
Received December 13, 2020, accepted December 23, 2020, date of publication January 1, 2021, date of current version January 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3048848

Bypassing Anti-Analysis of Commercial
Protector Methods Using DBI Tools
YOUNG BI LEE , JAE HYUK SUK , AND DONG HOON LEE , (Member, IEEE)
Graduate School of Information Security, Korea University, Seoul 02841, South Korea

Corresponding author: Dong Hoon Lee (donghlee@korea.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government Ministry of
Science and ICT (MSIT) under Grant NRF-2017R1A2B3009643.

ABSTRACT As most malware is infectious, anti-analysis and packing techniques supported by commercial
protectors are conventionally applied to hinder analysis. When analyzing to detect and block such protected
malware, it is necessary to do so in a virtual environment to prevent infection. In terms of packing,
it is necessary to analyze using dynamic binary instrumentation (DBI), a dynamic analysis tool, which is
advantageous for unpacking because DBI inserts code at run time and analyzes it dynamically. However,
malware terminates on its own when it detects a virtual environment or DBI due to anti-analysis techniques.
Therefore, it is necessary to also bypass anti-VM and anti-DBI techniques in order to successfully analyze
malware in a virtual environment using DBI. It is very difficult for analysts to bypass anti-VM and anti-DBI
techniques that are used in commercial protectors because analysts generally have little information on what
methods are used or how to even bypass these techniques. In this paper, we suggest guidelines to aid in easy
analysis of malware protected by anti-VM and anti-DBI techniques supported by commercial protectors.
We analyzed the techniques used by five of the most common commercial protectors, and herein present
how to bypass anti-VM and anti-DBI techniques supported by commercial protectors via a detailed algorithm
analysis. We performed a bypass experiment after applying each commercial protector to 1573 executable
files containing vulnerabilities provided by the National Institute of Standards and Technology (NIST).
To our knowledge, this is the first empirical study to suggest detailed bypassing algorithms for anti-VM
and anti-DBI techniques used in commercial protectors.

INDEX TERMS Obfuscation, commercial protectors, anti-analysis, anti-VM, anti-DBI, DBI tool.

I. INTRODUCTION
There is a steady increase in attacks utilizing malware
on computer systems. Most malware is distributed via
application of anti-analysis techniques and packing, a code
obfuscation technique, while still supported by commercial
protectors, inhibiting antivirus programs from detecting the
presence of such malware. However, if anti-analysis tech-
niques are applied, the malware may be forcibly terminated
depending on the existence of a virtual environment or a
debugger. Packing is a technique that changes the control flow
of program execution, making it difficult to analyze. As such,
many analysts use dynamic binary instrumentation (DBI)
tools to analyze the packing of commercial protectors [1]–[3].
DBI tools insert executable code at run time to help

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

dynamically analyze program behavior and make it possible
to effectively assess obfuscation and packing techniques. Pre-
vious studies using DBI tools have already suggested various
methods for unpacking or effectively analyzing programs
protected by commercial protectors.

It is important to use a virtual environment when analyzing
actual malware with certain commercial protectors that use an
analysis method coupled with a DBI tool. This is because the
host OSmay become inadvertently infected while performing
the malware analysis. However, if an anti-virtual machine
(anti-VM) technique is applied to the malicious code, anal-
ysis methods using DBI tools cannot be used in a virtual
environment. In addition, even when anti-DBI techniques are
applied, analysis methods using DBI tools still cannot be
used. Therefore, it is crucial to bypass anti-VM and anti-DBI
techniques in order to analyze malware used on commercial
protectors using DBI tools more efficiently in the field.

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 7655

https://orcid.org/0000-0002-0513-9891
https://orcid.org/0000-0002-2466-1503
https://orcid.org/0000-0003-0692-2543
https://orcid.org/0000-0003-3264-185X


Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

Assessment in this context is time consuming, as analysts
must bypass the protected techniques before using DBI tools
to analyze themalware. The longer it takes to analyze themal-
ware, the more damage can occur because antivirus programs
will not be able to update. In light of this, analysts must also
understand anti-VM and anti-DBI techniques used in com-
mercial protectors. In order to analyze malware in relation
to the anti-analysis technique applied, many researchers are
now studying anti-anti-analysis techniques, that is, bypassing
anti-analysis techniques.

