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ABSTRACT Nonlinear superharmonic vibratory stress relief (VSR) is an effective way to solve the
resonance problem of a high stiffness workpiece. However, strong nonlinear factors are present, and
superharmonic resonance is relatively complicated when the entire device is a strongly nonlinear system.
Choosing the best nonlinear stiffness parameter of the spring to allow the superharmonic resonance to
generate a sufficient amplitude and sufficient dynamic stress becomes difficult. To solve this problem,
it is necessary to explore the effect of the stiffness parameter on the system resonance: First, the nonlinear
vibration situation of the VSR device is analysed, and the effect of the stiffness parameter on the vibration
characteristics is explored under the action of the strong nonlinear system. Then, a simulated vibration table
is used to verify the rule that the stiffness parameters affect the superharmonic resonance. It was shown
that strong nonlinear theory provides a theoretical basis for simulating vibration table experiments, and the
relationship between the spring stiffness parameter and amplitude satisfies a certain relationship, which
provides a useful reference for the application and research of the VSR device for nonlinear superharmonic
resonance.

INDEX TERMS Nonlinear superharmonic resonance, stiffness parameter, strongly nonlinear system.

I. INTRODUCTION
Eliminating the residual stress of components in the process
of manufacturing is an important goal in the field of mechan-
ical manufacturing. Vibratory stress relief (VSR) has drawn
attention because of its advantages of no pollution, high
efficiency, time saving, energy saving and cost saving [1].
VSR was first discovered by American scientist J.W. Sratt [2]
at the beginning of the 20th century and many results [3]–[6]
have been obtained so far. Among them, the principle of
VSR was proposed by the Wozney & Crawmer criterion [7]:
‘‘when the sum of the dynamic stress in VSR and residual
stress is greater than the yield limit of the materials and
is less than the fatigue limit of the materials, the residual
stress will be relaxed and released’’, which is considered to
be the most important VSR condition. However, the scope
of application is still very limited. There is still substantial
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potential for VSR applications that has not been utilized.
The main reason is that the excitation frequency produced
by the current exciter cannot approach or reach the natural
frequency of the workpiece with high stiffness. Therefore,
the residual stress of the workpiece with high stiffness cannot
be reduced [8].

Many researchers have studied the methods of serial con-
nection and frequency reduction of workpieces, vibration
table methods, etc. to solve these problems. With these meth-
ods, it is difficult to achieve the expected results because
they cannot change the stiffness of workpieces themselves
and the excitation frequency of the exciter is still much lower
than the natural frequency of the high stiffness workpiece.
It is difficult for the workpiece to produce enough elastic
deformation resonance to reduce the residual stress.

In recent years, many researchers have filled the gap in
this area and have proved the rationality and effectiveness in
reducing residual stress mechanisms and experimental appli-
cation. Abdullah et al. [9] introduced ultrasonic vibratory
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stress relief (UVSR), the core of which is to use ultrasonic
transducers to obtain a high excitation frequency and excite
the component. This is unlikely to cause fatigue damage to
components. However, Abdullah et al. [10] also pointed out
that it is necessary to greatly increase the intensity of ultra-
sonic waves to obtain a higher excitation frequency, which
puts forward higher requirements for the design of ultrasonic
transducers. Wang and He [11], He et al. [12] proposed high
frequency vibratory stress relief, which refers to high fre-
quency resonance signals with frequency greater than 1 kHz
that excite a small part of the workpiece. Local microscopic
resonance occurs in a small area of the workpiece. High
frequency VSR is suitable for local treatment of welds, etc.,
but it is difficult to use for stress relief of the overall structure.

FIGURE 1. Schematic diagram of the nonlinear superharmonic resonance
system.

The VSR device uses superharmonic resonance character-
istics to eliminate residual stress on workpieces with high
stiffness. The system schematic diagram is shown in Fig. 1,
where the excitation force is generated by the inertial exciter
(the inertial exciter composed of the current excitation motor
and its eccentric device) and acts on the excitation block.
When the parameter setting is appropriate, the excitation
block generates superharmonic resonance under the com-
bined action of a damper and nonlinear spring. The resonance
is transmitted to the workpiece by the excitation block, so that
the workpiece can obtain high frequency excitation which
exceeds the excitation frequency of the inertial exciter [13].

