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ABSTRACT Traditional Chinese Medicine (TCM) clinical informatization focuses on serving user-oriented
health knowledge and facilitating online diagnosis. Regularities are hidden in clinical knowledge play a
significant role in the improvement of the TCM informatization service. However, many regularities can
hardly be discovered because of specific data-challenges in TCM prescriptions at present. Therefore, in this
article, we propose an end-to-end model, called Semantic-aware Graph Convolutional Networks (SaGCN)
model, to learn the latent regularities in three steps: (1) We first construct a heterogeneous graph based
on prescriptions; (2) We stack Semantic-aware graph convolution to learn effective low-dimensional repre-
sentations of nodes by meta-graphs and self-attention; (3) With the learned representations, we can detect
regularities accurately by clustering and linked prediction. To the best of our knowledge, this is the first
study to use metagraph and graph convolutional networks for modeling TCM clinical data and diagnosis
prediction. Experimental results on three real datasets demonstrate SaGCN outperforms the state-of-the-art
models for clinical auxiliary diagnosis and treatment.

INDEX TERMS Tranditional Chinese medicine, clinical knowledge discovery, metagraph, graph
convolutional networks.

I. INTRODUCTION
Research on Traditional Chinese Medicine (TCM) clini-
cal informatization has changed from providing literature
resources to serving clinical auxiliary diagnosis and treat-
ment. Promoting the research of TCM informatization and
facilitating online diagnosis along with the development of
data science are essential tasks of the clinical informatization
of TCM. Prescriptions are important data accumulated over
a long period of time in the clinical diagnosis and treatment
of TCM. They contain considerable TCM knowledge and are
the data basis of the TCM clinical informatization. In TCM,
a clinical prescription is a group of herbs, symptoms, dis-
eases, and other clinical entities, recording a personalized
medical process for each patient. In clinical prescriptions,
the essence of regularities is multiple relations among dif-
ferent data entities, such as symptoms, herbs, and diseases.
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Discovering regularities plays a significant role in improving
TCM clinical diagnosis and treatment and the development
of novel prescriptions [1].

Previous works proposed many machine learning-based
methods that could discover regularities in TCM clinical
prescriptions. They discover the latent relations among the
herbs, symptoms, syndromes, and improve diagnosis to some
extent [1]–[4]. However, the above methods failed to compre-
hensively explain how regularities are generated using mul-
tiple relations among different TCM entities or less consider
domain knowledge of TCM well.

Actually, we should solve the below challenges to address
shortcomings of the prior methods and support diagno-
sis decision-making. (1)Random structure of data. The
real-world TCMclinical prescriptions are usually represented
by natural languages and in free-text formats. To use entities
in clinical prescription, we should first model them well from
the text. (2)Poor organization of data. The prescriptions
have their own way of organizing various clinical entities
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(e.g., herbs, symptoms, syndromes, and diseases), which are
often put in a disordered way. For example, a herb in the front
of the prescription may be correlated with the very last herb
instead of its surroundings. Implementing feature engineering
in a large number of semantic free-text prescriptions is a
challenging and costly task. (3)The sparsity of data. The
personalized views of TCM clinicians also influence datasets.
For example, since TCM clinicians’ prescribing habits often
converge to their individual experiences, some herbs or symp-
toms would not be recorded in prescriptions. This may result
in much difference and sparsity in recorded prescriptions of
clinical data.

