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ABSTRACT In this article, an adaptive Proportion integration (PI) controller for varying the output
voltage of a proton exchange membrane fuel cell (PEMFC) is proposed. The PI controller operates on the
basis of ambient intelligence large-scale deep reinforcement learning. It functions as a coefficient tuner
based on an ambient intelligence exploration multi-delay deep deterministic policy gradient (AIEM-DDPG)
algorithm. This algorithm is an improvement on the original deep deterministic police gradient (DDPG)
algorithm, which incorporates ambient intelligence exploration. The DDPG algorithm serves as the core,
and the AIEM-DDPG algorithm runs on a variety of deep reinforcement learning algorithms, including
soft actor-critic (SAC), deep deterministic policy gradient (DDPG), proximal policy optimization (PPO)
and double deep Q-network (DDQN) algorithms, to attain distributed exploration in the environment.
In addition, a classified priority experience replay mechanism is introduced to improve the exploration
efficiency. Clipping multi-Q learning, policy delayed updating, target policy smooth regularization and
other methods are utilized to solve the problem of Q-value overestimation. A model-free algorithm with
good global searching ability and optimization speed is demonstrated. Simulation results show that the
AIEM-DDPG adaptive PI controller attains better robustness and adaptability, as well as a good control
effect.

INDEX TERMS Distributed deep reinforcement learning, ambient intelligence exploration multi-delay
deep deterministic policy gradient, proton exchange membrane fuel cell, air mass flow control, intelligent
controller.

I. INTRODUCTION
In recognition of the serious environmental pollution caused
by conventional fuels, many countries have invested into
R&D on new energy fuels [1], [2]. The proton exchange
membrane fuel cell (PEMFC) is a device that converts the
chemical energy generated by hydrogen and oxygen into
electric energy, with no harmful substances discharged. The
PEMFC is characterized by higher generating efficiency
and specific energy than those of ordinary lithium batteries,
making it an ideal power generation candidate. Due to its
characteristics of cleanliness, efficiency and low working
temperature, PEMFCs could be used in a wide range of
applications in the foreseeable future [3], [4].

The associate editor coordinating the review of this manuscript and
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According to the electrochemical reaction principle of the
PEMFC, the output voltage will change in accordance with
the change of load. As a PEMFC mainly uses hydrogen and
oxygen as the reactive gases, and generates electric energy via
an electrochemical reaction, its output voltage is affected by
hydrogen flow, and thus a reasonable hydrogen flow control
is required for stabilizing the output voltage.

The PEMFC is a nonlinear system which has multiple
inputs and outputs. In recent years, scholars have conducted
a number of studies into PEMFC flow control.

In [5], [6], the authors proposed and modeled an air supply
system for a PEMFC and proposed an optimal feedback
control method for air flow control. In [7], the authors elab-
orated on the method in [5], [6] by developing a robust servo
control method. In [8], the authors proposed a coordinated
control method for attenuating cathode flow and pressure in
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a small PEMFC. In [9], the authors designed a filter based
on the control method in [5], [6], and demonstrated the effec-
tiveness of its control system [9]. However, their feedback
control method fails to take into account certain character-
istics of hybrid fuel cell vehicles. Some control methods
based on model predictive control are presented in [10]–[16],
including model predictive control (MPC) [10], [11], internal
model control (IMC) [12], model-based adaptive control [13],
nonlinear model predictive control (NMPC) [14], nonlin-
ear multivariable control [15], time delay control [16], and
generalized model control [17].

In addition, many linear controllers gas control within
the PEMFC have been proposed. A linear quadratic Gaus-
sian (LQG) control method proposed in [18]. In [19],
the authors have developed a multivariable linear quadratic
regulator control (LQR) coupled with feed-forward control.
In [20], the authors have proposed a linear parameter vary-
ing (LPV) control method. The above linear controls are able
to control a PEMFC to a certain extent but cannot address the
nonlinearity of that PEMFC.

A large number of sliding-mode controls for PEMFC
flow control have been developed. In [20], the authors have
demonstrated a one-order sliding mode control, while a high-
order ultra-twisted sliding mode control is proposed in [22].
In [23], the authors present a high order sliding mode control
combing observer. However, due to the high-frequency dis-
continuous switching of a sliding-mode controller, the actual
controlling effect of such a system is inconsistent over time.
A sliding mode controller produces adverse ‘‘buffeting’’ to
the controlled object, which makes this method unsuitable for
precise control.

An adaptive control algorithm can automatically adjust
the control policy in accordance with the real-time state of
the system; thus, such algorithms are widely used in the
field of PEMFC control. Several researchers have proposed
a variety of adaptive control algorithms: In [24], the authors
proposed a data-driven adaptive control method; In [25],
the authors have developed an adaptive control method based
on parameter identification and pole assignment; an adap-
tive extremum search control method have proposed in [26];
In [27], the authors have produced a PID-neural network
control method; In [28], the authors have proposed an interval
type-2 fuzzy-PID control method; and, In [29], the authors
have proposed a fuzzy adaptive PID control method.

