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ABSTRACT For target search using multiple unmanned aerial vehicles (UAVs) while knowing the probabil-
ity distribution of the targets, a distributed cooperative search algorithm aiming to minimize the search time
is proposed. First, an importance function for the representation of the environment is designed. Second,
a mission planning system (MPS) is proposed, consisting of preliminary planning, task assignment, and
post-planning layers. In the MPS, the search region is divided into a series of sub-regions of different sizes
by centroidal Voronoi tessellation; these are regarded as subtasks assigned to the UAVs. The loading of the
MPS improves the performance of global planning of the UAVs. Finally, receding horizon predictive control
is used to plan the paths of the UAVs online. Moreover, the conflict between the requirements of target
search and connectivity maintenance of the UAVs is mitigated using the minimum spanning tree strategy to
optimize the communication topology while considering the communication cost when evaluating the tasks.
The results of Monte Carlo simulations show that the introduction of theMPS into the traditional cooperative
search framework effectively improves search and coverage efficiency.

INDEX TERMS Multi-UAV search, mission planning system, cooperative control, prior probability distri-
bution.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) are widely used in
the civilian and military fields, such as for search and
rescue [1], [2], environmental monitoring [3], and coordi-
nated attacks [4]. Compared with a single UAV, multiple
UAVs can complete tasks that are complex and require effi-
cient parallel execution. Cooperative search and monitoring
is one of the most important applications of multi-UAV
systems. The search region is divided into numerous search
cells [5]–[7],and the values of the uncertainty and the target
probability associated with each cell represent the status
of the environment and the distribution of the targets. The
objective of the cooperative search is to find all hidden targets
and cover the entire region in the shortest time.

In the cooperative search problem of multiple UAVs,
the two main technical points requiring solution are the
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representation of the environment and the optimal path plan-
ning of the UAVs. The probability map updated based on
Bayesian estimation is a commonly used environment repre-
sentation [8]–[10], and the objective of the cooperative search
is the uniform convergence of the probability map. The uncer-
tainty map is designed to guide the UAVs to reduce repeated
coverage. The revisit frequency of the UAVs over each cell
tends to be consistent when the swarm uses a search strategy
based on the uncertainty map [11]–[13]. The above-cited
research ignored the need to confirm the locations of the
targets as soon as possible. To meet this need, Liu et al. [14]
designed a revisit strategy based on a pheromone mechanism
to revisit sub-areas that have a large target probability, but the
algorithm fails if the probability of false alarms is relatively
high.

In most research on the cooperative search problem of
UAVs, the framework of the search algorithm only consists of
two main modules, map update and path planning, in which
the distribution and number of targets are assumed to be
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unknown. When optimizing the search mission, the local
optimal planning results are usually globally optimal. How-
ever, when the search importance of each cell is different,
the global optimization of results obtained by local optimal
planning is poor. In this study, path planning is added to a
mission planning system (MPS) with three layers to reflect
the importance-based search priorities of different locations
in the region, which enhances the ability of global optimal
planning of the UAVs.

A conventional MPS consists of two layers: task assign-
ment and path planning. The task-assignment layer generates
the assignment plan for the UAVs according to the received
commands, and the path-planning layer generates the optimal
paths as control commands are transmitted to the UAVs.
Task-assignment algorithms can be categorized as alliance-
based [15] and market-based [16], [17]. Market-based algo-
rithms are currently favored by researchers because they have
strong adaptability and no need for global communication.
Market-based algorithms include contract network protocol
(CNP)-based auction [18], observable Markov decision pro-
cess (POMDP)-based auction [19], and random clustering
auction (SCA) [20]. When a conventional MPS is applied in
the dynamic environment, the path-planning layer is called
frequently to optimize the task-assignment results, which
consumes significant computing resources to plan useless
paths. Yao et al. [21] improved the conventional MPS by
adding a preplanning layer in which tasks are evaluated while
consuming few computing resources. This improved MPS is
drawn on in this study to solve the cooperative search problem
of multiple UAVs, and a task-division module is designed
in the preplanning layer. In the cooperative search problem,
task division refers to the division of the search region into
a series of sub-regions of different sizes as the subtasks of
the UAVs, according to an importance function. An effective
tessellation of the region is the centroidal Voronoi tessella-
tion [22], which is an improvement of the Voronoi tessella-
tion. It can be used to construct the coverage configuration
of the UAVs by minimizing the utility function [23] and
designing distributed gradient-based optimization algorithms
for path planning [10], [24].

The path-planning layer aims to improve search and cover-
age efficiency by ensuring connectivity maintenance and col-
lision avoidance. Many alternative methods are available for
the path planning of UAVs, such as potential field [25], gradi-
ent optimization [26], reinforcement learning [27], intelligent
algorithms [28], [29], the centroidal Voronoi method [10],
and receding horizon predictive control [11]. In the process
of path planning, conflict often occurs between task require-
ments and connectivity maintenance, which is a key issue
requiring solution.

The main contributions of this study include the following:
(1) an importance function based on the target probability
and uncertainty of each cell is proposed, based on which
the UAVs are guided to preferentially search areas with high
target probabilities while reducing repeated coverage; (2) an
MPS adapted to the cooperative search problem of the UAVs

is proposed, which improves the performance of global opti-
mization of the system, and the number of centroidal Voronoi
regions that optimizes the search efficiency is given; and
(3) a control strategy ensuring connectivity maintenance and
collision avoidance based on a potential field and minimum
spanning tree network is advanced, which provides the largest
set of constrained positions for the UAVs. The key contribu-
tions of this study are shown in Table 1.

TABLE 1. Key contributions.