To tackle all the aforementioned challenges, we propose a
graph convolutional networks based graph embedding model
Semantic-aware Graph Convolutional Networks (SaGCN).
In particular, we first construct a large graph from TCM
clinical prescriptions, in which herbs, symptoms, syndromes,
and diseases are defined as nodes. We then turn the massive
free-text prescriptions analysis problem into a large graph
analysis problem. To learn multiple relations in prescriptions,
we define the TCM graph as a heterogeneous information
network (HIN). HIN with various types of nodes and links
has the superior ability in modeling heterogeneous data and
learning the different semantics among nodes [5], and offers
the advantage of straightforward handling of missing values.
So, the TCM graph can be profoundly beneficial to better
express the rich information of clinical entities. However,
to analyze HIN is a complex problem. An effective approach
to solve this problem is to utilize Graph Representation
Learning (GRL) that uses deep learning and nonlinear dimen-
sionality to encode graph structure into low-dimensional
embeddings [6]. One of the main problems of GRL in HIN
is semantic search while the central problem of GRL in
the TCM graphs is how to incorporate TCM knowledge
into the embedding model. Meta-graphs can capture vari-
ous semantics among nodes on the graph [7]. We propose
a meta-graph and attention mechanism-based approach to
solve this problem. Next, we incorporate the semantics of the
TCM graph into a graph convolutional networks (GCN) to
obtain the node embedding of the TCM graph. After that,
we optimize the overall model by using backpropagation
and employ traditional machine learning algorithms to com-
plete analysis for TCM clinical diagnoses supporting. We
evaluate five state-of-the-art approaches and our proposed
model SaGCN on three real-world TCM medical datasets
for prediction and diagnostic tasks. The results show that our
proposed model SaGCN outperforms other compared graph
convolution-based models. Using 9000+ clinical lung tumor
prescriptions, we also conduct two case studies, prescriptions
prediction and disease prediction, to qualitatively reveal the
robust power of SaGCN in capturing relation in TCM clinical
data and reflect the clinical diagnostic patterns in TCM.
To summarize, our main contributions are as follows:
• To the best of our knowledge, this is the first attempt to
take advantage of HIN and GCN with self-attention for
clinical auxiliary diagnosis and treatment task.

• We jointly model the clinical entities (herbs, symptoms,
syndromes, and diseases) from clinical prescriptions as
a large graph to provide effective and safe diagnosis
prediction.

• We propose SaGCN, an accurate and robust learning
model based on meta-graph and semantic-aware convo-
lution-basedGCN for TCMclinical prescriptions, which
captures the multi-semantics and learns heterogeneous
node embedding tailored for TCM diagnosis prediction
tasks.

• Wecompare several state-of-the-art models on real TCM
data qualitatively and quantitatively to demonstrate the
effectiveness and robustness of SaGCN.

II. RELATED WORK
A. TCM DIAGNOSIS PREDICTION
Minning over medical, health, or clinical data is consid-
ered the most challenging domain for data mining [8]. With
the rapid development of machine learning, a large amount
of work has been focused on finding out various kinds of
hidden knowledge relations such as symptom and symp-
tom, symptom and syndrome, and syndrome and disease for
improving the quality of clinical diagnosis and healthcare via
text mining [9]. Chen et al. [2] presented a HIN-based soft
clustering approach to discover the categories of formulas.
Li et al. [3] utilized seq2seq model with coverage mecha-
nism to generate TCM prescription. Yao et al. [1] developed
a novel topic model to detect the relation between herbs
and symptoms and characterized the generative process of
prescriptions. Although these models are effective in TCM
exploration, they are limited to the traditional data mining
methods or the characteristics of data. Compared with all
the aforementioned NLP-based predictive methods, the pro-
posed framework SaGCN has the following advantages:
(1) It leverages the powerful data representation advantages
to overcome the drawback of TCM clinical prescriptions;
(2) It captures the semantics of TCM clinical prescriptions
without loss of generality and simplicity, which takes a good
predictive performance.

B. HIN AND METAGRAPH
HIN has attracted much attention in the past decade because
of its capability of representing the rich type information,
as well as the accompanying wide applications such as per-
sonalized recommendation [10], clustering [11], and outlier
detection [12]. Exploring semantics is the foundation step
of all HIN-based tasks [13]. Although meta paths have been
shown to be useful in different applications, they can only
express simple relations between source and target entities
[14]. Previous works [10], [11], [15], [16] focus on using
meta-path [17] to preserve the semantics in HIN. Recently
many works have been adopting meta-graph to preserve
the semantics in HIN, which measures semantics better
than meta-path. For example, Huang et al. [14] proposed
meta structure, a directed acyclic graph of entity types with
edge types connecting in between, to measure the proximity
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between entities. Fan et al. [18] presented a meta-graph based
embeddingmodel to depict the relatedness over files. Inspired
by these works, we utilize meta-graph to incorporate more
rich semantics into our GCN model.

