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ABSTRACT Autonomous robot visual navigation is a fundamental locomotion task based on extracting
relevant features from images taken from the surrounded environment to control an independent displace-
ment. In the navigation, the use of a known visual map helps obtain an accurate localization, but in the
absence of this map, a guided or free exploration pathway must be executed to obtain the images sequence
representing the visual map. This paper presents an appearance-based localization method based on a visual
map and an end-to-end Convolutional Neural Network (CNN). The CNN is initialized via transfer learning
(trained using the ImageNet dataset), evaluating four state-of-the-art CNN architectures: VGG16, ResNet50,
InceptionV3, and Xception. A typical pipeline for transfer learning includes changing the last layer to adapt
the number of neurons according to the number of custom classes. In this work, the dense layers after
the convolutional and pooling layers were substituted by a Global Average Pooling (GAP) layer, which
is parameter-free. Additionally, an L2-norm constraint was added to the GAP layer feature descriptors,
restricting the features from lying on a fixed radius hypersphere. These different pre-trained configurations
were analyzed and compared using two visual maps found in the CIMAT-NAO datasets consisting of 187 and
94 images, respectively. For evaluating the localization tasks, a set of 278 and 94 images were available for
each visual map, respectively. The numerical results proved that by integrating the L2-norm constraint in
the training pipeline, the appearance-based localization performance is boosted. Specifically, the pre-trained
VGG16 and Xception networks achieved the best localization results, reaching a top-3 accuracy of 90.70%
and 93.62% for each dataset, respectively, overcoming the referenced approaches based on hand-crafted
feature extractors.

INDEX TERMS Transfer learning, convolutional neural networks, robot localization, visual robot
navigation.

I. INTRODUCTION
Autonomous navigation is a highly desired capability in
mobile robotics because it allowsmoving from an initial posi-
tion towards the desired target without external intervention
in changing environments. For allowing a robot to evolve
autonomously in a complex and dynamic environment,
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it needs to: develop a reliable perception system (based on
intelligent sensors), build an appropriate representation of the
environment (mapping), and learn to self-localize into the
map [1]. Hence, a locomotion strategy and obstacle avoidance
must be implemented in real-time to be sent to the robot mov-
ing control system as a conclusive experimental evaluation.
Robot perception could be based on many available sensors.
Nevertheless, vision systems are one of the most emblematic
and rich sources of information, considering that many daily
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FIGURE 1. Humanoid robot appearance-based localization framework. The robot is initially kidnapped, and the
method should give as an output the most similar key-image within the set of images in the visual map.

human activities depend highly on vision. Artificial vision
systems are mainly classified into monocular or 2D systems
using a single camera and 3D systems using a stereo-vision
setup. Robot navigation based on 2D data provided by an
on-board camera has increased the interest of the scientific
community because of the relative hardware simplicity and
dynamic source of information to obtain confident locomo-
tion tasks [2]. Amethodology widely studied in the context of
wheeledmobile robots is the creation of a visual memorymap
for autonomous driving [3], [4]. Among the state-of-the-art
robot navigation modalities, it is important to notice that the
visual map-based navigation systems typically include four
fundamental stages [3], [4]:

1) A learning stagewhich consists of constructing a visual
map of an unknown environment using a subset of
images (i.e., key-images) taken previously by the robot
during the human-guided navigation.

2) A localization stage which uses recognition algorithms
to find the best correspondence between the most sim-
ilar image in the visual map and the current robot view
translated to real-world positioning coordinates.

3) A visual route planning stage which searches a set of
discriminant images or landmarks on the visual map
allowing the robot to reach a given spatial position.

4) An autonomous navigation stage which allows the
robot to move to a particular location associated with
the desired key-image by freely following the prede-
fined visual path.

