margin Loss for Fine-Grained Image Recognition

FIGURE 4. Parts localization-aware CutMix module generates images with the reference image and several different class
images. Each image has three discriminative parts (white box) from the existing method. The white box is a candidate for
replacing. The reference image is replaced with one or two parts of the three candidates. When the reference image is
replaced with images from the same class, it becomes a positive set. On the other hand, when the reference image is
replaced with images from the different classes, it belongs to the negative set. The label of the generated image is
determined in proportion to the area of the image.

rather than randomly. There are two types of generated
images, as follows. Same Class Different Image (SCDI )
involves one or two parts in the reference image being
replaced with corresponding parts from the same image class.
However, Different Class Different Image (DCDI ) involves
one or two parts in the reference image being replaced by
images from the different classes. CutMix is expanded and
modified, with the expanding and combining operation being
defined as follows:

x̃ = Mpart1 � xA +Mpart2 � xB +Mpart3 � xC , (4)

ỹ = BAyA + BByB + BCyC , (5)

s.t BA + BB + BC = 1. (6)

Each label (yA, yB, and yC ) is given using the ratio of
the images xA, xB, and xC to the reference image. Since
the reference image is replaced with a discriminative part,
instead of random crop, failure cases do not occur in the
generated images when using the method described above (as
shown in Fig. 2(c)). The proposed method goes on to use
the generated images by separating them into positive and
negative sets, as characterized in the following sections.

B. ADAPTIVE PAIRWISE MARGIN LOSS
Deep metric learning includes a pairwise loss, a triplet loss,
and a quadruplet loss. Unlike conventional classification loss,
deep metric learning is widely used in ranking systems,
face recognition, and person re-identification, due to having
characteristics that capture semantic similarity adequately.

The conventional pairwise margin loss Lconv is characterized
by training either two images from the same class (r , p) or
images from different classes (n), according to an indicator,
as follows:

Lconv =

{
d(f (r), f (p)), if Positive Set,
max(0,m− d(f (r), f (n))), if Negative Set,

(7)

where the r , p, and n are the reference image, the positive
image, and the negative image, respectively. f (·) is the feature
vector. d(·) is the Euclidean distance between two feature vec-
tors in the positive set. m is the margin value for the negative
set. Each loss term is improved and expanded using a positive
set and a negative set for the fine-grained image recognition
task. We also propose an adaptive margin and an additional
pairwise loss in the negative set for improving manual margin
and considering the samples which have similar semantic
meaning not considered in the conventional pairwise loss,
respectively.

1) THE POSITIVE SET
As discussed in Section III-A, this involves enhancing Cut-
Mix, to crop and merge parts from two portions of reference
images to generate a new image. As shown in Fig. 4, the new
image (SCDI1) is obtained by randomly changing one dis-
criminative part of other image which is the same class as
the reference image. Another image (SCDI2) is also obtained
by changing two such parts. Since the two images consist of
the same class parts, the generated images can be considered
the same class as the reference image. Furthermore, since the
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generated two images have the same semantic meaning as the
reference image, the proposed loss is designed such that the
three samples are embedded in one point in the embedding
space. Any two images (i, j) are defined in the three-sample
relationship as sim(i, j). From the three images, three similar
relationships are defined and considered in the loss term:
sim(reference image, SCDI1), sim(reference image, SCDI2),
and sim(SCDI1, SCDI2). Here, sim(i, j) denotes the Euclidean
distance between the two samples i and j, as follows:

sim(i, j) = ‖f (i)− f (j)‖2 . (8)

We define the positive relationship between the three
images (reference image, SCDI1, and SCDI2) in this stage as
follows:

positive relationship = sim(ref , SCDI1)

+ sim(ref , SCDI2)

+ sim(SCDI1, SCDI2). (9)

2) THE NEGATIVE SET
The negative set consists of four images. The first stage
generates two additional images from the one sample-based
reference and one completely negative image (DCDIC ) (from
the different class). Two images from different classes are
selected randomly for (DCDI1 and DCDI2). One of the three
parts of the selected image is used to generate an image
(DCDI1), which is replaced with the same part of the refer-
ence image.DCDI2 is generated by randomly selecting two of
the three parts from each image. The negative image (DCDIC )
is a random image in different classes from the reference
image.