According to the Wozney & Crawmer criterion of VSR,
the residual stress of the workpiece is required to have suf-
ficient elastic deformation, so the system needs to reach a
certain amplitude.

To obtain a large output amplitude under the same input sit-
uation, it is often necessary to show strong nonlinear charac-
teristics by attaching springs. Strong nonlinear systems have
more complex dynamics for scholars to explore compared
with weak nonlinear systems [14]–[18].

In reference [19], the mechanism analysis of the VSR
device of nonlinear superharmonic resonance has been
explored. A brief introduction is presented as follows: the
workpiece generates elastic deformation under the action of
theVSR device to obtain sufficient dynamic stress, introduces
local micro plastic deformation at the residual stress of the

FIGURE 2. Single-degree-of-freedom nonlinear vibration system.

FIGURE 3. Nonlinear vibration system with workpiece with a single
degree of freedom.

workpiece, and reduces residual stress. The workpiece has
the characteristics of both mass and elastic elements in the
process of VSR. For convenience, Fig. 2 is simplified as a
mass spring model in Fig. 3. The differential equation of
motion can be written using Newton’s second law:

m
d2x
dt2
+ c

dx
dt
+ f (x)+ kqx = F cosωt (1)

where m is the equivalent mass of the excitation block,
workpiece, etc. The external excitation force is F cosωt ,
the displacement of the excitation block and workpiece is x,
and the damping coefficient is c. The restoring force of the
nonlinear and equivalent springs are f (x) and kqx. Since the
n-th power term of the nonlinear term determines the order
of superharmonic resonance of the system [20]. If there is
a second and third nonlinear restoring force in the system,
the system can generate second and third superharmonic
resonance.

It is evident from the references [13], [19] that the VSR
device for nonlinear superharmonic resonance has been anal-
ysedwithworkingmechanisms and preliminary experimental
research. However, for nonlinear the VSR system, the nonlin-
ear restoring force is the key factor to produce superharmonic
resonance, and the stiffness coefficient of the nonlinear spring
has a great influence on the amplitude of superharmonic
resonance. The above references do not provide sufficient
information for the analysis of the stiffness of the nonlinear
spring in the system. In this paper, the influence of the nonlin-
ear stiffness on the VSR device is studied: firstly, according
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to the differential equations of the system motion, the strong
and weak nonlinear vibrations are analysed, and the response
of the stiffness coefficient to the superharmonic resonance
under the action of the strong nonlinear system is studied.
Then, the simulated vibration table is used to verify the
rule that the stiffness parameters affect superharmonic res-
onance, which provides the basis for the application of VSR
technology.

II. SYSTEM ANALYSIS
A. SOLVING THE NONLINEAR SYSTEM EQUATIONS
In the studies of nonlinear vibration, the difference between
the calculation methods for strong and weak nonlinear sys-
tems is that the nonlinear term in the system cannot be
regarded as containing small parameters, and the nonlin-
ear part cannot be regarded as a perturbation of the lin-
ear part. In the strong nonlinear method, the modified L-P
method transforms the large parameter into the small param-
eter through parameter transformation, and then the weak
nonlinear L-P method is applied. It is easy to compare two
different nonlinear methods. These two methods are used to
analyse the weak and strong nonlinear response character-
istics of nonlinear VSR systems. The influence of different
nonlinear stiffness parameters on superharmonic resonance
is explored. The nonlinear vibration system is simplified as
shown in Fig. 2 to obtain Fig. 3.

The mass of the object is set to m = m1 + m2 + mq,
and the mass of the exciter block, the mass of the exciter
and the equivalent mass of the component are m1, m2 and
mq, respectively. The upper-end spring stiffness and the lower
end spring stiffness are k1 and k2. The differential equation of
motion of an object is as follows:

ẍ + 2εµẋ + ω2
0x − εk3x

3
= p cosωt (2)

where ω0 is the natural frequency of the system,
ω0 =

√
k1/m, µ = 0, εk3 = k2/m, and p = F/m.