PID and its associated algorithms have been widely
used in fuel cell control and other practical engineering
applications due to their simple control policy and good
robustness. A number of PID control methods have been
proposed, including neural PID control [30], a fuzzy PID
control [31], an algorithm combining PID and fuzzy con-
trol [32], a feedback linearization control policy (for trans-
forming a nonlinear control model into a linear model) [33],
and a fraction-order PID (FOPID) control based on nonlinear
observer with unknown input [34].

These proposed PIDs and associated algorithms can
achieve better PEMFC control, but they cannot be adapted

easily to address nonlinearity in the PEMFC [35]. An adaptive
algorithm has superior robustness and adaptability, but often
has an excessively complex control policy. In order to over-
come such defects and obtain better control performance, it is
necessary to choose an adaptive algorithm with simple con-
trol policy, better identification and decision-making ability.

Deep deterministic policy gradient (DDPG) in deep
reinforcement learning is a model-free method [36]–[38],
which combines the perception of deep learning with the
decision-making ability of reinforcement learning, and which
has excellent self-adaptive ability, thus achieving timely
response and accurate control. In contrast with conventional
control methods, DDPG develops control policies through
full interaction with the environment [39], [40] without iden-
tifying the model; this function makes DDPG compatible
with a nonlinear control environment. Nevertheless, although
DDPG is applied in various control fields [41]–[43], the algo-
rithm is affected by the common problems associated with
many deep reinforcement learning algorithms: it requires
long time off-line training before practical application, and
it cannot be generalized to every environment when training
is insufficient; these lead to poor robustness whenever this
algorithm is employed for decision-making. Therefore, this
algorithm is seldom directly employed as a control algorithm
in the control of the PEMFC, which in turn requires precise
control. As mentioned above, an improved DDPG algorithm,
and an output voltage adaptive PI controller (tuner) based
on the AIEM-DDPG algorithm, are proposed in this article.
This controller capitalizes on the excellent sensing ability and
decision-making ability of AIEM-DDPG algorithm. It can
actively regulate the coefficients of PID control according to
the system state, so that it can regulate the hydrogen flow of
anode in real time in order to control the output voltage.

This article makes two unique contributions to the field:
1. An adaptive PI controller (of output voltage) based

on deep reinforcement learning is proposed. The controller
employs the deep reinforcement learning algorithm as the
tuner, which regulates the output voltage of the PI controller
by adjusting the coefficient of the PI controller in real time.
It avoids the poor robustness caused by direct use of the deep
reinforcement learning algorithm as the control algorithm
of the controller, thus ensuring that the PEMFC can satisfy
the real-time control requirements under different working
conditions and improving the output characteristics of the fuel
cell.

2. For the above framework, an AIEM-DDPG algorithm is
proposed. This is a large-scale deep reinforcement learning
algorithm based on DDPG, which has better global searching
ability and optimization speed. The AIEM-DDPG algorithm
adopts an ambient intelligence exploration policy, in that
the algorithm enables multiple explorations running on the
DDPG algorithm aswell as other deep reinforcement learning
algorithms with different principles such as SAC, DDPG,
PPO and DDQN, in order to perform distributed exploration
in the environment. In addition, the classified priority experi-
ence replay mechanism is introduced in order to improve the
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exploration efficiency. Clipping multi-Q learning, deferred
policy updating, target policy smooth regularization and
other methods are utilized to address overestimation of the
Q-value. Simulation results show that the AIEM-DDPG con-
troller achieve better control performance and robustness than
controllers based on other control principles

II. MODEL OF THE PEMFC
A. PEMFC DYNAMIC MODEL
The voltage of a PEMFC is the sum of thermodynamic elec-
tromotive force, polarization overvoltage and Ohmic over-
potential. When liquid water is produced, the ideal standard
potential of a PEMFC is 1.229 V. During the electricity
generation of an actual fuel cell, there is some irreversible
voltage loss, called polarization overvoltage, which includes
activation polarization overvoltage ηac, Ohmic polarization
overvoltage ηohm and concentration polarization overvoltage
ηcon. Such voltage loss will result in a smaller cell voltage
than the ideal standard potential. The effect of activation
polarization is severe at low current density, but the effect of
concentration polarization is dominant at high current den-
sity. The output voltage Vcell of a single cell can be basically
expressed as follows [44]:

Vcell = E − ηact − ηohm − ηcon (1)

For a fuel cell stack composed of N single cells in series
connection, the output voltage V can be calculated as:

V = NVcell (2)

1) THERMODYNAMIC ELECTROMOTIVE FORCE
According to the Nernst hydrogen/oxygen fuel cell equation,
the thermodynamic electromotive force can be determined as
follows:

E =
1G
2F
+
1S
2F

(T − Tref)+
RT
2F

(
ln pH2+

1
2
ln pO2

)
(3)

where1G is Gibbs free energy,1S is standardmolar entropy,
R is gas constant, F is Faraday constant, T is the opera-
tion temperature of the stack, Tref is the reference temper-
ature, PH2 and PO2 are the differential pressures of hydrogen
and oxygen respectively. After specific data are substituted,
the equation can be converted as follows:

E = 1.229− 0.85× 10−3(T − 298.15)

+4.3085× 10−5T
(
ln pH2 + ln pO2/2

)
(4)

2) ACTIVATION OVERVOLTAGE
When electrochemical reaction occurs on the electrode sur-
face of PEMFC, the electrons pass through the external cir-
cuit load, and the protons pass through the proton exchange
membrane. During the transfer process, the electrons and
protons have to overcome the chemical energy of the reac-
tion. Specifically, when a certain current pass through a cell,
the electrode potential deviates from the reversible poten-
tial which results in the activation polarization overvoltage.