Equation (7) shows that when the input is from the negative
set, the conventional pairwise margin loss selects only for
samples within a certain margin, and the network is updated
to minimize the loss. The margin value plays an important
role in deep metric learning. Specifically, if the margin value
is too large, the network will overfit, and if the margin value is
too small, the computational cost of the training process will
increase. In this case, themargin valuem has the disadvantage
of being chosen manually. Since the margin value depends
on the samples’ distribution, m is found experimentally for
each new data set or new network. An existing work [29]
has proposed a similar adaptive margin loss, this being valid
only for triplet or quadruplet loss and not applicable to tasks
comparing pairs in the ‘‘negative set.’’ Hence, the proposed
margin value improves and rectifies the adaptive margin loss,
considering the relationship between the samples in the neg-
ative set.

There are four pairs in a negative set. Three pairs are the
three relationships between the samples (reference, DCDI1,
andDCDI2) in a similar way to the positive set. The other pair
consists of a reference image and a negative image (DCDIC ).
To determine the adaptive margin values of each pair, their
numerous samples (ni) are required, barring the reference
image.

FIGURE 5. Example of the dissim(ref , DCDI1) with adaptive margin m1
and m2. The conventional margin loss only pushes away the samples
located within the m1 margin (blue boxes). On the other hand, our
proposed additional pairwise loss pulls the samples located much farther
(red boxes) than the m1 margin into the m2 margin.

In each pair, we define m1 using the distribution of ni
images, without manually setting the margin value. In this
process, many DCDI images (ni) are generated by randomly
replacing the merged part with other images. In the reference
image and DCDI1 case, numerous samples (ni) are generated
by replacing one part of the random images from different
classes. The m1 value is defined as follows, using the distri-
bution of the ni samples:

m1 =
1
N

∑
i=1

‖f (r)− f (ni)‖2 , (10)

where theN is the number of the ni.m1 value is updated every
epoch in the training step.

As shown is Fig. 5, there are some similar images with the
reference image among the generated images because they
are generated by replacing similar parts from the reference
image or replacing only a tiny proportion of the image.
The similarity leads to a similar semantic meaning with the
reference image even though those generated images belong
to a different class with the reference image. Those images
should not be located much farther than the margin value
in embedding space because the generated images and a
reference image have similar semantic meaning. However,
the conventional margin loss only pushes the samples out
within the margin and does not consider those generated
images which have similar semantic meaning with the ref-
erence image. Therefore, the samples not reflected in the
conventional margin value are considered using an additional
loss term as follows:

max (0, ‖f (r)− f (n)‖ − m2) . (11)

Since most samples are located near the centroid of the
DCDI images in the embedding space, we set the gap σ from
the centriod.We define a secondmargin value,m2, as follows:

m2 = m1 + ασ. (12)
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The dissimilar term to which the proposed additional loss
with the conventional pairwise loss is applied is as follows:

dissim(r, n) = max (0,m1 − ‖f (r)− f (n)‖)

+max (0, ‖f (r)− f (n)‖ − m2) . (13)

The three dissimilar terms and one conventional loss term
are defined by one negative relationship as follows:

negative relationship

= dissim(ref ,DCDI1)+ dissim(ref ,DCDI2)

+ dissim(DCDI1,DCDI2)

+max (0,m1 − ‖f (ref )− f (DCDIC )‖) . (14)

A positive set and a negative set are characterized as
follows:

Lpair =

{
positive relationship, if Positive set,
negative relationship, if Negative set.

(15)

The proposed loss Lpair can be written equivalently as
follows:

Lpair = S(positive relationship)

+ (1− S)(negative relationship), (16)

where S is an indicator equal to 0 for a negative set and 1 for
a positive set. Our proposed method jointly optimizes the
classification loss and the pairwise margin loss as follows:

L = λLcls + (1− λ)Lpair . (17)

IV. EXPERIMENTS
A. DATASETS
1) CUB-200-2011 [53]
It is the most popular dataset for fine-grained image recogni-
tion. CUB-200-2011 contains many bird species all around
the world. The dataset is approximately twice as large as
the CUB-200 dataset. The number of images in the dataset
is 11,788, with 200 different subcategories. The dataset is
split into 5,994 images for training and 5,794 images for
testing. The annotation of the dataset consists of bounding
box information about the object and 312 attributes of each
bird (including the wing color and the length of the beak).