Such a methodology represents the whole environment as a
collection of indexed images in a direct graph. While each
node represents a specific location in the environment, each
edge gives the associated weight complexity to move from
one node to another. As earlier mentioned, the visual map
approach was initially applied to the locomotion of wheeled
mobile robots. Notwithstanding, this approach has been
recently applied to implement advanced tasks on humanoid
robots, such as a model predictive control scheme for visual

walking pattern generation [5]. Humanoid robots include
some non-linear issues on the dynamic model and sen-
sors reading. For instance, during the robot displacements,
the biped locomotion produces blurred images, and the sway
motion induces image rotation around the camera optical
axis. Such a methodology includes a visual map built by
selecting a subset of images (key-images) from a learning
sequence. This sequence is captured during the learning stage
under two constraints. Firstly, two consecutive key-images
must share enough visual information so that visual naviga-
tion between them could be computed. Secondly, the number
of key-images should be compact and representative. Hence,
the appearance-based localization paradigm consists of find-
ing (i.e., indexing) the most similar key-image regarding the
currently observed image.

Appearance-based localization, derived from handcrafted
approaches, relies on the number of features extracted and
matched between the currently observed image and the
key-images. However, in recent years, these methods have
been technically surpassed by automatic feature extraction
through Deep CNN. This last approach also has some lim-
itations, requiring a vast number of training images. Besides,
when using the SoftMax loss function, it cannot force features
to have a higher discriminative power, not ensuring to keep
positive pairs closer and negative pairs farther from each
other.

In this work, an L2-norm constraint was introduced on the
features extracted by a set of pre-trained CNNs to tackle
the problem of obtaining closer feature representation from
two dissimilar images. Normalizing the features shows an
improvement concerning the non-normalized features in the
appearance-based localization in a visual map problem. This
methodology was tested using the CIMAT-NAO datasets
from the humanoid robot NAO [6]. Figure 1 shows the pro-
posed approach to address the appearance-based localization
in a visual map task, where a reliable feature descriptor
is obtained from a pre-trained CNN. Consecutively, a nor-
malization feature step is carried out before classification;
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therefore, enforcing the features to lie into a hypersphere.
Thus, the classification matches the currently observed image
and a key-image of the visual map.

The contributions derived from this study are as follows:
First, an L2-constraint is incorporated during the training step.
The approach intends to relax the features to lie into a hyper-
sphere of fixed radius leading to higher discriminating power.
Second, a Global Average Pooling layer (being parameter-
free) was used instead of the fully connected layers at the top
of the pre-trained network to reduce the number of trainable
parameters. Third, each key-image of the visual map is passed
through a data augmentation procedure to generate multiple
images from each location, ensuring a balanced dataset and
aiming that the neural network to learn different views of
one key-image. Finally, the overall framework is efficiently
applied to the visual localization of humanoid robots in
indoor environments.

The paper is organized as follows. The related work is
presented in Section II. The theoretical background is given in
Section III. Subsequently, the proposed method is described
in Section IV. The numerical results are shown and inter-
preted in Section V, and finally, the conclusions are given in
Section VI.

II. RELATED WORK
An autonomous robot localization using only visual infor-
mation, also known as an appearance-based localization
system, is difficult to implement because of many factors
such as illumination, perspective, and type of sensors [7].
Purely appearance-based approaches assume that the robot
has no explicit or reliable position/odometry information (i.e.,
GPS-less environment, unequal or slippery floor contact).
Furthermore, this kind of task needs to face the perceptual
aliasing problem, which happens when two dissimilar loca-
tions share a similar visual appearance. The practical objec-
tive of robot appearance-based localization is to determine the
reference image (in a previously learned set of images), that
is, the most similar in appearance to the currently captured
image.

Most relevant visual information (features) needs to
be extracted from datasets to determine the similarity
between compared images. Previously works employed
hand-crafted local feature extractors such as the Speeded-Up
Robust Features (SURF) [8], Scale Invariant Feature Trans-
form (SIFT), Binary Robust Independent Elementary Fea-
tures (BRIEF) [9], or Oriented FAST and Rotated BRIEF
(ORB) [10]. In indoor environments, Aldana et al. [11]
propose a local descriptor based on BRIEF to deal with
the humanoid robot locomotion issues: blurring and rota-
tion around the optical axis. The authors solved an
appearance-based localization problem using only visual
information in the humanoid robot NAO.

Nowakowski et al. [12], introduced an indoor topological
localization algorithm that uses visual andWi-Fi information.
They developed an algorithm that solves global localization
and kidnapped robot problems by mergingWi-Fi information

with the Fast Appearance-Based Mapping (FABMAP) algo-
rithm [13]. The aim of combining Wi-Fi and FABMAP
vocabularies is to deal with complicated cases where dis-
tinct locations have similar visual appearances. The resulting
algorithm was tested with a Pepper robot data, a sociable
humanoid type robot with omnidirectional wheels. The cap-
tured images from the robot have no remarkable orientation
concerning the camera optical axis.