1) WEAK NONLINEAR CASE
When k1 is greater than k2 and ε is a small parameter,
the system can be regarded as a cubic weak nonlinear system.
At this time, the L-P method is used to solve the system. The
response of the excitation force frequency is close to 1/n of
the natural frequency of the system (n is a positive integer not
equal to 1).

Assuming τ = ωt + θ , H = p cos θ , and K = p sin θ ,
the purpose of introducing θ as the unknown phase angle
is to conveniently set the initial conditions. Equation (2) is
transformed into:

ω2x ′′ + ω2
0x = εf (x, ωx

′)+ H cos τ + K sin τ (3)

where f (x, ωx ′) = k3x3, x ′ represents the x partial derivative
of τ , and ε is a small parameter
x is expanded into a power function of ε, ω can be repre-

sented by an expansion having the form of (5):

x = x0(τ )+ εx1(τ )+ ε2x2(τ )+ · · · (4)

ω =
1
n
ω0(τ )+ εω1(τ )+ ε2ω2(τ )+ · · · (5)

Substituting (4) and (5) into (3) and omitting the terms
above for ε2 gives:

(1+ 2εn
ω1

ω0
+ · · · )(x ′′0 + εx

′′

1 + ε
2x ′′2 + · · · )

+n2 (x0+ εx1 ++ε2x2 + · · ·
)

=
εn2

ω2
0

k3(x0 + εx1+ε2x2 + · · · )3+
n2

ω2
0

(H cos τ + K sin τ )

(6)

Equate the coefficients of ε:

x ′′0 + n
2x0 =

n2

ω2
0

(H cos τ + K sin τ ) (7)

x ′′1 + n
2x1 =

n2

ω2
0

(
k3x30 −

2
n
ω0ω1x ′′0

)
(8)

The solution of (7) is:

x0 = A cos nτ + B sin nτ +31 cos τ +32 sin τ (9)

where 31 =
n2H

(n2−1)ω2
0
, 32 =

n2K
(n2−1)ω2

0
When n = 3, by substituting (9) into (8), eliminating

secular terms, and assuming the coefficient of cos 3τ and
sin 3τ are 0, equation(8) can be written as follows after
eliminating the secular terms:

x ′′1 + 9x1 =
27k3
4ω2

0

[(
2A231 + A32

1 − A3
2
2+ 2B231 +3

3
1

+ 2B3132 + 313
2
2

)
cos τ +

(
2A232 + B32

1

−B32
2+3

3
2+2B

232− 2A3132+3
2
132

)
sin τ

+

(
A231 + 2AB32 + A32

1 − A3
2
2 − B

231

−2B3132) cos 5τ + (2AB31 − A232 + B32
1

−B32
2 + B

232 + 2A3132) sin 5τ

+

(
A231 − 2AB32 − B231

)
cos 7τ

+

(
A232 + 2AB31 − B232

)
sin 7τ

+H cos τ + K sin τ (10)

The solution to (10) can be solved for x1, where the initial
conditions are x0(0) = 0, ẋ0(0) = 0, x1(0) = 0, and
ẋ1(0) = 0. The first-order approximate solution of (3) is

x1 = x0 + εx1 + O(ε2) (11)

where ω = ω0 + εω1 + O(ε2)

2) STRONG NONLINEAR CASE
When k2 is greater than k1 and ε is a large parameter, the sys-
tem can be regarded as a cubic strong nonlinear system under
forced vibration. At this time, the MLP method is used to
solve the system [21].
Assuming τ = ωt + θ , H = p cos θ , and K = p sin θ ,

equation (2) is transformed into:

ω2x ′′ + ω2
0x = εf (x, ωx

′)+ H cos τ + K sin τ (12)
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where f (x, ωx ′) = k3x3, x ′ represents the x partial derivative
of τ , and ε is a large parameter.
Considering the influence of the fundamental frequency

harmonic response, ω2 is expanded into a power function of ε

ω2
=

1
n2
ω2
0(τ )+ εω1(τ )+ ε2ω2(τ )+ · · · (13)