2) STANFORD CARS [54]
It contains 16,185 images of cars. The dataset is divided into
8,144 images for training and 8,041 for tests. Each subcate-
gory consists of 24–84 images for training and 24–84 images
for testing. This dataset has one bounding box and one label.

3) FGVC-AIRCRAFT [55]
It is an aircraft image dataset with 102 subcategories.
The dataset is composed of 10,200 images and is equally
split into training, testing, and validation. Each subset has
33–34 images. All images are annotated with the model,
family, variant, and manufacturer information.

4) DeepFashion [48]
It is used for image retrieval, recognition, and detection.
It contains many kinds of clothes (such as T-shirts, dresses).
We experimented with the first subset of the DeepFashion
dataset, the ‘‘Category and Attribute Prediction Benchmark’’
dataset. DeepFashion consists of 289,222 images in 50 sub-
categories, all of which are annotated by a bounding box and
information on the type of clothing.

B. IMPLEMENTATION
All experiments in this paper were trained with and tested
using a computer with 192GM RAM, Cascade Lake 24C
processors of 2.5GHz, and 4x T4 NVIDIA GPUs. For a
fair comparison, the framework was designed to depend on
VGG-16 and ResNet-50. The SGD optimizer was estab-
lished, and the initial learning rate was set to 0.001, decay-
ing by 0.09 every 50 epochs. The α values are set to
1.0, 1.2, 1.0, and 1.0 for CUB-200-2011, Stanford Cars,
FGVC-Aircraft, and DeepFashion, respectively. Since clas-
sification loss involves more information than pairwise loss,
the weightings were set as follows: λ = 0.75, 0.8, 0.8, and
0.75 for CUB-200-2011, Stanford Cars, FGVC-Aircraft, and
DeepFashion, respectively.

C. COMPARISON WITH STATE-OF-THE-ART METHOD
The ‘‘Backbone’’ column in tables denotes which CNN
model was used as the backbone network. The results
of fine-grained image recognition tasks with the CUB-
200-2011, FGVC-Aircraft, Stanford Cars, and DeepFashion
datasets are described in Tables 1, 2, 3, and 4, respectively.
The columns in every table show the method, the ‘‘Back-
bone,’’ and the accuracy of each method. For a fair compar-
ison, the results were compared with those of studies which
used VGG-16 and ResNet-50. Additionally, all of the results
were obtained fairly, without external information such as
annotations or a bounding box. As shown in Table 1, The
proposed framework outperforms MGE-CNN [43], which
includes many experts’ input and a gating network, by 0.73%
on the same ResNet-50 network. The result of the pro-
posed method have been confirmed to be 1.13% higher than
the second-highest result, ISQRT-COV [36]. The proposed
framework also outperforms GSFL-Net [37], which shares
significant features of interest and divides existing classes
into groups, by 0.94% on the VGG-16 backbone network.
The second-highest performance for the VGG-16 backbone
network is 87.2%, exhibited by ISQRT-COV [36], which
utilizes sandwiching Newton-Schulz iteration to relieve the
computational burden of an improved CNN. The result
of the proposed method is 1.34% higher than that for
ISQRT-COV [36]. The results for the proposed method
show state-of-the-art performance not only on the CUB-200-
2011 dataset but also on the Stanford Cars, FGVC-Aircraft,
and DeepFashion datasets. The results for each dataset are
0.92%, 1.43%, and 5.73% higher than the second-highest
results, respectively, on ResNet-50. The VGG-16 results are
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TABLE 1. Comparison of our approach to recent results on CUB-200-2011.

0.17%, 1.08%, and 0.42% higher than the second-highest
result, respectively.