C. GRAPH CONVOLUTIONAL NETWORKS
GCN is an extension of convolutional neural network for
processing the graph data, which has received growing atten-
tions recently. GCN has been successfully used in many tasks
[19]–[23], such as neural recommendation [19], event detec-
tion [20], machine translation [21] and healthcare [22], [23].
Focusing on healthcare, most existing works aim to learn
relation in biomedical networks for prediction tasks, such
as medicine interaction prediction. In these tasks, the high-
level graph representations help the final predictions. GCN
has revolutionized the field of graph representation learning
through effectively learned node embeddings, and achieved
state-of-the-art results for many tasks [24]. Fout et al. [23]
stacked multiple layers of convolution and learned effective
latent representations that integrate information across the
graph to predict protein interface. Sankar et al. [25] presented
a novel spatial convolution operation to capture the key prop-
erties of local connectivity and translation invariance, using
high order connection patterns and attention mechanism.

Inspired by previous works [23], [25], we employ
heterogeneous graph representation learning based on
meta-graph and GCN alongside with the joint learning frame-
work to learn TCM clinical entities representations and their
relations.

III. METHODOLOGY
A. PROBLEM FORMULATION
Definition 1 (TCM Clinical Prescriptions and Diagnosis

Prediction): In TCM clinical settings, TCM doctors first
record symptoms that they observe in their patients. Further-
more, they aim to determine the patient’s syndrome accord-
ing to the patient’s symptoms. The doctors then prescribe
herbs combination based on the patient’s disease profile.
These herbs, symptoms, syndromes, and diseases are cap-
tured and described as information entities such as ‘‘red
ginseng’’ and ‘‘apricot kernel’’ in clinical prescriptions. Each
full TCM clinical prescription of each patient can be rep-
resented as a word set of multivariate observations: R(k) =
h(k), s(k), ŝ(k), d (k), k ∈ 1, 2, · · · ,K where h(k) is the herbs
combination, s(k) is the group of symptom, ŝ(k) is a syndrome,
d (k) is a disease and K is the total number of prescrip-
tions. Prescribing herbs based on symptoms and discovering
new herbs for disease(i.e. drug repositioning) are valuable
diagnosis prediction. These prediction can be formulated as:

s
f
−→ d , and s

f
−→ h where f is a mapping function.

Definition 2 (TCM Graph): TCM prescriptions are mod-
eled as a heterogeneous graph G = (V ,E) where V and E
refer to the set of nodes and links respectively. Each node v ∈
V is mapped to a specifc clinical entityO (e.g. herb, symptom,
syndrome or disease) by an entity type mapping function
φ : V 7→ O. And, each link e = (vi, vj) ∈ E is mapped to type

FIGURE 1. Structures of TCM graph. Different icons and line styles display
different types of TCM nodes and links, respectively, which are closely
correlated with one another.

L by link type mapping function ϕ : E 7→ L where the two
nodes vi, vj belong to two different types. Given TCM graph,
its schema TG is a directed graph defined over entity types O
and link types L, i.e. TG = (O,L). The schema expresses all
allowable link types between entity types [14]. Fig. 1 shows
the abstract schema of the network illustrating node types and
basic links.
Definition 3 (TCM Metagraph): A TCM metagraph is

defined as g = (V́ , É, vs, vt ) defined on the given TCM graph
schema TG = (O,L). g has only a single source node vs and
single target node vt . V́ is a set of nodes and É is a set of
links satisfying two constraints: (1) ∀vi ∈ V́ , ∃φ(vi) ∈ O;
(2) ∀(vi, vj) ∈ É , ∃ϕ(φ(vi), φ(vj)) ∈ L. Fig. 2(a) shows the
abstract schema of the network illustrating node types and
basic links.
Definition 4 (Instance of TCM Metagraph): Given TCM

graph and metgraph, an instance of metagraph with target is a
subgraph ofG, denoted by gv = (V́g, Ég) such that there exists
a mapping for gv, ψ :V́g 7→ V́ satisfying two constraints:
(1) ∀v ∈ V́ , ∃φ(v) = ψ(v); (2) ∀v, u ∈ V́ , (v, u) ∈ (/∈
)É, ∃(@)(ψ(v), ψ(u)) ∈ (/∈)É .

B. SEMANTIC-AWARE
TCM clinical prescriptions contain rich TCM domain knowl-
edge. For example, the jun (emperor) herbs treat the main
cause or primary symptoms of a disease, and the zuo (assis-
tant) herbs are used to improve the effects of jun and chen,
and to counteract the toxic or side effects of these herbs [1].
In Fig. 2(b), a disease D1 connects two herbs H1 and H4 via
the samemeta-graphMs3.H1 andH4may play a different role
for the disease. How to distinguish the semantics of two nodes
in this meta-graph comprehensively? In this article, wemodel
this issue as a weight measure.We employ Point-wiseMutual
Information (PMI) and degree to develop a structure-aware
approach.