A transformation parameter is introduced as follows:

α = εω1/(
1
n2
ω2
0 + εω1) (14)

thus

ω2
=

1
n2

ω2
0

(1− α)
(1+ δ2α2 + δ3α3 + · · · ) (15)

or

ω =
ω0

n

[
1+

1
2
α + (

3
8
+
δ2

2
)α2 + · · ·

]
(16)

x is expanded into a power function of α.

x = x0(τ )+ αx1(τ )+ α2x2(τ )+ · · · (17)

Substituting (13) - (17) into (12) and omitting the terms
above α2 gives

(1+ δ2α2 + δ3α3 + · · · )(x ′′0 + αx
′′

1 + α
2x ′′2 + · · · )

+ n2(1− α)(x0 + αx1 + α2x2 + · · · )

=
α

ω1
k3(x0 + αx1 + α2x2 + · · · )3

+
n2

ω2
0

(1− α)(H cos τ + K sin τ ) (18)

Equate the coefficients of α. The all order perturbation can
be obtained as:

x ′′0 + n
2x0 =

n2

ω2
0

(H cos τ + K sin τ ) (19)

x ′′1 + n
2x1 = n2x0+

1
ω1
k3x30−

n2

ω2
0

(H cos τ+K sin τ ) (20)

The solution of (19) is

x0 = A cos nτ + B sin nτ +31 cos τ +32 sin τ (21)

where 31 =
n2H

(n2−1)ω2
0
, 32 =

n2K
(n2−1)ω2

0
When n = 3, equation (21) is substituted into (20) and

the secular terms are eliminated. Assuming the coefficients
of cos 3τ and sin 3τ are 0 gives:

9A+
k3
4ω1

[
3A
(
A2 + B2

)
+ 6A

(
32

1 +3
2
2

)
+33

1 − 3313
2
2

]
= 0

9B+
k3
4ω1

[
3B
(
A2 + B2

)
+ 6B

(
32

1 +3
2
2

)
−33

2 + 332
132

]
= 0 (22)

Assuming A2 + B2 = a2 andM2
= 32

1 +3
2
2 = 81p2/64ω4

0,
the amplitude-frequency equation can be written as follows:(

9k23
16ω2

1

)
a6 +

(
9k23
4ω2

1

M2
+

27k3
2ω1

)
a4

+

(
81+

9k23
4ω2

1

M4
+

27k3
ω1

M2

)
a2 −

k23M
6

16ω2
1

= 0 (23)

Solving (20) after eliminating the secular terms gives:

x1 = C1 cos 3τ + C2 sin 3τ +
9
8
(31 cos τ +32 sin τ)

+
3k3
32ω

[(
2A231 + A32

1 − A3
2
2 + 2B231+ 2B3132

+ 33
1 +313

2
2

)
cos τ +

(
2A232 + B32

1 − B3
2
2+ 3

3
2

+ 2B232 − 2A3132 +3
2
132

)
sin τ −

1
2
(2AB32

+ A231 + A32
2 − 2B3132 − A32

2 − B
231

)
cos 5τ

−
1
2

(
2AB31−A232+2A3132+B32

1−B3
2
2+B

232

)
× sin 5τ −

1
5

(
A231 − 2AB32 − B231

)
cos 7τ

−
1
5

(
A232 + 2AB31 − B232

)
sin 7τ

]
−

9

8ω2
0

(H cos τ + K sin τ) (24)

whereC1 andC2 are undetermined coefficients, and the initial
conditions are x0(0) = 0, ẋ0(0) = 0, x1(0) = 0, and
ẋ1(0) = 0. The first- order approximate solution of (3) is

x1 = x0 + αx1 + O(ε2) (25)

where ω2
=

1
n2

ω2
0

(1−α) [1+ O(α)]
Based on the results above, numerical calculations and

qualitative analyses are performed on weak and strong non-
linear systems, and the cubic stiffness parameters of the
strong nonlinear system are analysed. When the excitation
frequency is 1/3 of the natural frequency, the system will
generate superharmonic resonance.