D. ABLATION STUDY
1) THE EFFECT OF OBJECTIVE FUNCTIONS
This paper has studied how the adaptive margin and the
proposed additional loss term affect the entire performance.
A variety of experiments were designed and evaluations
were performed on the CUB-200-2011 dataset. As shown
in Table 5, results were obtained for the four cases: whether
the adaptive margin was applied or not and whether the
proposed loss was applied or not. For the cases where the
adaptive margin was applied or not, there were differences
of 1.14% and 0.31% respectively between the conventional
pairwise margin loss and the proposed pairwise margin loss.
The margin value was set manually in the cases ‘‘without
adaptive margin.’’ When the proposed pairwise loss term was
added to the conventional pairwise margin loss, the results for
the cases of the applied adaptive margin being applied or not
showed differences of 2.17% and 1.34%, respectively. Each
adaptive margin and additional pairwise margin affects the
entire recognition performance. The results also show that the
proposed additional pairwise margin loss is more critical than
the adaptive margin in determining the overall recognition
performance.

E. DISCUSSION
1) THE EFFECT OF THE NUMBER OF IMAGES OF m1
Several images were generated based on the reference sam-
ple by changing one or two image parts in the first stage.
The next stage provides the m1 value based on the various

TABLE 2. Comparison of our approach to recent results on Stanford Cars.

TABLE 3. Comparison of our approach to recent results on FGVC-Aircraft.

images generated in the first stage, and the m2 value is
dependent on the m1 value. In the second stage, the number
of images is set to 100–400. As shown in Table 6, as the
number of images increases, the performance increases sig-
nificantly. The optimal result is achieved for 250 images
on CUB-200-2011, but improvements in the performance
become less prominent when more than 400 extra images are
used.

2) RATIO OF THE POSITIVE AND NEGATIVE SETS
The default ratio of the positive set to the negative set is
fixed at 1:1. Table 7 shows the recognition accuracy on
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TABLE 4. Comparison of our approach to recent results on Deepfashion.

TABLE 5. Ablation performance on each loss function on CUB-200-2011.

TABLE 6. Comparison of our approach to recent on different of the
number of samples for mean value m1.

TABLE 7. Comparison of our approach to the different ratio between
positive pairs and negative pairs.

CUB-200-2011, with various ratio settings. The results show
that the negative set is muchmore significant than the positive
set, since the results for the 1:2 and 1:3 ratios are superior to
those for the 2:1 and 3:1 ratios, respectively.

3) PART LOCALIZATION
The proposed framework has a double-edged sword effect
and, as detailed above, leverages an existing approach [8].
The results are influenced by the number of parts and the
part localizing quality used in an existing approach. If a supe-
rior part localization approach is implemented, the proposed
framework shows superior results.

4) OBJECT LOCALIZATION
As shown in Fig. 6, some failure cases (namely, occlusion)
occur in the object localization method [28]. Localizing fail-
ures cause the failure of the images generated in the first
stage of the experiment. As shown in Table 1, additional
experiments were carried out on the CUB-200-2011 dataset,
using bounding box (BB) information instead of CAM [28].
Since there were no localizing failures, the last results were
enhanced by 0.12%. These results give the upper bounds
of the performance. If object localizing approaches superior
to CAM [28] are implemented in the proposed framework,
the performance may increase yet further.

FIGURE 6. There are some failure cases of localizing in CUB-200-2011.

V. CONCLUSION
There have been many methods to improve image recog-
nition performance (such as Cutmix and optimizing deep
metric learning). Cutmix, one of the augmentation methods,
generated new images by random cropping and merging.
However, some generated images were meaningless images
that degraded recognition performance. Because conven-
tional pairwise loss updated the network using the samples
only within the fixed margin value m, that loss could not
consider the images generated by improved Cutmix. To over-
come these limitations, we proposed an improved Cutmix
method and localization-aware adaptive pairwisemargin loss.
The first stage of the proposed method improved CutMix by
leveraging an existing part localization method and generat-
ing images. In the second stage, a novel adaptive pairwise
margin loss was proposed, using the generated images from
the first stage. The proposed additional loss considers the
samples which have a similar semantic meaning with the
reference image and are located much farther than the margin
not considered in the existing pairwise margin loss. The
limitation was that the first and second stage were affected
by the result of the parts localization and first stage, respec-
tively. Therefore, our future work will focus on improving
the end-to-end framework using the part attention method
to avoid dependencies on the results of each stage. In this
paper, extensive experiments were conducted on the CUB-
200-2011, Stanford Cars, FGVC-Aircraft, and DeepFashion
datasets, and state-of-the-art performance has been achieved
using the proposed framework. Additionally, the need for
each proposed loss and each stage of the ablation study has
been verified.
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