To utilize the global characteristics of the relation between
two nodes, we use PMI with a constant size sliding window
on all documents in the prescriptions to gather co-occurrence
statistics of nodes. The weight of the link between node i and
node j can be defined as follows:

ρij = log
]Count ∗ Count(i, j)
Count(i) ∗ Count(j)

(1)
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FIGURE 2. (a) Sample metagraph in TCM graph. Node Types: Herb (H), Symptom (S), Syndrome (Ŝ) and Disease (D);
(b) Example subgraph with instances of Ms3 for target disease D.

where Count(i) and Count(j) are the number of sliding
windows in all prescriptions that contain entity i and j respec-
tively, Count(i, j) is the number of sliding windows that con-
tain both entity i and entity j, and ]Count is the total number
of slidingwindows in all prescriptions. A high ρ value implies
a high semantic correlation of node in the TCM graph, while
a low ρ value indicates little or no semantic correlation in the
graph. Connecting to many nodes, however, a node (e.g., zuo
herb) just plays a minor role in the TCM graph. The degree
of nodes can well reflect the structures of graph [26]. So,
to solve this problem, we define a degree based approach to
optimize (1) as follows:

ρij =
ρij∑|V |

k=1 ρik
∑|V |

k=1 ρjk

(2)

where |V | is number of nodes in TCM graph, ρik and ρjk
are the the values of PMI between node k and i, j respec-
tively. Next, we explore the semantic characteristics of a
meta-graph’s instance. Different walk paths of a meta-graph
encode different semantics for TCM knowledge. In Fig. 2(b),
a disease S2 connects two herbs H1 and H2 via the same
meta-graph Ms1, the H1 also connects with S1 so that it may
be a zuo (assistant) herb. So, the two herb nodes H1 and H2
have different relevance with symptom node S2. Formally,
because the attention mechanism aims to focus on the most
pertinent information, and if an instance of meta-graph ms
with source nodes vs and target node vt is given, we define the
self-attention-based approach to preserve different semantics
between walk paths in ms as follows:

al = softmax(s(k)l (vs, vt ) · wl ·
1
L

L∑
i=1

s(k)i (vs, vt )),

s(k)l (vs, vt ) = s(vs, vt |[1 : |l|]) =
ρsm

]ρs
× s(vm, vt |[2 : |l|])

(3)

where wl is a parameter mapping between the context seman-
tics of all walk path L and each semantics s(k)l (vs, vt ) in ms,
which is learned as part of the training process. |l| is a length
of a walk path of l, L is number of walk path in ms. ρsm is
the weight of link between node vs and node vm, and ]ρs
is the sum of weights among vs and its neighboring nodes.

The value of ρsm/]ρs is the transition probability between
node vs and node vm.

C. SEMANTIC MATRIX
A semantic matrix S(k) is a similarity matrix to encode the
relevance of nodes in each unique semantic role over all
instances of Msk in the graph G. S(k)ij is the transition proba-
bility between souce node vi and target node vj in an instance
of the Msk . Formally, s(k)ij can be formulated as an iterative
function:

s(k)ij = s(k)(vi, vj|gvi→vj ) (4)

where g is an instance of Msk . s(k)(vi, vj|gvi→vj ) can be com-
puted by the aggregation of all value of s(k)l (vs, vt ) in (3). For
complex meta-graphs, computing S(k)ij is very complicated
because of the various ways to pass through the meta-graph
[27]. For Ms1 in Fig. 2(a), there is only one path to pass
through Ms1, and the transition probability between source
node and target node can be calculated by Eq.3. For Ms3
in Fig. 2(a), however, there are two ways to pass through the
meta-graph, which are H − S1 − D and H − S2 − D. Note
that S1 and S2 represent the different entity type symptoms in
the TCM graph. InMs3, the path H −S1−Dmeans that herb
can cure a symptom of a disease, so that herb and disease
have some similarities. Similarly, in the path H − S2 − D,
herb and disease have some similarities as well. Therefore,
we should define the logic of similarity and semantics when
there are multiple ways passing from the source nodeH to the
target nodeD in the meta-graph. Inspired by [27], we propose
a approach to obtain matrix S(k). Algorithm(1) depicts the
example of the similarity-based semantic matrix operations
for Ms3 where � is the Hadamard product, and the elements
of matrix T is the transition probability between source node
and target node in the current path, which is calculated by
Eq.4, and W is the weight matrix consisting of the elements
al in Eq.3. Note that this algorithm is not limited to Ms3.
Any meta-graph with complex paths can be computed by
Hadamard product and multiplication on the corresponding
matrixes. We then can get different semantics between source
node and target node by computing semantic matrix for all
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Algorithm 1 Metagraph Based Computing Semantic for
Ms3
Input: TCM graph G = (V ,E)
Output: THD
THD1 matrix
computation:THD1 ←THS1×TS1D×W1;
THD2 matrix
computation:THD2 ←THS2×TS2D×W2;
THD matrix computation: THD←THD1×THD2 ;