Although anti-anti-analysis techniques have been studied
to a degree in terms of a theoretical framework [4]–[6], these
are not directly suitable for anti-analysis techniques pro-
vided by commercial protectors. Further analysis is necessary
because analysts cannot know which anti-analysis technique
to use for commercial protectors. Also, even if the analyst
knows which anti-analysis technique to use, the theoretical
content cannot be applied as is because the anti-analysis
technique may be modified. Therefore, empirical studies
showing the results of various anti-analysis techniques used
in commercial protectors are needed.

The goal of this paper is to enable analysts to use DBI tools
when analyzing malware employing anti-analysis techniques
supported by commercial protectors in a virtual environment.
Therefore, we propose guidelines to aid in the easy analysis
of malware protected by anti-VM or anti-DBI techniques
supported by commercial protectors. In addition, we present
bypass algorithms for anti-VM and anti-DBI techniques used
in commercial protectors along with our implementation and
evaluation results.
Contributions: The following presents a detailed discus-

sion of our contributions.
• We propose guidelines to aid in the easy analysis of
malware protected by anti-VM and anti-DBI techniques
supported by commercial protectors. We present the
results of our detailed analysis for anti-VM and anti-DBI
algorithms used in commercial protectors, and we also
categorize and present the techniques used with each
tool. Therefore, our findings can be helpful for analysts
who want to analyze malware protected by commercial
protectors.

• We present how to bypass anti-VM and anti-DBI tech-
niques supported by commercial protectors through a
detailed analysis of the algorithms used. This paper
features the first empirical research results produced via
a detailed analysis of anti-analysis techniques provided
by commercial protectors, and the first to suggest actual
algorithms accordingly.

The organization of this paper is as follows: Section II
describes the background of existing anti-analysis techniques
and their respective categories, and Section III presents
related works about bypassing anti-analysis. Section IV
categorizes and presents anti-analysis techniques provided
by commercial protectors, which are the actual targets for
analysis. Section V presents an algorithm that bypasses
anti-analysis techniques used in commercial protectors.

Section VI presents our implementation and evaluation.
Finally, we give our discussion and conclusion in Section VII
and VIII, respectively.

II. BACKGROUND
A. CODE OBFUSCATION
Code obfuscation, a technique used to transform a program,
hinders analysis because it modifies the internal code while
maintaining functionality of the program. There are four
categories of code obfuscation [7]: layout, data, control flow,
and preventive.
• Layout Obfuscation: This technique modifies or
removes detailed elements that do not affect the execu-
tion of programs. It mainly corresponds to a technique
that makes it difficult to transform variable names or
remove comments.

• Data Obfuscation: This technique transforms data
values in a program or reconstructs data structures.
It mainly corresponds to a technique that transforms
variable values in a complex way or reconstructs array
structures.

• Control Flow Obfuscation: This technique inserts
dummy codes or modifies the control flow from inside
the program. It mainly corresponds to a technique that
inserts meaningless branch statements or transforms the
control flow graph.

• Preventive Obfuscation: This technique inserts anal-
ysis prevention routines or analysis prevention codes
inside programs. It mainly corresponds to a technique
that prevents or terminates the operation of an analysis
tool (e.g., a debugger or a disassembler).

In actuality, preventive obfuscation is based on the same
concept as anti-analysis techniques, and this paper aims to
implement bypass anti-analysis technique modules.

B. DYNAMIC BINARY INSTRUMENTATION
DBI is a technique primarily used for the dynamic anal-
ysis of programs [8], and it can be analyzed by inserting
instrumentation code during program execution. As such,
DBI is used to measure program performance, and ana-
lysts can use DBI tools to observe memory and register
values during program execution, detect memory allocation
errors, and perform security threat analysis. Because of these
advantages, it has also recently been used to analyze mal-
ware using DBI. Tools such as PIN [9], DynamoRIO [10],
and Valgrind [11] typically provide a framework to
perform DBI.

In this paper, we chose to use PIN from the numerous
DBI tools. PIN is a DBI framework provided by Intel that
can be used in IA-32, x86-64, and MIC instruction-set archi-
tectures. It is widely used in security research because it
allows for measurement at the granular level and provides an
intuitive application programming interface (API). We chose
to use PIN for these reasons, but it should be noted that our
proposed algorithm and results can still be used with other
DBI tools.