The rest of this article is organized as follows. Section 2
gives the statement and formulation of the problem as well
as the preliminaries. In section 3, the framework of the dis-
tributed cooperative search algorithm is proposed, and the
importance function, MPS, and receding horizon predictive
control are introduced. The results of numerical simulations
that verify the proposed algorithm are provided in section 4.
Conclusions are summarized in section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM FORMULATIONS
Target search issues can be categorized as without [6], [24]
or with prior information [30]. In the former, which has
seen much research, the probability distribution of the targets
is unknown to the UAVs, and any position of the search
region is considered equally important before being searched.
Comparatively little research has been conducted on search
with prior information. This study aims to design a cooper-
ative algorithm for UAVs to minimize the search time, with
the nonuniform probability distribution of the targets known
in advance.

Consider N UAVs (Ui, i = 1, 2, . . . ,N ) equipped with
airborne sensors performing a cooperative search mis-
sion in a region containing several unknown targets(
Tj, j = 1, 2, . . . , nT

)
as shown in Figure 1. The multiple

UAVs aim to find all latent targets and efficiently cover
the entire region. For this purpose: (1) one must discretize
the region and design cognitive functions to quantify the
information collected by the UAVs from the environment;
(2) according to the target probability, one can divide the
region into a series of sub-regions of different importance,
and design a task-assignment algorithm to allocate these sub-
regions, or subtasks, to the UAVs; (3) a distributed control
algorithm should be designed to plan optimal paths that bring
the highest detection rewards to the UAVs while considering
the constraints of communication maintenance and collision
avoidance.
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FIGURE 1. Multi-UAV cooperative search for targets.

B. MODEL OF SEARCH ENVIRONMENT
The search region � ∈ R2 is assumed to be a rectangular
plane of size Lx×Ly in two-dimensional Euclidean space. The
search region is divided into a series of grids

{
cp
}np
p=1 as basic

search cells, of equal size Dx × Dy. The center of cell cp is
marked p and located atµp =

[
xp, yp

]T . ξp = {0, 1} indicates
whether there is a target in cell cp under the assumption that
at most one target exists in a cell.

To know the prior probability distribution of the targets is
significant to the UAVs searching for them. In most practical
scenarios, this can be inferred by empirical models, such as
rescuing people in accidents and searching for returned space
capsules, in which case the targets are scattered around the
vehicles or estimated landing points, which are called distri-
bution centers. The most likely prior probability distribution
of the targets is Gaussian. If µz = [xz, yz]T indicates the
location of the distribution center, then the target probability
around each center has a two-dimensional Gaussian distribu-
tion. The global target probability can be given by

Pr
p
= 1−

nT∏
j=1

(1−
j
Pr
p
),

j
Pr
p
=

Kz
√
2πσ

exp(−

∥∥µz(j) − µp∥∥2
2σ 2 ), (1)

where Kz is the gain factor corresponding to the distribu-
tion center µz, σ 2 is the the variance, and

∥∥µz(j) − µp∥∥ is
the distance between p and the distribution center of Tj.
Then, Prp is the probability that at least one target exists in
cell cp.

C. KINEMATIC MODEL AND SENSOR MODEL OF UAVs
For simplicity, the flight height of a UAV is assumed to
be constant. The state of Ui can be described by Xi,k =[
µi,k , φi,k

]
, where µi,k =

[
xi,k , yi,k

]
represents the coor-

dinates and φi,k is the heading angle at time index tk .

The simplified kinematic model is

ẋi,k = vc cos
(
φi,k

)
,

ẏi,k = vc sin
(
φi,k

)
,

φ̇i,k = ωi,k ,

µi,k+1 = µi,k +
[
ẋi,k , ẏi,k

]
,

ωi,k ≤ ωmax,

(2)

where vc is the constant cruising speed and ωmax is the
maximum turning rate. This simplified kinematic model has
been widely used [10], [24], [30] in UAV cooperative control
problems. For the discrete case, the UAVs are assumed to
always be located at cell centers and travel to adjacent cells
within dT .
Each UAV is equipped with an optical sensor facing down-

ward under its fuselage. With constant flight height, the cir-
cular field of view (FOV) with radius RA of the sensor of Ui
can be given by

Ci,k =
{
cp ∈ � :

∥∥µp − µi,k∥∥ ≤ RA} . (3)

D. COMMUNICATION MODEL
Communication is the basis for the cooperation of the UAVs.
The factors that are correlative to the quality of communica-
tion are complex, and include communication distance, time
delay, and bandwidth. We primarily consider the effects of
limited communication distance on the cooperative control of
multiple UAVs. For simplicity, it is assumed that: (1) all the
UAVs are homogeneous and can communicate the collected
information with other UAVs; and (2) as long as the distance
between any two UAVs is less than the communication dis-
tance Rc, they have an available communication link.
The network topology of multiple UAVs can be

described by an undirected graph G(V ,E(k)), where V =
{U1,U2, · · · ,UN } is the collection of all communication
nodes, and E(k) =

{
(Ui,Uj)

∣∣∥∥µi,k − µj,k∥∥ ≤ Rc, i 6= j
}

represents the communication links at time tk , which are
the edge sets in the graph. The second-smallest eigenvalue
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FIGURE 2. Difference between Voronoi tessellation and CVT.

of the Laplacian matrix L(k) is often used to indicate the
connectivity of the graph. The Laplacian matrix can be
calculated by

L(k) = D(k)− A(k), (4)

where D(k) is the degree matrix and A(k) is the adjacency
matrix, which can be expressed as

A(k) =
[
ωijaij

]
N×N ∈ RN×N ,

aij =

{
1, if

(
Ui,Uj

)
∈ E(k),

0, otherwise,

ωij = exp

(
−

∥∥µi,k − µj,k∥∥
Rc

)3

, (5)

where aij indicates whetherUi andUj are connected andωmax
is theweight of link

(
Ui,Uj

)
, which decreaseswith increasing∥∥µi,k − µj,k∥∥.