The activation overvoltage of PEMFC consists of anodic
overvoltage and cathodic overvoltage. The ηact is shown as
follows

ηact = x1 + x2T + x3T ln c (O2)+ x4T ln I (5)

where I is the load current of PEMFC, ξi is the model coef-
ficient fitted by experimental data on basis of hydrodynamic
force, thermal power and electrochemistry; c(O2) is the dis-
solved oxygen concentration on the cathode catalyst inter-
face. It is a function of temperature and oxygen differential
pressure. According to Henry’s law it is shown as follows:

c (O2) = PO2/5.08× 106 exp(−498/T ) (6)

3) OHMIC POLARIZATION OVERVOLTAGE
ηohm mainly consists of the voltage due to the equivalent
membrane impedance Rm of proton membranes and the volt-
age drop due to the resistance Rc against the passage of
protons through proton membranes [45]:

ηohm = IRint = I (Rm + Rc) (7)

The internal resistance of a cell can be empirically expressed
as follows:

Rint = 0.01605− 3.5× 10−5T + 8× 10−5i (8)

4) CONCENTRATION POLARIZATION OVERVOLTAGE
Concentration overvoltage is caused by mass transfer, which
affects hydrogen and oxygens concentrations. The ηcon can
express as:

ηcon = −β ln (J/Jmax) (9)

where β is decided by PEMFC and its working status; J is
current density, and Jmax is the maximum current density.

5) CONCENTRATION POLARIZATION OVERVOLTAGE
Charge double-layer exists in PEMFC: hydrogen ions accu-
mulate on the electrolyte surface and electrons gather on
the electrode surface. The voltage resulting from the above
phenomenon is equivalent to a parallel connection of capac-
itance C on two ends of the polarization over-resistance Rd ,
so that charge and energy can be stored on the electrode and
electrolyte surfaces as well as in the nearby charge layer.
This capacitance is called equivalent capacitance which can
effectively ‘‘smooth’’ the voltage drop on the equivalent resis-
tance. It is the double-layer charge capacitance that endows
PEMFC with excellent dynamic properties. Hence, the fuel
cell voltage dynamic property model can be established by
adding capacitanceC and inductance L under the stable status
(Figure 1).

This section may be divided by subheadings. It should
provide a concise and precise description of the experimental
results, their interpretation as well as the experimental con-
clusions that can be drawn.
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FIGURE 1. Equivalent circuit of PEMFC.

As shown in Figure 1, let the polarizing voltage of Rd be
Vd , so that the voltage change of a single cell can be expressed
as a differential equation:

dVd/dt = I/C − Vd/RdC (10)

The role of the DC/DC converter is not considered in the
model, so the output voltage is equal to the stack voltage.

B. HYDROGEN FLOW RATE OF PEMFC
Research implies that the output voltage of a system is largely
related to the flow of reaction gases. Since the wind-cooling
PEMFC cathode gases are mainly ventilated by blast appa-
ratuses, the space-time gas flow is controlled by linear feed-
back during modeling, which can promptly trace hydrogen
flow variation. Therefore, hydrogen flow is the main factor
that determines the output voltage of PEMFC. In this study,
together with the electrochemical model of PEMFC, a fuel
cell dynamicmodel is built. The pressure at the hydrogen inlet
is altered by controlling the flow of the hydrogen inlet, so as
to indirectly control the output voltage of the cell and stabilize
the voltage. According to the law of mass conservation and
the ideal-gas equation, it can be shown as follows [36]:

Vo
8.314T

×
dPH2

dt
=mH2−K

(
PH2−PEH2

)
−
0.5NI
F

(11)

where V0 is the total volume of the anode flow field; mH2

is the hydrogen flow rate; PEH2 is the hydrogen elimination
pressure; K is the anode flow coefficient.

C. PEMFC OUTPUT VOLTAGE CONTROL PRINCIPLE
Studies have shown that the output voltage of the system is
mainly related to the flow rate of the reaction gas. Because
the cathode gas of the air-cooled PEMFC is mainly deliv-
ered by the blower, linear feedback control is adopted for
the air flow in modeling, which changes according to the
needs of the hydrogen supply system in time. Therefore,
the hydrogen flow is the main factor determining the out-
put voltage of PEMFC in this article. A dynamic model of
the PEMFC is established according to the electrochemi-
cal model of PEMFC. The coefficients of the adaptive PI
controller are regulated in real time by the coefficient tuner
based on AIEM-DDPG algorithm. Then the flow rate of the
hydrogen is controlled by the adaptive PI controller thus
indirectly controlling the output voltage of the PEMFC to
achieve the purpose to stable output voltage. According to
the conservation of mass and the conservation of ideal gas,
formula (11) is obtained [36].