Assume that ω0 = 3rad/s, ω = 1rad/s and F = 5N
The system can be regarded as a weak nonlinear systemwhen
k1 = 9N/mm and k2 = 1N/mm. When k1 = 9N/mm and
k2 = 10, 20 and 30N/mm, the system can be regarded as
a cubic strong nonlinear system under forced vibration. The
first-order approximate solution is solved.

In Fig. 4, the first-order approximate solutions are differ-
ent. Although the difference in the k2 coefficients is 10 times
and the other parameters are the same, the amplitude value
of the solution of the strong nonlinear system is 13.857 times
that of the weak nonlinear system. When the strong nonlinear
system vibrates, the curves show that the maximum ampli-
tude of the first-order approximate solution of x increases
with the increase in the cubic term coefficient in Fig. 4.
A larger resonance amplitude can be obtained from a smaller
excitation amplitude for strong nonlinear resonance, which
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FIGURE 4. First-order approximate solutions.

provides a theoretical basis for the design of the VSR device
for nonlinear superharmonic resonance.

FIGURE 5. Comparison of the first-order approximate solutions.

Compared with the strong nonlinear calculation method
used in reference [13], the same parameters are used for the
calculation and numerical solution [22], as shown in Fig. 5.
It can be found that the result of the method used in this paper
is close to the numerical solution and has high accuracy.

B. FREQUENCY AMPLITUDE RESPONSE ANALYSIS OF THE
STIFFNESS PARAMETERS
The influence of stiffness parameters on system resonance
is analysed according to the amplitude-frequency equation.
As shown in Fig. 6, when the cubic term coefficient increases
gradually, the frequency curve of the third harmonic response
moves to the right, the amplitude of the resonance point and
the region of superharmonic resonance also increase, and the
amplitude-frequency curve exhibits a jumping phenomenon.
Setting the same parameters above and taking different stiff-
ness coefficient values, the maximum value of the amplitude
is determined (the value of the highest point in Fig. 6),
as shown as the ‘∗’ in Fig. 7. Due to the different excitation
force frequencies, excitation force amplitudes and damping

FIGURE 6. Analysis of the frequency amplitude response of the strong
nonlinear system.

FIGURE 7. Frequency response analysis of different stiffness systems.

used in practice, the response amplitude is also different.
Therefore, the different stiffness coefficients and amplitudes
are used as variables. Through data fitting, it is found that the
relationship between the nonlinear stiffness parameters and
amplitude satisfies as the following:

1a ≈ 0.47η1k (26)

where 1k3 is the difference between the two stiffness coef-
ficients, 1a is the increased amplitude value caused by 1k3,
and η is the error coefficient due to different excitation force
frequencies and damping.

III. EXPERIMENT
To further explore the influence of the nonlinear stiffness
coefficient on the system, the relationship between the non-
linear parameters and amplitude is verified by an exper-
iment. The experimental equipment include a DZST-3B
multi-function combination test-bed, Microcomputer con-
trolled electronic universal testing machine of WDW type,
JZK-2 exciter and SHX2112 VSR instrument. The test vibra-
tion signal is collected by a Jingnan data acquisition instru-
ment. The main hardware includes a MDR mobile data
recorder, 608A11/M010AC acceleration sensor, and note-
book computer; the software includes mobile data acquisition
software and DDP spectrum analysis software.
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FIGURE 8. Compression test of cylindrical spiral springs.

FIGURE 9. Simulated vibration table.

A. METHOD
Three groups of cylindrical spiral springs with different
parameters are selected, and the spring compression test (as
shown in Fig. 8) and origin software are used to fit the curves
to obtain the characteristic spring equation with different
stiffness coefficients. A cylindrical workpiece with a diam-
eter of 50 mm is selected as the object and the acceleration
sensor is installed on the cylinder close to the excitation
block. Considering the accuracy of the data, the electromag-
netic vibrator is installed upside down on the cylinder and the
excitation force acts on the cylinder through the clamp block,
as shown in Fig. 9. The excitation force and frequency output
from the electromagnetic exciter is controlled by the signal
generator. During the experiment, the excitation voltage of
each spring vibration process is maintained by the signal
generator. The recorder collects the vibration signals of the
supporting cylinders of each group of springs with three
resonance response signals and the average value of the data.