D(k) can be expressed as

D(k) =
[
dij
]
N×N ∈ RN×N

dij =


N∑
k=1

ωikaik , if i = j,

0, otherwise.

(6)

Then, the Laplacian matrix of the graph can be given by

L(k) = [lij]N×N ∈ RN×N ,

lij =


N∑
k=1

ωikaik , if i = j,

−ωijaij, otherwise.

(7)

The eigenvalues of L(k) are sorted as λ1(k) ≤

λ2(k) ≤ · · · ≤ λN (k), and λ2(k) represents the algebraic
connectivity. The graph is connected only if λ2(k) > 0.
One expects to ensure the connectivity of the network when

optimizing the communication topology, and the calculation
of algebraic connectivity is helpful to verify the proposed
optimization design in simulations.

E. CENTROIDAL VORONOI TESSELLATION
The division of the search region is a prerequisite to the task
assignment of multiple UAVs. The present aim is to find a
tessellation such that: (1) each sub-region is independent;
(2) the target probabilities of the cells in any sub-region are
relatively close; and (3) the configuration of the tessellation
is related to the probability distribution of the targets.

For this purpose, the search region is first divided using
a Voronoi tessellation. Also called Thiessen polygons or a
Dirichlet diagram, this tessellation consists of continuous
polygons formed by a set of vertical bisectors. Approaches to
determine a Voronoi tessellation include divide-and-conquer
algorithms, scanline algorithms, and Delaunay triangulation.
Given a set of points

{
qg
}ng
g=1 , qg ∈ � with different posi-

tions as the generators, the set
{
Vg
}ng
g=1 is a Voronoi tessella-

tion of region �, and Vg is referred to as the Voronoi region
corresponding to the generator qg. For any point p in �,
a Voronoi region Vi has the property,

‖p− qi‖ ≤
∥∥p− qj∥∥ , i 6= j, ∀p ∈ �, (8)

where qi is the generator of Vi. The equality holds only if p is
on the edges of Vi.

Through aVoronoi tessellation, the search region is divided
into sub-regions of varying size. However, a Voronoi tessella-
tion is completely determined by the locations of the genera-
tors. The distribution of the Voronoi regions is neither regular
nor related to the target probability distribution. This requires
what is called a centroidal Voronoi tessellation (CVT).

In a Voronoi tessellation, the mass centroids of
{
Vg
}ng
g=1 are{

zg
}ng
g=1, and the mass centroid is generally not equivalent

to the generator. However, a Voronoi tessellation can be
converted to a CVT that satisfies qg = zg. Figure 2 shows
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FIGURE 3. Framework of distributed cooperative search algorithm with task assignment and receding horizon predictive
control for multi-UAVs.

the difference between a Voronoi tessellation and a CVT. It is
easy to see that the distribution of the centroidal Voronoi
regions is more regular than that of the Voronoi regions,
the densities of the centroidal Voronoi regions are propor-
tional to the target probabilities, and the sizes of the regions
are inversely proportional to the target probabilities. Further-
more, the shape of a centroidal Voronoi region is closer to
a regular polygon, which provides much convenience for a
UAV to search a sub-region when its steering is restricted.

Assuming that there are ng UAVs
{
Ug
}ng
g=1 searching the

region�, a tessellation
{
Vg
}ng
g=1 of� can be determined using

the locations of the UAVs
{
zg
}ng
g=1 as the generators, and Ug

is arranged to independently search the sub-region Vg. The
search cost of a cell cp within sub-region Vg for Ug can be
defined by ϕ(p) =

∥∥p− zg∥∥2, and the total cost function of
the swarm with respect to a density function ρ(p) is defined
as

F =
ng∑
g=1

∫
p∈Vg

ρ(p)ϕ(p)dp

=

ng∑
g=1

∫
p∈Vg

ρ(p)
∥∥p− zg∥∥2dp. (9)

Lemma 1 [22]: The sufficient condition to minimize the
value of F is that

{
Vg
}ng
g=1 is a Voronoi tessellation, and zg is

the mass centroid of Voronoi region Vg.
The above lemma suggests that, when usingmultiple UAVs

to search a limited region, to place them on the generators of
a CVT of the region is the least costly solution. In this study,
the number of the UAVs is reduced and each UAV is made to
search several centroidal Voronoi regions.

III. ALGORITHM DESIGN
We designed a distributed cooperative search algorithm
whose framework consists of two modules: mission plan-
ning and motion control. In the mission planning module,
the search region is divided into a series of sub-regions as sub-
tasks through a CVT, and a local auction algorithm optimally
allocates the subtasks to the UAVs. In the motion control
module, a receding horizon predictive control algorithm plans
optimal paths for the UAVs to follow to search and cover the
region while ensuring collision avoidance and communica-
tion between the UAVs. The framework is shown in Figure 3.

A. IMPORTANCE FUNCTION
An important part in the search process for the UAVs is to
collect information from the environment and quantify it by
different cognitive functions, which will be used to guide
the UAVs to more efficiently search for targets. For exam-
ple, the UAVs will preferentially search places where targets
are more likely to exist based on prior target probabilities,
which is a constant cognitive function under our assump-
tions. In addition, to discover all latent targets, the UAVs
should search in different areas instead of just a certain area.
An uncertainty function was designed for this purpose.