FIGURE 2. PEMFC output voltage control system.

III. INTELLIGENCE CONTROL OF AIEM-DDPG
A. DEEP REINFORCEMENT LEARNING
The purpose of deep reinforcement learning is to real-
ize end-to-end learning from the input to the output of
decision-making results. Conventional deep reinforcement
learning methods can be divided into two categories: ones
based on value function, and those based on policy gradi-
ent. The former type often suffers from an unstable training
process and cannot deal with the task of continuous action
space; the latter type is designed to parameterize the policy,
employ a deep neural network for approaching the policy,
and seek the optimal policy by following the direction of the
policy gradient. The latter type of algorithm is more stable in
the training process, but its implementation is more compli-
cated, and the variance resulting from learning by sampling
is large [46]–[49].

B. COMMON POLICY GRADIENT ALGORITHMS
1) DDPG
In [50], a DDPG algorithm is proposed, which is a determin-
istic policy algorithm. DDPG employs two deep neural net-
works, namely, policy network and value function network.
They correspond to policy function πφ(s) and value function
Qθ (s, a) respectively, with their parameters of φ and θ . DDPG
is designed to find an optimal policy πφ which maximizes the
expected return value J (φ) = Esi∼pπai∼π [R0].
The parameter updating of policy network by DDPG

through the gradient ∇φJ (φ) is expressed as the following
formula:

∇φJ (φ) = Es−p∗
[
∇aQτ (s, a)

∣∣
a−π (s) ∇φπφ(s)

]
(12)

where Qπ (s, a) = Esj−pr ,ai−π [rt | s, a] means the expected
return value after the action a is taken in the state s under the
condition of following the policy π .

The parameter updating of value network is realized by the
loss minimization function L(θ ).

L(θ ) = Ess,al ,r(st ,at ),st+1
[
(yt − Qθ (st , at))2

]
yt = r (st , at)+ γQθ∗ (st+1, at+1)
at+1 ∼ πφ′ (st+1)

(13)

where the φ′ and θ ′ represent the parameter of target policy
network and target value network respectively. DDPG sends
the gradient information of the Q value function to the policy
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network through the value function network and formulate
the policy along the direction of increasing the Q value
according to formula (12).

2) SAC
SAC is developed based on DDPG. For a policy of SAC,
the greater the entropy, the higher the randomness of action
selection. The expression of entropy is as follows:

H (π (· | st)) = −
∞∑
t=1

π (· | st) logπ (· | st) (14)

Then, the expression of optimal policy of SAC algorithm is
as follows:

π∗ = argmax
π

Eτ∼π[
∞∑
t=0

γ t (R (st , at , st+1)+ αH (π (· | st)))

]
(15)

3) PPO
Proximal policy optimization (PPO) is a stochastic policy
algorithm to deal with the difficulty in determining the learn-
ing rate in conventional policy gradient algorithm. PPO algo-
rithm uses the ratio of new policies to old policies to restrict
the update range of new policy, making the algorithm insensi-
tive to the learning rate and improving the training efficiency.
PPO algorithm is improved based on TRPO, as follows: the
reward is as follows:

rt (θ ) = πθ (at | st) /πθtu (at | st) (16)

the target function of conventional TRPO is as follows:

LCPI (θ ) = Êt

[
πθ (at | st)
πθou (at | st)

Âi

]
= Êt

[
rt (θ )Ât

]
(17)

where the A2 is the advantage function, that is, the gradient
oscillation of the selection probability TRPO controlling the
action in (st , at ) is extremely large. Therefore, in order to
further control the update rate of policy gradient, PPO adds
a CLIP function in the target function, so that the update of
rt (θ ) is restrained at the interval [rt (θ ), 1+ε] or [1+ε, rt (θ )],
so PPO proposes that the KL divergence should not be too
large), and puts forward the following target function:

LCLIP(θ ) = Et
[
min

(
rt (θ )Ât , clip (rt (θ ), 1−ε, 1+ε) Ât

)]
(18)

PPO is an on-policy stochastic policy algorithm, and it has
the advantages of stable convergence and online update.

4) DDQN AND DQN
DQN learning is to ensure that the Q-estimate of the current
value network is as close as possible to the target Q-value of
the target value network. This process can be expressed as
follows:

Loss(θ ) = E
[(
Qtarget − Q (st , at ; θ)

)2] (19)

where Q(st , at ; θ) is the Q-estimate of the current state, and
Qtarget is the target value, denoted as

Qtarget = r + γ max
at+1

Q (st+1, at+1; θ) (20)

The function of target value is expressed as follows:

YDQN
t ≡ Rt+1 + γ max

a
Q
(
St+1, a; θ−t

)
(21)

In order to solve the value estimation of DQN, double-Q
estimation is adopted in DDQN, and the objective function
value is expressed as follows:

YDDQNt ≡ r + γQ
(
St+1,max

a
Q (St+1, a; θt) ; θ−t

)
(22)

where r is the reward function value acquired by the agent
from the environment; γ is the discount factor; θt is the
network parameter at the t th iteration; θt is the target network
parameter at the t th iteration.