meta-graphs denoted by {Ms1,Ms2,Ms3, · · · ,Msk} in TCM
graph.

D. SEMANTIC-BASED CONVOLUTION
In this section, we consider learning representation for a
specific node type via spatial convolution operation, which
preserves the spatial locality and precise semantics.

Specifically, we provide a meta-graphMs with target node
vi ∈ V as input. Convolution, intrinsically, is an aggregation
operation between local inputs and filters [28]. In this article,
filters should be in a position to aggregate local inputs with
diverse topological structures and semantics. A semantic fil-
ter for Ms is defined by a weight matrix W (t) for target node
vi and a weight matrix W (N ) for the sources of target node
in Ms, and each weight in W (N ) differentiates the semantic
roles of source nodes in the receptive field. Our objective is
to design a semantic convolution kernel that can be applied to
heterogeneous graphswith spatial locality and rich semantics.
To summarize, we would like to learn a mapping function at
each node in the graph, which has the form:

yi = σW (xi, {xs1 , xs2 , · · · , xsk }) (5)

where {xs1 , xs2 , · · · , xsk } are the source nodes of node vi that
defines the receptive field of the convolution; σ is a non-linear
activation function, and W is the filter as learned parame-
ters of the function. For the target node vi, its spatial local-
ity and semantics are captured by relation structure-aware.
Accordingly, we define semantic convolution as follows:

yi = σ (W (t)xi +
1
|Nk |

∑
vj∈Nk

W (N )Sijxj + b) (6)

where Nk is the set of source nodes of node vi, and b is is a
vector of biases.

E. COMBINING MULTI-SEMANTIC
Given multiple semantics with certain characteristic meta-
graphs, a good proximity measure must account for different
semantics. Since different semantics can vary in their impor-
tance for the graph representation, we face the challenge of
appropriately weighting the extracted proximity at the end of
each semantics for effective feature propagation. To tackle
this challenge, we leverage attention mechanism to help learn
stable and robust node embedding of graph. Inspired by the
recent progress of the self-attention for machine translation
[29], we propose a semantic-attention model to weight the

importance of different semantics for each node dynamically.

zi =
K∑
k=1

a(k,i) · y
(k)
i (7)

where zi is defined as the weighted summation of every
semantic vectors y(k)i for node vi, k = 1, 2, · · · ,K , cor-
responding to the semantic index for each node. For each
semantic vector y(k)i of node vi, we compute a positive weight
a(k,i) which can be interpreted as the probability that y(k)i is
assigned by node vi. We define the weight of semantics k for
the node vi using a softmax function as follows:

a(k,i) =
exp(λ(k,i))∑K
k=1 exp(λ(k,i))

,

λ(k,i) = y(k)i
>

· H · y(s,i),

y(s,i) =
1
K

K∑
k=1

y(k)i (8)

where y(s,i) is the average of different semantic vectors, which
can capture the global context of the semantic information.H
is a vector mapping between the global context embedding
y(s,i) and each semantic vector y(k)i , which is learned as part
of the training process. By introducing an attentive vector
y(k)i , we compute the relevance of each semantic vector to
the node vi. If y

(k)
i and y(s,i) have a large dot product, this

node believes that semantic k is an informative semantics. For
example, the weight of semantic k for this nodewill be largely
based on the definition.