Each UAV independently searches the cells within its FOV,
and the number of detections of Ui over cell cp until time
index tk is expressed by Hi,p,k =

∑k
j=1 hi,p,k , where hi,p,k

is the number of detections from tk−1 to tk . The uncertainty
function ηi,p,k ∈ [0, 1] quantifies the undetected information
in cell cp. The more detections that have been executed over
cell cp, the more certain is the state of cp for Ui, and the
UAVs will preferentially search places of high uncertainty.
The independent update of the uncertainty function of Ui is
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expressed as

ηi,p,k = γ
hi,p,kηi,p,k−1, (10)

where γ ∈ [0, 1) is the decay factor determining the decreas-
ing rate of uncertainty. The reader is referred to Sujit. [12]
for details of the design of the uncertainty function. ηi,p,k
decreases slower as Hi,p,k increases; hence repeated searches
in the same area are not expected, and the UAVs must travel
back and forth among different areas.

In the cooperative searchmission, a swarmUAVexchanges
detection information with its neighbors and uses it to
update its uncertainty function. The neighbors of Ui
refer to the UAVs within its communication distance,
and the collection of Ui and its neighbors is Ni,k ={
Uj|

∥∥µi,k − µj,k∥∥ ≤ Rc, j = 1, 2, . . . ,N
}
. The joint detec-

tion result of Ui from tk−1 to tk is given by ĥi,p,k ={
hj,p,k | j ∈ Ni,k

}
, including its detections and the shared

information of its neighbors. Based on the joint detection
result, the cooperative update of the uncertainty function can
be given by

ηi,p,k =

 ∏
j∈Ni,k

γ
hj,p k
j

 ηi,p,k−1, (11)

where γj is the decay factor corresponding toUj, varying with
the different detection capabilities of UAVs. In the swarm
consisting of homogeneous UAVs, γj = γ is satisfied.

To boost the priority of areas with larger target probabilities
and reduce repeated searching, the importance function is
designed as

si,k,p = ηi,k,p Prp . (12)

B. TASH ASSIGNMENT BASED ON CVT
To ensure that areas with high target probabilities are
searched preferentially, the search region is divided into
sub-regions of different sizes through a CVT, and these are
optimally assigned to the UAVs. For this purpose, each UAV
is equipped with anMPS composed of a preliminary planning
layer, task-assignment layer, and post-planning layer. The
preliminary planning layer generates a set of sub-regions
as subtasks through a CVT, evaluates these for each UAV,
and transfers the evaluations to the task assignment layer.
Moreover, assigned tasks are reevaluated in this layer. The
task-assignment layer generates the optimal task-assignment
plan based on a distributed auction algorithm. Based on this,
the post-planning layer plans optimal paths for the UAVs
through the receding horizon predictive control algorithm and
generates the trajectories.

CVTs are generated as follows. Deterministic approaches
include Lloyd’s method, the descent or gradient method,
the Newton-like method, and MacQueen’s method; the math-
ematical principles and properties of thesemethods have been
discussed in the literature and this will not be repeated here.
In this paper, Lloyd’s method is selected to determine a CVT,
using the following algorithm.

Algorithm 1 Determination Algorithm of a CVT using
Lloyd’s Method

Initialization: Discrete points
{
qg
}ng
g=1, density function

ρ(p) = Prp.
Procedure:
1: Generate a Voronoi tessellation

{
Vg
}ng
g=1 using

{
qg
}ng
g=1

as generators.

2: Calculate the mass centroid of Vg by zg =
∫
p∈Vg

pρ(p)∫
p∈Vg

ρ(p) .

3: while

ng∑
g=1
‖zg−qg‖

ng
≥ ε

4: For each qg, make qg = zg.
5: Generate a new Voronoi tessellation

{
Vg
}ng
g=1.

6: Calculate the mass centroids
{
zg
}ng
g=1 of

{
Vg
}ng
g=1.

7: end while

In Algorithm 1, the generators are continually replaced by
the centroids of the Voronoi regions. Through many itera-
tions, the distance between the generator and centroid of the
same Voronoi region is reduced dramatically. If the average
distance is less than a certain threshold, then the generator and
the corresponding centroid are considered coincident. Then
one will obtain a CVT of the search region.

Based on Algorithm 1, the search region is divided into
uniform sub-regions according to the prior target probability.
The final configuration of a CVT is related to the initial
positions of the generators. With the same prior target prob-
ability, the final configurations of the CVTs vary with the
changes of the initial distribution of the generators. Thus
the initial locations of the generators should be determined
according to the target probability, so that the final configu-
ration of a CVT reflects the target probability, as shown in
Figure 4.

We next discuss how to assign and update the tasks based
on the following assumptions.

1) The UAVs and tasks are homogeneous, so each task can
be allocated to any UAV.

2) Tasks refer to centroidal Voronoi regions, and each can
be executed repeatedly.

3) The execution of each task requires only one UAV.
4) Since evaluations of tasks are updated along with

the search, each UAV keeps only one task at any
moment.

A CVT of search region�with
{
qj
}ng
j=1 as the generators is{

Vj
}ng
j=1, and the optimization problem of searching centroidal

Voronoi regions with N UAVs {Ui}Ni=1 can be expressed by

max
N∑
i=1

ng∑
j=1

αijRij, (13)

where αij = {0, 1} indicates whether task Vj is allocated to
Ui, and Rij is the reward thatUi can obtain by completing this
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FIGURE 4. Centroidal Voronoi tessellations with different target probabilities; Voronoi regions are always more
compact where target probabilities are larger.

task Vj. The previous assumptions can be expressed as

N∑
i=1

αij = {0, 1}, ∀j ∈
{
1, 2, · · · , ng

}
,

ng∑
j=1

αij = 1, ∀i ∈ {1, 2, · · · ,N }. (14)

The income is defined by ri,j,k =
∑
p∈Vj

si,p,k based on the

search importance function and the cost by Ci,j,k . The reward
is

Ri,j,k = ri,j,k/Ci,j,k . (15)