C. AIEM-DDPG
Ambient intelligence exploration multi-delay deep determin-
istic policy gradient (AIEM-DDPG) is a deep reinforcement
learning algorithm based on DDPG [50]. In order to solve the
Q-value overestimation in DDPG algorithm, this algorithm
adopts three tricks: clipping multi-Q learning, policy delayed
updating and target policy smooth regularization, which real-
ize better stability and training efficiency of the algorithm.

Conventional DDPG algorithm only employs one actor
network to explore the environment, which makes it difficult
to guarantee the diversity of samples, and the algorithm is
easy to subject to local optimum. To solve this problem,
three tricks including ambient intelligent exploration pol-
icy, classified priority experience replay, distributed training
framework are introduced into the AIEM-DDPG algorithm,
which realize better exploration effect of the algorithm.

1) CLIPPING MULTIPLE Q-LEARNING
Inspired by the double-deep Q-learning (DDQN) method,
we integrate the current actor network with AIEM-DDPG to
select optimal action. Afterward, the policy is evaluated by
the target critic network.

yt = r (st , at)+ γQθ ′
(
st+1, πφ (st+1)

)
(23)

In the DDPG, the ‘‘soft update’’ [25] method is applied to the
target critic and actor networks, which share great similarity
to the real network. Moreover, the separation of action policy
evaluation becomes hard. For this reason, the target value is
calculated by the clipped multiple Q-learning method in the
AIEM-DDPG.

y1t = r (st , at)+ γ min
i=1,2,3

Qθ ′i
(
st+1, πφ1 (st+1)

)
(24)

2) DELAYED POLICY UPDATING
After the critic network is updated for d times, the actor
network will be updated once so that it is able to achieve
update under the low error of Q value, thus increasing the
actor network’s update efficiency.
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3) SMOOTH REGULARIZATION OF TARGET POLICY
Moreover, random noise is added to the target policy and the
values of a mini-batch are averaged for the implementation
of smooth regularization.

yt = r (st , at)+ Eε
[
Qθ ′

(
st+1, πφ′ (st+1)+ ε

)]
(25)

Also, a stochastic noise is added to the target strategy, and the
values of a mini-batch are averaged for the implementation of
smooth regularization.

yt = r (st , at)+ γ min
i=1,2

Qθt
(
st+1, πφ′ (st+1)+ ε

)
(26)

ε ∼ clip(N (0, σ ),−c, c) (27)

4) AMBIENT INTELLIGENCE EXPLORATION POLICY AND
DISTRIBUTED TRAINING FRAMEWORK
Distributed reinforcement learning, also known as large-scale
deep reinforcement learning, is to obtain more generalized
deep reinforcement learning policy by using neural network
to approximately fit the policy function and the large-scale
computing resources to achieve efficient training of neural
network models. Ambient intelligence exploration policy has
two meanings: one is that agents can continuously learn by
themselves in various ways to enrich their own policies and
experience; the other is that agents can obtain different infor-
mation or experience samples by crossing different unrelated
environments.

Ambient intelligence exploration policy and large-scale
deep reinforcement learning framework are combined
together to promote agent learning. The training frame-
work of AIEM-DDPG algorithm is as follows. This frame-
work takes DDPG algorithm as main algorithm and employs
explorers composed of many other deep reinforcement learn-
ing algorithms with different principles such as SAC, DDPG,
PPO and DDQN to explore in different environments.
These explorers are named SAC-explorer, DDPG-explorer,
PPO-explorer and DDQN-explorer respectively. There are
one leader and two experience pools, in which the leader
includes three critic networks and one actor network. The
framework uses these explorers to collect samples to enrich
the learning samples of the leader, so as to achieve better
exploration efficiency and training efficiency.

a: DDPG-EXPLORER
Every DDPG-explorer contains one actor network with its
own network model and environment. Different environment
is explored by several different explorers in parallel. The actor
network in different DDPG-explorers adopts different explo-
ration policies, including greedy strategy, gaussian noise and
OU noise.

In Q-learning, the ε-greedy strategy indicates choosing
any action within the action space with certain probability.
Therefore, to imitate the exploration policy of Q learning, the
exploration policy of actor network in 6 explorers is set as the
greedy strategy, and it is named as the ε-explorer.

The action of ε-DDPG-explorer is shown as follows:

alε =

{
π lθ (s) Withε probability
alrand With 1-εprobability

(28)

where the π lθ (s) is the actor network policy of lth ε-explorer,
the arand is the action in the total action space.
In addition, the exploration policy of actor network in 6

explorers is set as the OU noise, and it is named as the
OU-explorer. By using random OU noise with different
variance, the noises among different explorers are different,
which can reduce repetition among samples.
The action of OU-DDPG-explorer is shown as follows:

ajOU = π
j
θ (s)+N j

OU (29)

where the π jθ (s) is the actor network policy of jth OU -
explorer, the NOU is the OU noise.