B. RESULTS AND DISCUSSION
The analysis results of the experiment are shown in Table 1.
In practice, the characteristic equation of the fitted spring
equation contains square and cubic terms, and a spring with
similar linear and square terms as those in the characteristic
equation are selected to ensure the accuracy of the cubic

TABLE 1. Experiments of springs with different cubic stiffness
coefficients.

stiffness parameter experiment. Three groups of springs with
different cubic term stiffness parameters with second and
third harmonic responses on the cylinder at an excitation
frequency of 20 Hz are shown in Fig. 10 to Fig. 12. It is found
that the workpiece has achieved superharmonic resonance
under the experiment, and the VSR treatment of the high
stiffness workpiece can be realized under the condition of
reasonably selecting the parameters.

FIGURE 10. Results of spring No. 1.

FIGURE 11. Results of spring No. 2.

Through the analysis with an amplitude of 60 Hz, with the
increase in the cubic term of the spring equation, the ampli-
tude increases gradually, and the occurrence of the third
harmonic resonance becomes more obvious. The experiment
values of 3 groups of different parameters of the spring
meet (26) under the condition of allowable error by setting
η = 0.1 and calculating the amplitude of three times the
frequency.

To prove the application in practice, the response amplitude
of the superharmonic resonance required of the workpiece is
assumed to be 0.43 mm - 0.68 mm. Therefore, a spring with
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FIGURE 12. Results of spring No. 3.

a cubic term stiffness parameter of 8.236 N/mm is selected
for the experiment, and the response is shown in Fig. 13. The
three times response amplitude is 0.483 mm, which meets the
requirements.

FIGURE 13. Experimental results of nonlinear superharmonic resonance.

The analysis above proves the correctness of the theoreti-
cal analysis. When designing the VSR device for nonlinear
superharmonic resonance, the higher the nonlinear coeffi-
cient of the nonlinear spring used by the platform, the more
helpful it is to excite the nonlinear resonance at a higher fre-
quency. The high stiffness workpiece can obtain a sufficiently
large dynamic stress for larger amplitude resonance, which
meets the requirement for eliminating residual stress. A suit-
able spring can be quickly obtained through the relationship
between the stiffness parameters and amplitude according to
the required amplitude.

IV. CONCLUSION
This paper studies the VSR device for nonlinear superhar-
monic resonance. System analyses and simulated vibration
table experiments are applied. The most important results of
this research are summarized as follows:

(1) When the VSR device is in strong nonlinear vibra-
tion, the strong nonlinear quantitative method (modified LP
method) has higher accuracy than other methods. This proves
that a large resonance amplitude can be obtained with a
small excitation amplitude which provides a basis for the
application of the superharmonic VSR device;

(2)With the increase in the stiffness parameters of the cubic
term of the nonlinear spring, the superharmonic resonance
amplitude increases gradually and satisfies a certain rela-
tional expression, which is demonstrated in the experiment;

(3) According to the amplitude conditions required by the
high stiffness workpiece, a suitable spring can be quickly
selected based on the relationship between the nonlinear
stiffness parameter and the amplitude, which can save time.
The results also can be applied to common strong nonlinear
systems;

(4) A device with a cubic nonlinear spring can result in
the large frequency range of the superharmonic response.
Excitation near the true fraction of the natural frequency of
the system may also obtain a more obvious superharmonic
resonance response, and it is greatly affected by the coeffi-
cient of the nonlinear term. The reasons and rules for this
behaviour need to be further studied.

The above conclusions prove the correctness and appli-
cation feasibility of the theory of the nonlinear superhar-
monic resonance platform of high stiffness workpieces and
provide an effective method for solving the problem that
VSR cannot eliminate the residual stress of high stiffness
workpieces.
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