The cost consists of time cost C t
i,j,k and communication

costCc
i,j,k . The time cost consists of the arrival cost and search

cost, and is defined by

C t
i,j,k = di,j,k/

√
Dx2 + Dy2 + κSj/SA, (16)

where di,j,k =
∥∥µi,k − qj∥∥ is the distance between Ui and

the generator qj, Sj is the area of region Vj, SA is the area
of the FOV, and κ is the proportionality factor related to the
overlapping rate. The communication cost comes from the

risk of losing communication with other UAVs, and is defined
by

Cc
i,j,k =

∑
l∈Ñi,k

(exp(max(0,

∥∥dl,j,k − R′c∥∥∥∥Rc − dl,j,k∥∥ ))− 1),

dl,j,k =
∥∥µl,k − qj∥∥ , ∀Ul ∈ Ñi,k , (17)

where Rc is the communication range, and R′c < Rc is a
custom parameter. Ñi,k =

{
Uj |

(
Ui,Uj

)
∈ EMST (k), j 6= i

}
is the collection of other UAVs with which Ui must maintain
communication links, and EMST denotes the edge sets of
the minimum spanning tree sub-graph GMST that will be
introduced in the next section. The total cost is expressed by

Ci,j,k = β1C t
i,j,k + β2C

c
i,j,k , (β1, β2 > 0) . (18)

The estimated comprehensive rewards of all tasks for each
UAV can be evaluated by the above formulas. Based on the
estimates, the task assignment is executed with a distributed
auction algorithm. During the auction, each UAV bids for
the task from which it can profit the most, and the auction-
eer determines the ownership of each task based on all the
bids. Centralized auctions are allowed in swarms with a fully
connected network, and the public prices Pj of task Vj are
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equal for each UAV. In practical scenarios in which networks
of swarms are not fully connected, each UAV conducts a local
auction with its neighbors, in which the valuation of task Vj
for Ui is given by

eij = Rij − Pij, j ∈ Ni,k , (19)

where Pij is the local price. For fairness, UAVs participating
in a local auction should agree on the local price. The local
auction algorithm is as follows.

In Algorithm 2, all UAVs are greedy bidders and will bid
for every task. Once the highest bidder wins a new task, it will
compare its reward to that of the task held, select the task
with the larger reward, and abandon the other. Only when all
tasks have been auctioned will the UAVs decide which tasks
to perform.

Algorithm 2 Local Auction Algorithm
Initialization: UAV Ui and the collection of UAVs within
its
communication range Ni,k , tasks

{
Vj
}ng
j=1, estimated

rewards
Ri,j,k , local price Pi,j,k , current tasks

{
V ∗l
}N
l=1 and

corresponding rewards
{
R∗l
}N
l=1, where Ul ∈ Ni,k .

Procedure:
1: for j = 1 : ng
2: Initial maximum evaluation e∗j,k = 0
3: for Ul ∈ Ni,k
4: bid Rl,j,k , valuation el,j,k
5: if el,j,k > e∗j,k then
6: assign Vj to Ul , e∗j ← el,j,k
7: end if
8: end for
9: the winner of Vj is Uq
10: if Rq,j,k > R∗q
11: replace the current task, V ∗q ← Vq
12: end if
13: end for

Based on Algorithm 2, the total reward of the swarm
is maximized, and the current tasks assigned are

{
V ∗i
}N
i=1.

It is worth noting that the assignments generated by the
local auction algorithms of different UAVs may conflict.
Therefore, it is necessary to synchronize the task-assignment
results through multi-hop communication and remove allo-
cated tasks from the set of tasks. As the states of the UAVs
and the environment update along with the search process,
the preplanning layer in the MPS will be repeatedly called
to reevaluate the current tasks to determine whether it is
necessary to reassign tasks. The reevaluation of the current
tasks includes the following two aspects: (1) the residual
income of the task; and (2) cost control. Because the trajecto-
ries of UAVs searching sub-regions are not globally optimal,
the remaining unsearched areas of the sub-region assigned to
a UAV are scattered, and it must make a tradeoff between the
residual income and search cost. The task completion vi ofUi

is defined as

νi = S∗i /S
A
i,k , (20)

where S∗i is the area of region V
∗
i , and S

A
i,k is the area covered

by Ui in V ∗i until time index tk . The cost of the current task
also changes with time, and the risk of disconnection of com-
munication links will sharply increase the communication
cost. The maximum task completion and maximum cost are
defined as νmax and Cmax, respectively, and the continuation
of the current task must meet the following conditions,{

νi ≤ νmax,

C∗i,k ≤ Cmax,
(21)

where C∗i,k is the current cost of task V
∗
i for Ui.

C. RECEDING HORIZON PREDICTIVE CONTROL
The UAV plans its paths based on its cognition of the
environment and the cognition exchanged with other UAVs,
as well as the state of the swarm. Since the above infor-
mation changes during the search process, the UAV must
continuously replan its paths to meet the requirements of
search, obstacle avoidance, and communication. Thus the
path planning of the UAV is an online dynamic optimization
problem, and a receding horizon predictive control algorithm
is designed to solve it.

In the receding horizon predictive control algorithm,model
prediction is used to solve the local optimal solution of the
open-loop control in a finite-time domain, based on the cur-
rent states of theUAVs and the scenariomodel at the sampling
instant tk . The first step of the optimal control sequence is
used as the input of motion control.