Moreover, the optimization policy of actor network in 6
explorers is set as the Gaussian noise, and it is named as
the Gaussian-DDPG-explorer. Random Gaussian noise with
different variance is used in different explorers.

amGaussian = π
m
θ (s)+Nm

Gaussian (30)

where the πmθ (s) is the actor network policy of mth Gaussian
-explorer, the NGaussian is the Gaussian noise.
As a result, by employing the above exploration policy

based on different principles, the randomness and diversity
of samples explored by explorers can be enhanced.

In offline training, all DDPG-explorers generates the sam-
ples eDDPGi = (si−DDPGt , ai−DDPGt , r i−DDPGt , si−DDPGt+1 ) based
on their own environment, and add the samples to the pub-
lic experience pools according to the classified experience
priority replay mechanism. Then the learner draws training
samples from the pool according to the standard and keep
learning. Finally, the actor network in DDPG-explorer reg-
ularly updates its network parameters from the latest actor
network of the leader.

b: SAC-EXPLORER
There is six SAC-explorers, each of which includes overall
SAC structure and different network models and environ-
ments. Each SAC-explorer utilizes its own policy to explore
in the environment, and puts the explored sample eSACi =

(si−SACt , ai−SACt , r i−SACt , si−SACt+1 ) into its own experience pool
and the public experience pool of the leader at the same
time. In addition, SAC-explorer regularly collects samples
from its own experience pool for training and updating its
parameters. In this article, the excellent exploration ability
of SAC algorithm is utilized to explore in different environ-
ments and generate different samples, so as to diversify the
samples.

c: PPO-EXPLORER
There are six PPO-explorers, each of which includes com-
plete PPO algorithm structure, different network models and
environments, each PPO-explorer adopts its own policy to
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explore in the environment, and puts the explored sample
ePPOi = (si−PPOt , ai−PPOt , r i−PPOt , si−PPOt+1 ) into the its own
experience pools and the public experience pools of the leader
at the same time. In addition, PPO-explorer regularly updates
its parameters and empties each episode of its own experi-
ence pool. In this article, PPO algorithm which has policy
constraint ability is utilized to obtain the samples explored
with more smooth policy, so as to make the policy of the actor
in leader converge quickly.

d: DDQN-EXPLORER
There are six DDQN-explores, each of which has complete
algorithm structure and different network models, parameters
and environments. Each DDQN-explorer uses its own policy
and different greedy coefficient ε to explore in the environ-
ment, and puts the explored sample eDDQNi = (si−DDQNt ,
ai−DDQNt , r i−DDQNt , si−DDQNt+1 ) into its own experience pools
and the public experience pools of the leader at the same
time. Since DDQN is a discrete deep reinforcement learn-
ing algorithm, it has the advantage of quick convergence,
but is not feasible for solving the problem of continuous
space. In this article, DDQN which has the advantage of
quick convergence is utilized to quickly obtain the samples
with higher value, thus guiding the training of the leader.
Nevertheless, this algorithm is not applicable to continuous
space, so the samples collected by it only play a guiding
role.

e: LEADER
The leader adopts the three tricks to deal with Q-value over-
estimation in DDPG. In addition, in offline training, the actor
network in the leader converges to an optimal solution by con-
tinuously sampling and learning from the public experience
pool according to the classified experience priority replay
mechanism. The leader regularly transmits the parameters of
the latest actor network to DDPG-explorer, without commu-
nicating with other explorers.

5) CLASSIFICATION EXPERIENCE REPLAY
Classification experience replay standard for the average
reward: Under the guidance of the ε-greed methods in
Q-learning, the experiential samples are reserved by two
independent buffer pools in AIEM-DDPG. In the process
of network initialization, the average reward value of the
samples in these two pools is marked to be 0. Every time a
new sample is brought in, the value will be calculated again.
Subsequently, the sample’s reward and its average value are
compared. When the sample’s reward is less than or equal to
the average value ra, then the sample should be put into the
pool 1. If not, the sample should be put into pool 2.

During offline training, as to pool 1, nξ samples can be
gotten with the probability of ξ . In pool 2, n(1−ξ ) samples can
be gotten with the probability of 1-ξ . The detailed framework
is displayed in Figure 3. The explicit process is displayed
in Figure 4.

FIGURE 3. Distributed training framework of PEMFC intelligent controller
based on AIEM-DDPG.

FIGURE 4. AIEM-DDPG method flow.

IV. DESIGN OF AIEM-DDPG CONTROLLER
The adaptive PI controller in this article takes the anode
hydrogen flow rate of PEMFC as the control amount and
the output voltage of PEMFC as input. AIEM-DDPG algo-
rithm is used as the tuner of the adaptive PI controller, and
the coefficients of the PI controller are regulated in real
time by the tuner. The input of the tuner includes output
voltage and reference voltage, and the output is proportion
coefficient and integral coefficient. The control interval of
the tuner is 0.01s. The adaptive PI controller controls the
flow rate of hydrogen, so that the output voltage of PEMFC
can reach a predetermined value, thus ensuring the stability
of the system. The objective of the controller is to make
the output voltage of PEMFC strictly and accurately follow
the reference voltage. Figure 5 shows the detailed control
diagram.