Deep CNN-based methods have recently been investigated
to overcome inconveniences of classical hand-crafted image
feature representations. For instance, Sunderhauf et al. [14]
demonstrated the benefits of using a pre-trained AlexNet [15]
architecture for visual place recognition tasks on robots
evolving in outdoor environments. Place recognition is per-
formed by a single-image Nearest Neighbor (1-NN) search
that is based on the extracted cosine distance of the feature
vectors. Li et al. [16] proposed a method to measure image
similarity; their method is based on features extracted by
the pre-trained AlexNet architecture. In such an approach,
the image is divided into patches to obtain a global simi-
larity matrix constructed according to the patch similarities.
Lastly, an adaptive weighted scheme determines the overall
image similarity. Moreover, Wozniak et al. [17] proposed a
CNN-based algorithm for indoor place recognition. It uses
transfer learning to retrain a VGG network [18] to classify
places in images acquired by a humanoid robot navigating in
different indoor environments. The network was fine-tuned
using a dataset containing 8000 images recorded in sixteen
rooms.

In this paper, the image feature representation for the
appearance-based localization of a robot in a visual map was
addressed using themost relevant and recent pre-trained CNN
architectures. In particular, the VGG16 [18], ResNet50 [19],
InceptionV3 [20], and Xception [21] architectures were ana-
lyzed. Additionally, an L2-norm constraint was added to map
the obtained features into a fixed radius hypersphere. Thus,
all features have the same L2 norm with a constant relaxing
value given by the hypersphere radius. Furthermore, a data
augmentation step was implemented before training because
of the sparse representation of the visual map, where each
key-image represents a node in the graph (i.e., one location
in the map). By doing so, each node is now represented by a
full set ofN augmented images. The top-k similar key-images
are considered as possible match because they can handle the
presence of close similar key-images within the visual map.

It is worthy to note that structurally, two consecutive
key-images share visual information such that a control pol-
icy can be computed between them. The evaluation and com-
parison of the performance of different pre-trained CNN are
analyzed using two datasets captured from anNAOhumanoid
robot concerning the visual map and query images.

The numerical results have shown that using an L2-norm
constraint (for the image feature representation) that has been
extracted by a pre-trained CNN improves the localization
performance. Furthermore, no dense layers after the con-
volutional and pooling layers were required during training
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FIGURE 2. The architecture of a typical Convolutional Neural Network, consisting of three main types of layers: convolutional,
pooling, and fully connected layers.

because they were substituted by a Global Average Pooling
layer, which is parameter-free. Consequently, the number of
hyperparameters is drastically reduced when compared with
the number of free parameters that hand-crafted approaches
require, i.e., the size and number of local features, depth, and
clusters.

III. THEORETICAL BACKGROUND
A. CONVOLUTIONAL NEURAL NETWORKS
Convolutional Neural Networks are a special type of neu-
ral networks that are used in deep learning. They are most
commonly used to perform image classification tasks [15].
CNNs consist of a group of alternating convolutional and
pooling layers attempting to extract discriminative features
(e.g., edges, interest points) across a large set of input images.
The extracted features are, then passed through a set of fully
connected layers to estimate the correct class for each input.

The convolutional layer uses K filters that perform convo-
lution operations over the input data or image. Every filter is
represented by a small spatial 2Dmatrix (e.g., 3×3 size filter)
extended through the full-depth of input data. All filters are
convolved across the complete input image to produce a 2D
activation map for each filter during the optimization process.
The activation map or feature map gives the responses of
a given filter at every spatial position. Each feature map is
defined as follows:

Ok = f

(
bk +

∑
c

Wk [c] ∗ I [c]

)
, (1)

where f is a non-linear activation function, bk is the k-bias,
I [c] is the image at c-channel, Wk [c] is the k-filter, and ∗
denotes the convolution operation. Therefore, a CNN creates
dynamic filter that allows the network to detect a specific
or relevant type of visual features. Hitherto, the features
extracted from low-level layers are more generic (e.g., lumi-
nance, edges, contrasting colors, and curves) than those
extracted by the top-layers.