Once we obtain the weighted node vector representation
zi, an objective function is used to learn a low-dimensional
node embedding. We use negative samples based hinge loss
to minimize the reconstruction error:

J (θ ) =
J∑
j=1

max(0, 1− zixi + zinj) (9)

where nj is the negative node, which has no connection
with the target node in any meta-graph. J is the times of
node sampling, and θ is the set of parameters to be solved.
In addition, we adopt the asynchronous stochastic gradient
descent (ASGD) and the backpropagation algorithm to opti-
mize the objective function. We also use dropout to pre-
vent over-fitting. A multi-semantic convolutional layer is
illustrated in Fig. 3.

F. DIAGNOSIS PREDICTION
We obtain node embedding (e.g., herb, symptom, and dis-
ease) using model SaGCN. These node embeddings can be
further extended to diagnosis tasks according to specific data
and problems. For example, given a set of herbs, the incom-
patible herb pair can be summarized in a latent embedding
space by similarity calculation:

f (h1, h2) =

√√√√ d∑
i=1

(h1i − h2i)2 (10)
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FIGURE 3. An overview of the proposed SaGCN model.

where h1, h2 are the different herbs, and d is the dimen-
sionality of herb in embedding space. To optimize the afore-
mentioned model, we set the goal is to minimize J as a
function of θ . In addition, we use the cross-entropy between
the ground truth visit f and the predicted visit f to calculate
the loss for each prescription from all the herb-pair as follows:

L(h1, h2, · · · , hm; f1, f2, · · · , fm)

= −
1

m− 1

m−1∑
i=1

(f i log(fi)+ (1− f i) log(1− fi)) (11)

IV. EXPERIMENTS
In this section, we evaluate SaGCN on three real-world TCM
datasets. First, it is evaluated under node clustering and link
prediction tasks. Then its TCM diagnosis prediction perfor-
mance is compared to various state-of-the-art TCMpredictive
models. Finally, it is qualitatively evaluated through a case
study.

A. DATASET AND CONFIGURATIONS
We use three TCM datasets in our evaluation.
• TCMRel [30]: This is a candidate relation graph
composed of four node types: herbs (H), formula (F),
syndrome (Ŝ) and disease (D), connected by five link
types: F-D, F-Ŝ, H-D, H-Ŝ, D-Ŝ. We use a subset with
H, D, Ŝ, and their correlations.

• CMD1: We use chinese medical information to create
a graph with four node types: herbs (H), symptom (S),
syndrome (Ŝ), disease (D) linked by six fundamental
types: H-D, H-S, H-Ŝ, D-S, D-Ŝ, S-Ŝ.

• CLLT: We construct the clinical graph with three node
types: herb (H), symptom (S), disease D) and their
correlations from 7,000 clinical prescriptions for lung
tumor.

1http://cmekg.pcl.ac.cn/

To validate the predictive performance of the proposed
SaGCN, we compare it with the following state-of-the-art
approaches:
• ASPEm [15] is a node embedding learning for HIN,
which observes multiple aspects existing in HIN and
extends the skip-gram model to obtain the graph
representation.

• GWCN [31] is a recently proposed spectral GCN, which
leverages wavelet transform to implement efficient
convolution on graph data.

• MotifCNN [25] is a novel spatial convolution opera-
tion to model the key properties of heterogeneous local
connectivity and translation invariance, using high-order
connection patterns.

• HeteroMed [5] is capable of capturing informative rela-
tion for the diagnosis goal and uses the best relation sam-
pling strategy for learning clinical event representations
for EHR data.

• TM2P [1] is a novel prescription topic model incorpo-
rated TCM knowledge to discover regularities on the
herbs composition and corresponding symptoms.

B. SIMILAR DISCOVERY AND VISUALIZATION
We conduct a series of comparative experiments of node
clustering to simulate the clinical analysis and detect the
combination of herbs curing a syndrome. Getting the node
embedding, we select a set of syndrome (Ŝ) nodes, which are
assigned more labels from a TCM doctor selected set and we
use their representations as feature vectors to learn and test
a clustering algorithm Density-Based Spatial Clustering of
Applications with Noise (DBSCAN). We use accuracy and
normalized mutual information (NMI) as metrics for evalu-
ation. NMI is often employed to determine the gap between
the results of division and the true partition.

In fact, this clustering step can select groups without label
according to specific data. For clinical diagnostic prediction

8802 VOLUME 9, 2021



C. Ruan et al.: SaGCNs for Clinical Auxiliary Diagnosis and Treatment of TCM

TABLE 1. Performance Evaluation of Similar Discovery.

task, we obtain groups as candidate sets in order to reduce the
number of node relation to be predicted.