The state of Ui at time index tk is Xi,k , and the
collection of the states of its neighbors is X ci,k ={
Xj,k |

∥∥µi,k − µj,k∥∥ ≤ Rc, i 6= j
}
. Under the assumption of

constant cruising speed and flight height, the input of motion
control ui,k refers to the turning rate ωi,k , and the kine-
matic model of the UAV is f . To solve the optimal control
input u∗i,k through model prediction in the finite-time domain
[tk , tk+M ], the benefit function of the UAV is defined as Ji,k
and the optimization problem is expressed by

u∗i,k = argmax Ji
(
ui,k ,Xi,k ,Xc

i,k
)
. (22)

The following constraints should be satisfied.
Xi,k+m = f

(
Xi,k+m−1, ui,k+m−1

)
,

ωi,k+m ≤ ωmax,

m = 1, 2, · · · ,M .

(23)

To solve the optimal path, onemust first predict all possible
paths. Under the constraints of the maximum turning rate and
search region, the prediction of the paths based on the kine-
matics model of the UAV is shown in Figure 5. The possible
path points at time index tk+m+1 are generated based on the
position and heading of the UAV at time index tk+m. The
collection of possible path points at time index tk+m is w̃(k +
m | k), and the collection of all predicted paths during the
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FIGURE 5. Illustration of three-step path prediction (ωmax = 45◦); gray
area represents FOV of airborne sensor.

finite-time domain [tk , tk+M ] is
{
Pli
}nl
l=1, where one possible

path is Pli =
{
wli(k + 1|k),wli(k + 2|k), · · · ,wli(k +M |k)

}
,

M is the maximum number of predicted steps, and nl is the
total number of predicted paths.

The goal of path optimization is to maximize the benefit of
the UAV, whose objectives include: (1) environment coverage
and target search; (2) maintenance of communication; and
(3) collision avoidance. The search benefit is defined as JA,
and the total expense of communication maintenance and
collision avoidance is defined as JB. The benefit function is
given by

Ji,l,k = χ1JAi,l,k − χ2J
B
i,l,k , (χ1,χ2 > 0). (24)

The UAV’s main objectives include discovering all tar-
gets and covering the region. Through the task assignment,
the prior detection of areas with high importance is realized.
It is assumed that the target probabilities at any place in a
sub-region are equivalent. For the purpose of avoiding the
repeated search of the same areas, the search benefit of the
UAV is represented by the uncertainty function ηi,p,k instead
of the importance function si,p,k . In addition, the UAV must
preferentially search the assigned sub-region, so UAV Ui
will be punished if it is outside region V ∗i , and the penalty
increases as the UAV travels away from the assigned region.
The search benefit of Ui selecting path Pli is defined as

JAi,l,k = δ1
M∑
m=1

∑
p∈Ci,k+m

ηi,p,k

−

M∑
m=1

δ̄2 exp(

∥∥wli(k + m|k)− q∗i ∥∥
R∗i

),

δ̄2 =

{
0, if wli(k + m|k) ∈ V

∗
i ,

δ2, else,

δ1, δ2 > 0, (25)

where Ci,k+m =
{
cp ∈ � :

∥∥µp − wli(k + m | k)∥∥ ≤ RA} is
the FOV of Ui located at wli(k + m|k), q

∗
i is the generator of

V ∗i , and R
∗
i is the circumradius of V ∗i .

To meet the needs of task assignment and information
exchange between the UAVs, the communication network
of the swarm must be maintained. The network of the UAV
swarm is defined by the undirected graph G(V ,E(k)), and
the connectivity by the second smallest eigenvalue λ2(k)
of the Laplacian matrix L(k), as discussed in section 2.4.
Undoubtedly, a fully connected network, i.e., one with a
communication link between any two UAVs, has the greatest
connectivity. However, a fully connected network greatly
restricts the freedom of motion of the UAVs. To achieve
balance between connectivity maintenance and freedom of
motion, the minimum spanning tree strategy is adopted to
optimize the network topology.

A fully connected network is defined as Gall(V ,Eall(k)),
where (Ui,Uj) ∈ Eall(k) is satisfied for any i, j ∈
{1, 2, · · · ,N }, i 6= j. A subgraph of Gall defined as
G′(V ,E ′(k)), and denoted E ′ ⊆ Eall,G′ ⊆ Gall . The Kruskal
algorithm is used to generate the minimum spanning tree
subgraph that meets the condition:

GMST = argmin
G′⊆Gall

∑
(Ui,Uj)∈E ′

di,j,k , (26)

where di,j,k =
∥∥µi,k − µj,k∥∥ is the distance between any two

UAVs in the edge set E ′.
Lemma 2 [31]:Among all subgraphs ofGall that guarantee

connectivity, theminimum spanning tree subgraphGMST pro-
vides the UAVs with the largest set of constrained positions.
As shown in Figure 6, 2i indicates the communication

range of Ui, the full lines represent Eall , and the red lines
represent EMST . As can be seen, in the fully connected graph,
the set of constrained positions of each UAV is Ai = 21 ∩

22 ∩ 23, i = 1, 2, 3, and in the minimum spanning tree

FIGURE 6. Set of constrained positions of UAVs in different subgraphs.
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subgraph the set of constrained positions of each UAV is
A1 = 21 ∩22,

A2 = 21 ∩22 ∩23,

A3 = 22 ∩23.

(27)

Furthermore, it can be seen that the area of 2i ∩ 2j
increases with the decrease of the distance betweenUi andUj.
By retaining the communication links inGMST , the UAVs are
provided with the largest set of constrained positions, while
maintaining the connectivity of the network.