VOLUME 9, 2021 6069



J. Li et al.: Adaptive Controller of PEMFC Output Voltage Based on Ambient Intelligence Large-Scale Deep Reinforcement Learning

A. ACTION SPACE
The action space is expressed as formula (31):

a =
[
kp ki

]
0 ≤ kp ≤ kmax

p

0 ≤ ki ≤ kmax
i

(31)

where kp is the proportionality coefficient of the PI controller,
kmaxp is the integral coefficient of the PI controller, and kmaxp
and kmaxi are the maximum of these two parameters.

B. STATE SPACE
State is the error e(t) (output voltage error) between the output
voltage of the input controller and the reference voltage,
its integral to t , and the output voltage vst , as shown in
formula (32). {

[e(t)
∫ t
0 edt vst (t)]

e(t) = v∗st (t)− vst (t)
(32)

C. SELECTION OF REWARD FUNCTION
According to formula (33), a composite reward function is
formed by the quadratic term of the output voltage error of
each control interval, the linear weighting of the square of the
action amade in the last control cycle and the control reward
term.

The reward function is expressed as follows:

r(t) = −

[
µ1e2(t)+ µ2

2∑
i=1

a2i (t − 1)

]
+ β (33)

β =

{
0.8 e2(t) ≤ 0.02
0 e2(t) > 0.02

(34)

where t is the discrete time; e(t) is the error of output voltage
at time t; a(t-1) is the action of the agent at time t-1, β is the
control reward term.When the control error e(t) is not greater
than 0.02, the agent will give a positive reward.

V. SIMULATION
The parameters used in the model are given in Table AI.
The fuel cell stack employs 75kW stacks used in the FORD
P2000 fuel cell prototype vehicle [51]. The active area of
the fuel cell is calculated from the peak power of the stack.
The compressor model is based on the Allied Signal com-
pressor detailed in [52]. The membrane properties of Nafion
117membrane are obtained from [53]. The values of volumes
are approximated from the dimensions of the P2000 fuel cell
system. The training graph is shown in Figure 5 and the
relevant parameters are listed in Table 1. Both the simulation
model and programs described in this article have been devel-
oped using a server consisting of 48 CPUs. The single CPU
is a 2.10GHz Intel Xeon Platinum processor, and the RAM of
the server is 192GB. The simulation software package used
is MATALB/Simulink version 9.8.0 (R2020a).

FIGURE 5. Diagram of output voltage control of PEMFC based on
AIEM-DDPG tuner.

TABLE 1. Parameter settings.

A. PARAMETER SETTING
The parameters of the AIEM-DDPG algorithm are shown
in Table 1.

B. ONLINE APPLICATION WITH STEP LOAD
The effectiveness of the algorithm is verified via simula-
tion under two working conditions: 1. step load; and, 2.
random load disturbance. This novel method is compared
with the following methods: APEX-DDPG [54] adaptive PI
(APEX-DDPG-PI) controller, TD3 [55] adaptive PI (TD3-
PI) controller, DDPG [50] adaptive PI (DDPG-PI) controller,
DQN [36] adaptive PI (DQN-PI) controller, and REF [30]
adaptive PI (REF-PI) controller and DDPG controller. These
controllers are all of the adaptive controller type.

The PSO-optimized fuzzy PI (PSO-FPI) controller, fuzzy
PI (FPI) controller [29] and PI controller are all conven-
tional controllers. The simulation time of the step load is 5s.
At 1s, the load current increases from 100A to 120A. Figures
6(a)∼(d) and Table 2 show the results of the simulation. The
Rising time represents the first time at which 99% of the
reference value is reached. The stabilization time is the time
of stabilizing in the range of 0.1% of the reference value.
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TABLE 2. The response results of the output voltage control of PEMFC.

FIGURE 6. Diagram of simulation results of PEMFC under step
disturbance.

As shown in Figure 6(a) and Table 2, compared with the
other adaptive controllers, the AIEM-DDPG-PI controller
has better control performance, smaller overshoot and faster
response speed under load disturbance. In addition, it can be
seen that the AIEM-DDPG-PI controller has the best control
performance. This is because the AIEM-DDPG-PI controller
adopts various tricks for improving exploration efficiency

and attaining better control performance in the training.
By contrast, the exploration policies of the APEX-DDPG-PI
controller, TD3-PI controller and DDPG-PI controller are
too narrow; as a result, these controllers are more likely to
converge on a local optimal solution, making it impossible to
obtain a control policy with better control performance.

The DQN-PI controller adopts the discrete reinforcement
learning algorithm DQN as the tuner, which leads to failure
in the continuous regulation of kp and ki, resulting in poor
control performance. Its stabilization time and overshoot are
6 times and 2.24 times that of AIEM-DDPG-PI controller,
respectively. As shown in Figure 6(c), kp and ki of the AIEM-
DDPG-PI controller constantly change with the system state,
whereby kp is increased at the early stage of the load sudden
change for rapid response, and is gradually decreased at the
end of the disturbance in order to attain smooth regulation.