The pooling layer, also known as the downsampling layer,
is typically applied in-between successive convolution lay-
ers. The main purpose of the pooling layer is to reduce the
spatial size of the feature maps. Furthermore, the pooling
layer reduces the number of parameters in the network and

controls overfitting [22]. The most common forms of pooling
are the max-pooling and average-pooling. In max-pooling,
the maximum value around a window is taken. On the other
hand, average-pooling computes the mean value of the win-
dow. The pooling layer size is 3 × 3 pixels with a 2-pixel
stride is common practice. It is noteworthy that a stride of 2
downsamples every feature map by 2 (along both width and
height), discarding 75% of the activations.
Fully connected layers are usually found at the end of CNN

architectures, which connect every neuron in the previous
layer to every neuron on the next layer. The extracted features
from previous layers are then used for classifying the input
image into their corresponding class. Figure 2 illustrates a
typical CNN architecture, consisting of several pairs of con-
volutional and pooling layers (feature extraction) followed
by consecutive fully connected layers (feature selection).
Finally, the last classification layer is used to generate the
predicted class labels.

B. TRANSFER LEARNING
Generally, training a CNN from scratch (with random initial-
ization), where the unknown network weights are updated
in each epoch through backpropagation by minimizing a
specific cost function, requires a large training dataset to
achieve high accuracy. Thereunto, Transfer Learning (TL)
[23] addresses this challenge by transferring the learned
knowledge on a large dataset, such as ImageNet [24] that
contains 1.2million images with 1000 categories, tomodestly
related datasets. Hence, pre-trained CNNs can be used either
as a weight initialization or as a fixed feature extractor for the
task of interest.

In the first scenario, the pre-trained CNN is taken as a fixed
feature extraction. Certainly, the features can be extracted
from any layer of the CNN. A widespread practice is to
change the number of neurons of the last fully connected layer
to the number of classes in the problem and optimize the net-
work with the pre-trained weights set into non-trainable dur-
ing the optimization process. The second strategy fine-tunes
the weights of the pre-trained network during the optimiza-
tion of the analyzed task. The number of fine-tuned layers
depends on the dissimilarity of the source and target dataset
domains [25].
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FIGURE 3. The pipeline of the proposed appearance-based localization in a visual map. A Global Average Pooling (GAP) was added to extract a
feature descriptor from the pre-trained network outcome. Finally, an L2-norm normalization and scale layer is used to constrain the feature
descriptors to lie on a hypersphere of radius α.

TABLE 1. Pre-trained CNN models overview. The Top-1 accuracy refers to
the model performance on the ImageNet validation dataset.

This paper evaluates four state-of-the-art network
architectures pre-trained on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) competition as a feature
extractor. These networks exhibit an interesting trade-off
between computational requirements and performances:
VGG16, ResNet50, InceptionV3, and Xception. Table 1
shows a general overview of these last CNNs architectures. It
is noteworthy that these networks employ a Rectified Linear
Unit (ReLU) as an activation function and pooling layers
with a stride of two pixels. The ReLU activation function is
formally defined as

f (x) = max(0, x), (2)

where x is the outcome of the convolution operation described
by (1).

IV. PROPOSED VISUAL LOCALIZATION METHOD
This paper proposes an end-to-end CNN architecture for the
appearance-based localization on a visual map problem. The
CNN was pre-trained via transfer learning. A global average
pooling was added after the convolutional and pooling layers
to obtain a feature vector descriptor for the given input image.
Finally, an L2-norm constraint is used to transform or project
the feature descriptor into a hypersphere of a fixed radius α.
This constraint was earlier introduced by Ranjan et al. [26]
for discriminative face verification showing a significant
boost in classification performance. The general pipeline of
the proposed appearance-based localization in a visual map
is shown in Figure 3.