Since EMST is composed of the shortest communication
links, UAVs holding the same communication link in EMST
have a greater risk of collision. The artificial potential field
method [25] is adopted to realize connectivity maintenance
and collision avoidance, as shown in Figure 7. The current
location of Ui is µi,k , and for any other UAV Uj holding
the same communication link in EMST with Ui, the distance
between Ui and Uj is di,j,k . To maintain connectivity and
avoid collision, the distance di,j,k must be kept between Rc
and Rs, where Rs is the safety distance. Given the custom
parameters R′c and R

′
s that satisfy Rs < R′s < R′c < Rc, Ui

and Uj resist each other if the distance di,j,k is less than R′s,
and they attract each other if the distance di,j,k is greater than
R′c. Ñi,k =

{
Uj |

(
Ui,Uj

)
∈ EMST (k), j 6= i

}
comprises the

FIGURE 7. Maintaining connectivity and collision avoidance by potential
field.

neighbors of Ui in graph GMST , and the virtual force between
Ui and its neighbor Uj can be expressed by

Fi,j,k = exp(max(0,

∥∥di,j,k − R′c∥∥∥∥Rc − di,j,k∥∥ ))
+ exp(max(0,

∥∥di,j,k − R′s∥∥∥∥Rs − di,j,k∥∥ ))− 2 (28)

The trajectory of Uj predicted by Ui with the kinematic
model of the UAV in the finite-time domain [tk , tk+M ]
is P̃j =

{
µ̃j(k + 1 | k), µ̃j(k + 2 | k), · · · , µ̃j(k +M | k)

}
.

The expense of Ui selecting path Pli is defined as

JBi,l,k =
M∑
m=1

∑
j∈Ñi,k

F̃ li,j,k+m

F̃ li,j,k+m = exp(max(0,

∥∥∥d̃ li,j,k+m − R′c∥∥∥∥∥∥Rc − d̃ li,j,k+m∥∥∥ ))
+ exp(max(0,

∥∥∥d̃ li,j,k+m − R′s∥∥∥∥∥∥Rs − d̃ li,j,k+m∥∥∥ ))− 2

d̃ li,j,k+m =
∥∥∥µ̃j(k + m|k)− wli(k + m|k)∥∥∥ (29)

Equation (29) gives the total virtual force that UAVUi may
bear when selecting path Pli to avoid collision and maintain
connectivity. The virtual force that UAV Ui bears at time
index tk+m is calculated by Eq. (28) when the predicted
locations of Ui and Uj are wli(k + m|k) and µ̃j(k + m|k).
To avoid collision and maintain connectivity, a UAV will
select a path in which it bears small virtual force.

IV. SIMULATION RESULTS
The proposed distributed cooperative search algorithm was
verified based on simulation results. To achieve persua-
sive results, the proposed algorithm was compared with
the no task-assignment and pheromone algorithms [11].
In the frameworks of the comparison algorithms, there
is no task-assignment module, and UAVs using the no
task-assignment algorithm tend to select paths of high impor-
tance. UAVs using the pheromone algorithm tend to select
paths of high uncertainty to rapidly cover the entire region,
and will be attracted by pheromones released by areas of high
importance. The effects of the total number of sub-regions on
the performance of search and coverage of the swarm are also
analyzed.

Two indicators are proposed to quantify the coverage effi-
ciency and search efficiency of the swarm UAVs using differ-
ent search algorithms. The coverage efficiency is related to
the rate of decay of global average uncertainty, and the global
average uncertainty at time index tk is

η̄k =

N∑
i=1

∑
p∈�

ηi,p,k

Nnp
. (30)
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FIGURE 8. Scenario 1: (a) Target probability; (b) UAV trajectories using proposed algorithm; (c) UAV trajectories using no
task-assignment algorithm ; (d) UAV trajectories using pheromone algorithm; (e) comparison of global average uncertainty;
(f) comparison of search efficiency.

The faster the decrease of the global average uncertainty,
the higher the coverage efficiency. The search efficiency is
quantified by the time used to find each target. One thousand
Monte Carlo simulations were performed using the three
algorithms in three scenarios, and the mean values of the
time of the UAVs finding the targets and the global average
uncertainty were calculated.

Simulations were conducted in a virtual square mission
scenario of 2 km×2 km using four UAVs, and the region was
divided into 2,500 search cells of 40 m × 40 m. The radius
of the airborne sensor’s FOV was 60 m and the maximum
turning rate of the UAV was 45◦.
The communication distance Rc and safety distance Rh

were 1 km and 60 m, respectively, and the corresponding
custom parameters R′c and R

′
s were 700 m and 120 m. The

standard deviation δ of the Gaussian function of the target
probability was 250 m. The initial value of the uncer-
tainty function ηi,p,0 of all search cells was 1 and the
decay factor γ of all UAVs was 0.1. The four UAVs were
located at (−620,−980), (−220,−980), (180,−980), and
(580,−980), with the same heading angle of π/2 at the
outset.

Figures 8(a)–10(a) show three scenarios with different tar-
get probabilities, under which the comparison of the three
algorithms was conducted. The number of targets in all three
scenarios was assumed to be nine, and the number of cen-
troidal Voronoi regions was 50. The trajectories of the UAVs
using different algorithms are presented in Figures 8(b)–(d)
through 10(b)–(d), where red stars represent the distribu-
tion centers, blue squares the targets, and black dotted lines
the communication links in the minimum spanning tree.

The UAVs using the proposed algorithm always searched the
areas near the distribution centers earlier than when using the
two other algorithms.

It can be found from Figures 8(e)–10(e) and 8(f)–10(f)
that the global average uncertainty of the proposed algorithm
dropped faster than that of the two other algorithms most of
the time, and the average time used to find each target of the
swarm UAVs using the proposed algorithm was shorter than
that of the two other algorithms. This means that the coverage
efficiency and search efficiency of the proposed algorithm
were higher than those of the others.