In the REF-PI controller, a conventional REF neural net-
work serves as the tuner of PI controller, which makes the
controller vulnerable to the sample accuracy. Its stabilization
time and overshoot are 6.17 times and 2.21 times that of the
AIEM-DDPG-PI controller, respectively.

The overshoot of AIEM-DDPG-PI is obviously smaller
(3.83 times) than that of the DDPG controller, even though
the latter has a similar response speed compared with the
former (rising time equaling 0.01s), and the DDPG controller
exhibits significant oscillation. This is because the DDPG
algorithm is not generalized, which leads to poor robustness
of the controller; meanwhile, the AIEM-DDPG-PI controller
can smoothly regulate the output voltage.

Compared with conventional controllers, the
AIEM-DDPG-PI controller exhibits better control perfor-
mance in terms of response speed, stability and overshoot.
The maximum rising time of the controllers of conventional
algorithms is about 11 times that of the AIEM-DDPG-PI
controller, the maximum stabilization time is 18.17 times
and the maximum overshoot is 11.22 times that of other
controllers.

The performance of controllers operating on conventional
algorithms is affected by large overshoot and oscillation,
due to their innate inability to handle nonlinear systems
(for example, the PEMFC). As can be seen in Figure 6(b),
the controller based on the AIEM-DDPG algorithm can
ensure stability in the net power. Therefore, the AIEM-DDPG
controller proposed in this article achieve better control per-
formance and stability under step load.
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FIGURE 7. Diagram of simulation results of PEMFC under stochastic load.

C. ONLINE APPLICATION WITH STOCHASTIC LOAD
In order to verify the robustness and control performance of
the AIEM-DDPG controller, a simulation has been carried
out under a stochastic load working condition. Appendix AI
shows the stochastic load, where each condition lasts for 10s
and the total simulation time is 51s. Figures.8(a)∼(d) show
the results.

As shown in Figures 7(a)∼(b), under different loads the
AIEM-DDPG controller achieves the best control perfor-
mance in terms of output voltage and power, with the most
stable regulation curve and the smallest overshoot. This is
because a large number of samples under different loads
have been learned during offline training, which makes the
controller highly adaptive and robust. In addition, it is found
that the DDPG controller has poor robustness, therefore it

attains completely different control performances under dif-
ferent load working conditions. At 31∼41s and 41∼51s, its
response speed to output voltage is fast and overshoot is
small; but under other conditions, especially at 1∼11s, its
response speed is extremely slow and there is a great over-
shoot in output voltage. By comparison, the AIEM-DDPG-PI
controller, in which the PI controller is the carrier, is an
improvement on the DDPG framework. The AIEM-DDPG
algorithm is only used as the tuner of the PI controller. The
algorithm is not directly used as the control algorithm for
developing the control strategy; as a consequence, the con-
troller has greater adaptability and robustness. Because the
AIEM-DDPG-PI controller maintains the output voltage, its
net power is also relatively stable (Figure 7(b)). As can
be seen in Figure 7(c), the dynamic response is in direct
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TABLE 3. Parameter of PEMFC.

proportion to the overshoot of hydrogen pressure of the con-
troller. The AIEM-DDPG-PI controller will have a reason-
able hydrogen overshoot at the initial stage of load change due
to its ability to maintain fast response speed, but it will soon
return to the reference value. The DDPG controller will also
exhibit a large overshoot of hydrogen pressure when its per-
formance is poor; however, this emanates from the problem
of the algorithm focusing excessively on the response speed
and neglecting the static error.

VI. CONCLUSION
In this article, an adaptive PI controller for PEMFC out-
put voltage is proposed, and an AIEM-DDPG algorithm

is proposed as the tuner of this PI controller for regulat-
ing the coefficient of the controller. This algorithm is an
improvement on the DDPG algorithm. Its innovations include
the ambient intelligence exploration policy (AIEM), which
uses explorers with various exploration policies to conduct
distributed exploration in the environment. In addition, the
classified priority experience replay mechanism is introduced
as it improves the efficiency of exploration and training.
In addition, clipping multi-Q learning, delay policy updating,
and target policy smooth regularization are used to solve
the problem of Q value overestimation. Ultimately, a coef-
ficient regulation algorithm with outstanding adaptability
is obtained, which can actively regulate the coefficient of
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the PI controller in alignment with the varying state of the
PEMFC.

2) By simulating the PEFMC under different working con-
ditions, it is found that the AIEM-DDPG controller can meet
the real-time control requirements under different operating
load disturbances in the output voltage control system of the
PEMFC.

The AIEM-DDPG-PI controller in this article overcomes
the problems of slow convergence and poor generalization
of the DDPG algorithm, combines the robustness of PI con-
troller with the perception of deep reinforcement learning,
improves the performance of conventional PI controller, and
realizes accurate and stable millisecond control of output
voltage. The problem of low robustness of the DDPG con-
troller (which directly applies the DDPG algorithm to formu-
late control strategies) is thus avoided. For that reason alone,
the AIEM-DDPG algorithm is of great practical significance.
The authors will apply this algorithm to the actual PEMFC
system in future work.

APPENDIX
See Table 3.
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