Table 1 shows the performance of all the approaches on all
the three real-world TCM datasets. We can observe that our
proposed approache SaGCN achieves the best performance
compared with all the baselines in terms of the values of
all the measures. On all datasets, the overall performance
of traditional topic model based on approache TM2P is
worse than that of the deep learning based approaches, and
SaGCN obtains the highest score among all baselines with
respect to accuracy and NMI. For deep learning baselines,
ASPEm, MotifCNN and HeteroMed achieved higher perfor-
mance than GWCN on datasets TCMRel and CMD because
GWCN can not capture rich semantic proximity in large
graphwith various nodes. But on dataset CLLTwith less node
types, GWCN performanced better compared with ASPEm
and HeteroMed because its spectral convolution can capture
the structure of graph effectively. As for the representation
learning model for heterogeneous graph, the performance of
MotifCNN is close to that of the winner NMI on all datasets,
while ASPEm and HeteroMed perform similarly. To intu-
itively illustrate the significance of node clustering for clini-
cal diagnostic prediction, we give an illustrative visualization
of the herbs clustering. We use clustering to predicte relation
among herbs based on learned node embeding. We randomly
selected herbs, and use k-means to obtain the herb-clusters.
We used FVIC [32] to test results. In addition, we asked two
TCM doctors to verify the clusters, they confirmed that the
herbs in the same cluster had the same function or belonged
to the frequently occurring herb-pairs, which basically con-
formed to the rule of clinical medication. Fig 4 shows the
visualization results. We can see that our model SaGCN
distinguishes different herbs much better than another node
embedding models, which also shows the power of SaGCN
on the task of unsupervised learning.

C. RELEVENT SYMPTOM-HERB RELATION DISCOVERY
In this article, we model the relation discovery problem
as a link prediction that aims to rank node pairs in terms

of their relevancy, which may lead to a potential linkage
between them. Using the symptom and herb distributions
of different syndromes of diseases from candidate sets,
we can further derive symptom-herb relation. Specifically,
given a TCM graph, we first generate a subgraph by select-
ing a herb-symptom class and randomly remove a certain
fraction (30% in our experiments) of links of the selected
class as missing links. Since the logistic regression con-
verges faster, we use it to predict the missing edges between
herb–symptoms pairs as testing instances. We then useMean
Average Precision (MAP) as metric for evaluation.

From the main results on link prediction presented
in Table 2, we have observed consistent with the clustering
tasks that all the graph embedding methods perform bet-
ter performance than the topic model based TM2P without
considering type information. For graph embedding meth-
ods, SaGCN outperforms all other models. MotifCNN and
GWCN achieve better results than ASPEm and HeteroMed.
GWCN has superior performance than ASPEm and Het-
eroMed, which preserves the important structural information
in the graph with fewer node types. Overall, we can see that
SaGCN outperforms all the other methods in the task of link
prediction.

In addition, We show the herbs with the highest relation
with two test symptoms respectively in Table 3. Each rank
is the conditional probability of herb given a test symptom.
We can see that our model not only discovered herbs for
highly frequent symptoms like ‘‘bitter figwort’’ for symptom
‘‘sore throat’’ but also found important infrequent herbs for
this symptoms like ‘‘oroxylum indicum’’. In fact, ‘‘oroxylum
indicum’’ can relieve asthma which has been verified in TCM
literature ‘‘Compendium of Materia Medica’’.

D. CASE STUDY FOR DIAGNOSIS PREDICTION
We choose clinical prescriptions from test datasets based on
the consideration of demonstrating the model effect on more
challenging cases: there are complex herbs composition and
corresponding symptoms. To examine the potential of this
direction, we use 75% prescriptions as training data and the
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FIGURE 4. Comparison of herb groups visualization using unsupervised node embeddings on TCMRel.

TABLE 2. Performance Evaluation of herb-symptom link prediction.

remaining 25% as test data. We compare the results of dis-
ease and treatment prediction to the state-of-the-art predictive
models. We employ three standard metrics commonly used to
evaluate this prediction task: F1 score.