A. FEATURE DESCRIPTOR EXTRACTION
Given a visual map defined by

9 = {(Ii, yi), i ∈ {1, 2, · · · ,m}}, (3)

with m key-images corresponding to m locations (classes yi),
a pre-trained CNN is taken as a classification task keeping the

convolutional and pooling layers non-trainable and adding
a new classification layer at the top of the network. First,
a data augmentation procedure was performed due to a sparse
representation of each class, including rotation, zooming, and
shifting. This last step generatesN additional views Î for each
location concerning the visual map, such that the augmented
data is given by

Ii = {Îj, j ∈ {1, 2, · · · ,N }}. (4)

Secondly, the augmented images are re-scaled to match the
input dimension of the pre-trained network. The height,
width, and the number of channels of the input image denoted
by HI × WI × CI are re-scaled to the network input size
HN × WN × CN . Later, the re-scaled images are forwarded
through the pre-trained network E .
The output feature maps xl from an arbitrary layer l of

dimensions Hl × Wl × Kl is extracted, where Kl is the
number of features maps, and Hl andWl are their height and
width, respectively. A Global Average Pooling (GAP) [27]
to transform the feature maps into a reduced representation
is carried out, yielding a feature vector descriptor z ∈ RKl .
The GAP operation reduces the preceding layer size by taking
each feature map average as follows

z = GAP(xl) = avg(xk ) = xk , k ∈ Kl . (5)

B. L2-SOFTMAX LOSS
Figure 3 shows a pre-trained CNN, in which given a training
sample, a set of features are extracted through a set of convo-
lutional and pooling layers. Subsequently, some linear layers
and a classifier layer are used to determine whether the input
image belongs to a specific class with an associated probabil-
ity. As with any classical multi-class classification problem,
the network weights are optimized by backpropagation by
calculating the categorical cross-entropy loss, minimizing the
corresponding loss function. Therefore, the loss function is
given by

L = −
1
M

M∑
i=1

log
exp

(
Wᵀ

yizi + byi
)

C∑
j=1

exp
(
Wᵀ

j zi + bj
) , (6)

where M is the training batch size, zi is the corre-
sponding i-features descriptor in the batch before the last
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fully-connected layer,C is the number of classes, yi is the cor-
responding class label, andW and b are the trainable weights
and bias in the network, respectively. The SoftMax loss func-
tion (6) is biased to the sample distribution, not optimizing to
obtain positive pairs closer and negative pairs far from each
other. A feature normalization can be applied to solve these
issues. By doing so, allows the features descriptors to lie on a
hypersphere. In specific, a 2nd order normalization is based on
the L2-norm given by ‖z‖2 =

√
zᵀz,which maps the features

to lie in a unitary hypersphere. The L2-SoftMax loss is given
by

L = −
1
M

M∑
i=1

log
exp

(
Wᵀ

yizi + byi
)

C∑
j=1

exp
(
Wᵀ

j zi + bj
) ,

s.t. ‖zi‖2 = α, ∀i = 1, 2, · · · ,M , (7)

where α is a scalar value for relaxing the radius of the
hypersphere. As shown in Figure 3, the L2-softmax loss relies
on three steps. First, an L2 normalize layer re-scales the input
feature descriptor z to a unit vector as follows

ẑ =
z
‖z‖2

. (8)

Then, the normalized feature descriptors are scaled to a fixed
radius given by α such that the new vector is represented by

v = α · ẑ. (9)

Finally, the L2-SoftMax loss is minimized during the training
process by computing the loss function gradient with respect
to the current weights’ values. This constraint introduces
one scalar parameter (α) that is trained along with the other
parameters of the network during backpropagation.

C. LOCALIZATION PROCESS
The localization process consists of determining a poten-
tial match between the current image scene Ic and previ-
ous image locations Ik ∈ 9. The key-image and current
image are symbolically matched according to their respec-
tive predicted class probabilities. As mentioned before, con-
secutive key-images in the visual map share similar visual
information such that a control policy must be computed
to reliably move the robot from one location to the other
on the map. Therefore, the appearance-based localization
task faces perceptual aliasing, where two separate locations
share a similar visual appearance. Figure 4 illustrates a real
example of this visual map constraint. To handle the presence
of close, similar key-images within the visual map, a top-k
accuracy was employed. The top-k accuracy computes how
often targets are in the top-k predictions (the k-ones with the
highest probabilities).

V. RESULTS AND DISCUSSION
In this section, a brief description of the public datasets
used in the proposed method is first introduced. Second,
the hyper-parameters employed to train the proposed CNN

FIGURE 4. Consecutive key-images in the visual map. The key-images
share a portion of the field of view of the previous key-image.