Comparedwith the no task-assignment algorithm, theMPS
improved the ‘‘short sight’’ of theUAVs. SwarmUAVs loaded
with the MPS always preferentially searched the areas with
high importance, rather than seeking a local optimal solution
from the neighborhood of the current locations of the UAVs.
The proposed algorithm effectively improved the global
optimization of the system by adding a task-assignment
module above the motion-control module. Compared with
the pheromone algorithm, the UAVs using the proposed
algorithm divided the search region into a limited number of
sub-regions, each searched independently by only one UAV,
which could prevent crowding of UAVs due to the attraction
of an important area. Thus each UAV could give full play to
its exploration capabilities. The effects were more obvious
when the targets were scattered or the areas with high target
probabilities were far from the initial positions of the UAVs,
as shown in scenarios 2 and 3.

The computational efficiency of the three algorithms was
compared using the execution times of 1,000 sampling
moments in the three scenarios, as shown in Table 1. It can be
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FIGURE 9. Scenario 2: (a) Target probability; (b) UAV trajectories using proposed algorithm; (c) UAV trajectories using no
task-assignment algorithm ; (d) UAV trajectories using pheromone algorithm; (e) comparison of global average uncertainty;
(f) comparison of search efficiency.

FIGURE 10. Scenario 3: (a) Target probability; (b) UAV trajectories using proposed algorithm; (c) UAV trajectories using no
task-assignment algorithm ; (d) UAV trajectories using pheromone algorithm; (e) comparison of global average uncertainty;
(f) comparison of search efficiency.

seen that due to the addition of the task-assignment module,
the proposed algorithm proposed had a longer execution time,
a shortcoming that must be improved in future research.

The number of centroidal Voronoi regions is the most
important factor affecting the performance of the distributed

cooperative search algorithm. Based on the proposed algo-
rithm, 10 sets of Monte Carlo simulations were performed on
a swarm consisting of four UAVs with the target probability
shown in Figure 9(a). The number of centroidal Voronoi
regions, ng, was set to {10, 20, · · · , 90}, and the number
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FIGURE 11. Eeffects of number of centroidal Voronoi regions on coverage efficiency and search efficiency of the swarm
and validation of the strategy of communication maintenance and collision avoidance.

TABLE 2. Comparison of computational efficiency of the three algorithms.

of targets was assumed to be nine. The statistical results
are shown in Figure 11. The effects of the number of cen-
troidal Voronoi regions on the coverage efficiency and search
efficiency of the swarm using the proposed algorithm are
shown in Figures 11(a) and 11(b), respectively. As the number
of centroidal Voronoi regions increased, the area of each
decreased, leading to more frequent task assignments, and the
probability of repeated coverage increased. The above two
situations resulted in the decrease of the coverage efficiency
of the swarm, but the decrease was not significant.

As can be seen in Figure 11(b), the search efficiency of
the swarm first increased and then decreased as the number
of centroidal Voronoi regions increased, reaching the highest

when the number was 50, as shown by the red solid line.
When the number of centroidal Voronoi regions was rela-
tively small, a large difference in the target probability still
existed in different areas of the sub-region. Thus the CVT of
the search region could not well reflect the distribution of the
targets, which resulted in the small effect of the task assign-
ment. When the number of centroidal Voronoi regions was
too large, the coverage efficiency of the swarm decreased,
and the Voronoi regions around the distribution centers were
too dense, causing the difference between Voronoi regions
to become insignificant, which weakened the effect of task
assignment on improving the global optimization of the
system.

In addition, the performance of the strategy of communi-
cation maintenance and collision avoidance was examined
in the simulations, with results as shown in Figures 11(c)
and 11(d), respectively. Under different numbers of centroidal
Voronoi regions, the algebraic connectivity of the communi-
cation topology, i.e., the second-smallest eigenvalue of the
Laplacian matrix, was always greater than zero during the
search. As can be seen in Figure 11(d), the minimum dis-
tance between the UAVs was always greater than the safety
distance during the search. The black dashed line represents
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the safety distance between the UAVs, and there is a risk
of collision if the minimum distance between the UAVs is
less than the safety distance. The above results show that
the strategy of communication maintenance and collision
avoidance was effective for the cooperative search problem
of UAVs addressed in this study.

V. CONCLUSION
Adistributed cooperative search algorithm for multiple UAVs
was proposed. The representation of the environment was
improved, and a task-assignment module added to the tradi-
tional cooperative search framework. Based on the proposed
algorithm, the global planning capability of the system was
improved, and the search efficiency of the UAV swarm in
scenarios with known distribution probabilities of targets was
enhanced. The proposed importance function contributed to
minimizing the search time of targets and reducing repeated
coverage. By dividing the search region using a centroidal
Voronoi tessellation into a series of sub-regions and assigning
these regions to the UAVs, the ‘‘short-sight’’ of the UAVs
caused by the limited prediction time domain in path planning
was improved. In the preplanning layer of the mission plan-
ning system (MPS), the introduction of arrival cost avoided
unnecessary consumption caused by UAVs blindly pursuing
high income, and the introduction of communication cost
improved the conflict betweenmission requirements and con-
nectivity maintenance. The minimum spanning tree strategy
was applied to path planning, providing a UAV with the
largest set of positions under the communication constraints.
Simulation results showed that the MPS could effectively
reduce the search time of targets. In addition, the optimal
number of centroidal Voronoi regions that optimizes the
search performance of the UAV swarm was given by the
Monte Carlo method.

Inadequacy still exists in this study. A gap exists between
the current hypothesis and actual scenarios. For example,
the movements of UAVs are not continuous, and the influence
of obstacles and ground threats on the control of the UAVs
was not considered. Although the coverage efficiency and
search efficiency of multiple UAVs were improved by the
proposed algorithm, it increased the computational burden of
UAVs. Improvements are planned for future work. In addi-
tion, the presence of false alarms in the detection results of
UAVs will be considered, and the confirmation of targets
requires multiple detections under this assumption.
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