We compute the group of symptoms given a disease via soft
clustering. We then use the top N symptoms with the largest
similarity as the recommended symptoms. Fig. 5(a) gives
the performance of each model. Our model SaGCN achieves

TABLE 3. The example of Top-5 herbs given a symptom.

a significant increase generally. Numerically, our model
SaGCN achieves macro-F1 and micro-of F1 of respectively,
which is much higher than that of HeteroMed and TM2P.
Because they require the number of contexts, HeteroMed and
TM2P are limited to the missing value. Our model SaGCN
is not hampered by this restriction. In addition to supporting
treatment, our model can also recommend prescriptions as
references for doctors. We obtain a strong relation among
herbs and symptoms for a specific disease using link pre-
diction. From Fig. 5(b), we can see that our model SaGCN
achieves a higher macro-F1 than HeteroMed and TM2P. This
suggests that SaGCN can recover the herbs that the doctor
actually prescribed to a disease, while also predict many
herbs that were not prescribed before. HeteroMed achieves
a relatively low F1, and TM2P performances much worse.
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FIGURE 5. Comparison among our model SaGCN, HeteroMed and TM2P in disease and treatment
prediction.

TABLE 4. An example of the comparison between a diagnosis prediction from our model MsGCN and that from TCM doctor.

To examine this in detail, we compare the results predicted
by using our model SaGCN with the herbs prescribed by the
doctors diagnosing the disease, and the comparing results are
shown in Table 4. Given test symptoms, we can see that of
the eighteen prescription herbs prescribed by doctors, and
our model prescribed fifteen identical prescription herbs. Our
model also recommended seven herbs not prescribed by the
doctor. A doctor verified that these herbs are all known to
be associated with spleen deficiency. For example, ‘‘caulis
bambusae in taeniam’’ can replace ‘‘aster tataricus’’ to cure
the symptom ‘‘cough’’. At the bottom of the table, we give
the results of the quantitative validation for match degree
between the herbs given by the doctor and that generated by
SaGCN.

E. COMPUTATIONAL EFFICIENCY
We report running times on an Inter(R) Core(TM) i7-7700HQ
CPU @2.80GHz with 8 cores and 64GB memory.

1) STABILITY
We compare the convergence rates of different graph repre-
sentation models by depicting the validation set loss in Fig 6.

Overall, SaGCN achieves faster convergence and lower error
in comparison to other models on all datasets. We think the
reason is that the SaGCN rationally combines more semantics
from all types of entities, which helps it to achieve steady
performance.

2) SCALABILITY
In order to illustrate its scalability, we apply SaGCN to
learn node representation on TCM datasets. We compute
the average runtime with increasing sizes from 100 to
1,000,000 nodes and average degree of 10. In Fig 6(a) we
empirically observe that SaGCN scales linearly with increase
in number of nodes generating representations for onemillion
nodes in less than three hours. In order to speed up training
the deep model, we use GCN with negative sampling. The
sampling procedure comprises of preprocessing for comput-
ing transition probabilities for our semantic. The optimization
phase is made efficient using negative sampling. In addi-
tion, we recorded the average runtime of each heterogeneous
graph representation model along with the increasing nodes
on TCMRel. Fig 6(b) shows that SaGCN achieved lower
average runtime in comparison to other heterogeneous graph
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FIGURE 6. Comparison of validation loss w.r.t. epochs for all graph representation model.

FIGURE 7. (a) Scalability test of MsGCN on TCM graph with an average degree of 10 and
(b) scalability comparison of heterogeneous graph representation model.

representation models since it leverages relevant semantics
and negative sampling simultaneously.

V. CONCLUSION
In this article, we study an approach to discover regularities in
prescriptions, and we propose a model of clinical entities of
prescriptions as a heterogeneous TCMgraph to address short-
comings of previous methods pursuing the same goals. Using
meta-graph and self-attention, our proposed model SaGCN is
capable of capturing semantics for HIN. SaGCN effectively
fuses semantics from multiple meta-graphs to learn clini-
cal entities embedding through novel GCN. Experimental
results show that SaGCN can achieve significantly better
performance in diagnosis task and prove the effectiveness
and robustness of SaGCN. The model is helpful for clinical
research and practice. Future work includes incorporating
more diverse types of clinical information such as herbal
dosage, and more domain knowledge such as syndrome cate-
gory as prior knowledge into ourmodel. Evaluating herb roles
inferred by our model is another interesting task we are going
to investigate.
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