FIGURE 5. Representative key-images in the visual map taken from the
on-board camera in the robot NAO [6].

FIGURE 6. New image samples generated by data augmentation. Left
image: original key-image.

is described. Finally, performance comparisons are car-
ried out using different pre-trained CNNs and an L2-norm
constraint. The results are also compared with a base-
line hand-crafted approach implemented for a humanoid
robot. The computational experiments were performed on a
Cloud Platform with an Intel(R) Xeon(R) CPU, 12 GB of
RAM, and 2.00 GHz dual-processor. The GPU Platform was
based on a Tesla P4 having 2560 CUDA cores and 8 GB
VRAM. The experiments were conducted in Python 3.6,
Keras 2.3.1, and TensorFlow 2.2.0. The code can be found
on https://github.com/eovallemagallanes/Transfer-Learning-
Localization.

A. DATASETS USED IN EVALUATION
The proposed appearance-based localization methodology
was tested on two distinct datasets publicly available online
as CIMAT-NAO [6]. These datasets correspond to indoor
environments taken by an NAO humanoid robot. The
first dataset (CIMAT-DATASET-A) contains 445 images
of 640× 480 pixels divided into two subsets: 187 images
(hand-selected) as the visual map and 258 images for
testing. The second dataset (CIMAT-DATASET-B) consists
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FIGURE 7. Localization results using the CIMAT-NAO-A dataset. At left: Query image, next three images: Top-3 class probabilities.
Under each retrieved key-image, the probability is shown. In a green box, the ground-truth key image is highlighted. The last row
indicates when the top-3 retrieved key images are not the ground-truth localization key image.

of 188 images of 640× 480 pixels, where 50% were consid-
ered for the visual map and the remainder for testing. Some
dataset images are seriously affected by rotation, blur, and
illumination changes that originated intrinsically by robot
locomotion. Figure 5 shows two representative database
elements exhibiting defects in quality and image artifacts.
In the numerical experiments, pixels range were linearly
transformed from [0, 255] to [0, 1]. Besides, the images
were downsampled to size 224 × 224 and 299× 299 pixels
to fit the original image dimensions in the pre-trained
networks.

B. TRAINING PROCESS
The Adam optimization method was used to find the opti-
mal solution during the training of the network [28]. The
optimization was reinforced by minimizing the L2-SoftMax
loss function given by (7). Each architecture (i.e., the four
different pre-trained networks) was trained with similar
tuning parameters, a learning rate of 0.01 for 100 epochs.

Furthermore, the batch size was fixed to 128, and an early
stopping strategy based on the validation loss was imple-
mented to reduce overfitting risks. During the optimization,
the pre-trained weights remain as non-trainable; conse-
quently, their weights remain fixed. As mentioned earlier,
each key-image of the visual map is passed through a
data augmentation procedure to generate multiple images
from one location (associated with a class). Specifically,
for each key-image, a set of 30 images was generated;
this process is shown in Figure 6. This step was obvi-
ously executed before training. Next, the newly gener-
ated images are only considered to create a training data
set. Whilst the original key-images are used in the val-
idation set. This data distribution aimed that the neural
network learns different views (representations) of one
key-image to simulate scenarios. Furthermore, a valida-
tion set is not provided in the original dataset because
of dataset sparsity. Notwithstanding, a balanced dataset
was ensured by using transfer learning and the proposed
distribution.
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FIGURE 8. Localization results using the CIMAT-NAO-B Dataset. At left: Query image, next three images: Top-3 class
probabilities. Under each retrieved key-image, the probability is shown. In a green box, the ground-truth key image is
highlighted. The last row indicates when the top-3 retrieved key images are not the ground-truth localization key image.

C. PERFORMANCE COMPARISON
The proposed approach was designed to evaluate the
appearance-based localization in a visual map using a
pre-trained CNN as a feature extractor. Additionally, this
study was performed to analyze the effect of an L2-
normalization applied in the extracted feature descriptor. For
comparison purposes, the CNNs have been evaluated without
using the L2 constraint.
Additionally, a custom hand-crafted feature descriptor pro-

posed for humanoid robot localization was taken into account
as a baseline. It is critical to define a fair k value for the
top-k accuracy measure. In this work, the top 3 probability
predictions were considered to estimate reliable localization
results. Table 2 summarizes the performance of the localiza-
tion accuracy of each pre-trained CNNswith L2-SoftMax loss
and (traditional) SoftMax loss functions for CIMAT-NAO
datasets. For the first dataset, the VGG16 with L2-SoftMax
obtained the best top-3 results with accuracy of 90.7%. On the
other hand, the second dataset achieved accuracy of 93.62%
employing an Xception network with L2-SoftMax loss

TABLE 2. Localization accuracy results. For each CNN architecture the
top-3 accuracy is showed.

function. It can be noticed that the localization performance
employing a pre-trained CNN overcame the hand-crafted
reference approach (BRIEFROT [11]) that reached only
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accuracy of 75.19% and 86.17%, for each dataset, respec-
tively. Furthermore, the L2-norm constraint maps the features
into a hyper-sphere, and therefore, boosts the accuracy for
the VGG16 and InceptionV3 for the first dataset. In contrast,
Xception and InceptionV3 (for the second dataset) reached
the same accuracy when using the traditional SoftMax loss to
compare the results. The scale parameter α reaches a range
around (30, 50) and (12, 29) for each dataset, respectively.

Figure 7 shows several examples of the localization process
for the CIMAT-NAO-A dataset using the top-3 predictions.
Such results are generated by the VGG16 network with
the L2-SoftMax loss function. For each query image at the
left, the best three predictions are shown at its right. The
ground-truth localization image is surrounded by a green
bounding box within the visual map. Similarly, Figure 8 illus-
trates the top-3 outcomes using the Xception network with
the L2-SoftMax loss and CIMAT-NAO-B dataset. Besides,
the 3-one’s images with the highest probabilities are retrieved
for each query image.

In both cases, the top-3 key-images associated with a given
query image are remarkably similar because they share visual
information. Ergo, the key-images exhibit light changes in
lighting, zooming, contrast, or blurring among them. A dif-
ficult example occurs when the ground-truth key-image does
not belong to the top-3 retrieved key-images. Such a case is
shown in Figures 7 and 8 (see the corresponding last rows).
In the first scenario, the retrieved images only contain a small
region in common. On the other hand, the key-images are
very similar for the second dataset, but they hold different
zooming scales. Despite those inconveniences, the localiza-
tion approach detects key-images such that a visual control
policy can be computed between them.

Some factors may influence localization performance, and
like its handcrafted counterpart, the method found difficul-
ties when key-images exhibit defects in quality and artifacts
such as in high-contrasted and blurred images. Additionally,
the generated images during the data augmentation procedure
could also be affected by perceptual aliasing, leading to a
similar feature representation.

However, the proposed method provides a solution to
solve a limited amount of key-images within the visual map,
such that a Deep CNN approach can be successfully applied.
Moreover, the L2-norm constraint included in the feature
descriptors yields better accuracy, increasing by 15% and 7%
of performance against the handcrafted approach for each
dataset, respectively.

VI. CONCLUSION
In this paper, four different state-of-the-art CNN architectures
were evaluated for the humanoid robot appearance-based
localization problem. These architectures were initialized via
transfer learning. Note that these networks were previously
trained with the ImageNet dataset. For each pre-trained archi-
tecture, concerning the VGG16, ResNet50, InceptionV3, and
Xception, the weights during the optimization process remain
unchanged. The numerical results have demonstrated that

employing a pre-trained network on a sparse visual map effi-
ciently performs the appearance-based localization task. An
end-to-end architecture that comprises the pre-trained con-
volutional and pooling layers, a global average pooling, and
a SoftMax layer allowed obtaining an accuracy improvement
regards the baseline localization approach using hand-crafted
feature extractors. Furthermore, an L2-norm constraint was
included in the feature descriptors, yielding a boosted accu-
racy for the VGG16 and Xception architectures. In particular,
numerical results using the first and second datasets with the
proposed architecture reached a top-3 accuracy of 90.70%
and 93.62%, respectively. According to the top-3 retrieved
key-images visual examination, it was found that the presence
of blur and drastic changes in perspective and zooming on
the scene may affect the predicted most similar key-image.
Finally, the appearance-based localization in a visual map
employing transfer learning leads to strong improvement
with respect to features extracted by traditional hand-crafted
approaches.
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