7656 VOLUME 9, 2021



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

C. ANTI-ANALYSIS
Anti-analysis is a technique that prevents or interferes with
program analysis. To make program analysis difficult, a pro-
gram in which anti-analysis is applied can detect the anal-
ysis environment or analysis tools and forcibly terminate
itself. Commercial protectors also offer diverse anti-analysis
techniques, among these the most representative being anti-
debugging, anti-VM, anti-patching, and anti-dumping. Anti-
debugging is a technique that prevents analysis using a
debugger, and anti-VM techniques achieve this in a vir-
tual environment. Anti-patching mainly detects whether a
file has been patched using a checksum value, and finally,
anti-dumping detects and defends memory dumps performed
by dump tools. Note that anti-debugging techniques do not
only detect debugging tools. Some also detect DBI tools,
which are referred to as anti-DBI techniques. Although
anti-DBI techniques is not a separate option provided by com-
mercial protectors, we analyzed some techniques provided
by anti-debugging options in commercial protectors to detect
and prevent DBI tools.

D. ANTI-VM
Anti-VM is a technique that detects a virtual machine envi-
ronment and terminates the program so that it cannot be
analyzed in a virtual machine environment. This technique is
currently provided by various commercial protectors and is
used most commonly to prevent analysis in a virtual environ-
ment. The virtual environment detection methods currently
used in commercial protectors can be classified into three
basic categories as follows:

• Registry-based: When Windows is installed in a virtual
environment, the registry is set as information about the
virtual machine. Therefore, there is a difference between
the registry value of the guest OS and that of the host
OS, such that virtual environment detection can be per-
formed using this.

• Hardware-based: In a virtual environment, logically
separated H/W is used through the hypervisor, not
the physical H/W used in the host PC. Accordingly,
there is a difference between the H/W information of
the guest OS and that of the host OS. Virtual envi-
ronment detection is performed using the difference
between the H/W information of the guest OS and the
host OS.

• Process/Service-based: In a virtual environment, spe-
cific programs are installed to use each virtual machine
more effectively. Therefore, there are certain programs
that only exist in the guest OS and are absent from
the host OS. For example, a virtual environment is
detected using a specific program that exists only in the
guest OS.

There has been limited research on anti-VM techniques up to
this point, and only a limited offering of empirical research
has explored which techniques are used in real commercial
protectors and how to bypass them.

E. ANTI-DBI
Anti-DBI techniques detect the situation under analysis with
a DBI tool and forcibly terminates the program, which conse-
quentially means that dynamic analysis cannot be performed
using a DBI tool. Anti-DBI performs DBI tool detection
using the principles or features of a certain DBI tool. Cur-
rently, commercial protectors do not provide any standalone
anti-DBI option. In fact, the anti-DBI techniques provided
by commercial protectors simply overlap with the techniques
provided in anti-debugging options. So far, few cases have
been systematically studied to block DBI tools. The anti-DBI
techniques currently used in commercial protectors can be
classified into four basic categories.
• Overhead-based: The difference between the general
program execution time and the execution time of a pro-
gram being analyzed using the DBI tool is that the DBI
tool can be detected through the difference in execution
time of the analysis target program.

• JIT complier-based: Unlike general programs, the DBI
tool uses a just-in-time (JIT) compiler to patch and com-
pile certain instructions in the program to be analyzed
in real-time to perform program analysis. A DBI tool is
detected using patching and compiling the instructions
in the DBI tool cache.

• API-based: Windows provides anti-debugging applica-
tion programming interfaces (APIs). Some APIs that
perform anti-debugging can detect not only debuggers
but also DBI tools, and anti-DBI uses these APIs to
detect DBI tools.

• Exception-based: In most general situations, programs
perform exception handling where the exception occurs.
During analysis using a DBI tool, programs operate
without executing exception handling in the part where
the exception occurs. Therefore, if an exception occurs,
a routine is inserted into the general program and the
normal operation code of the program is inserted into
the exception handling part. Then, a DBI tool can be
detected as it operates the program without processing
the exception.

A detailed outline of the anti-VM and anti-DBI techniques
used in commercial protector tools is provided in section IV.

III. RELATED WORKS
This section describes existing research related to malware
analysis and unpacking using DBI tools, and it also explains
how the bypassing anti-VM and anti-DBI techniques pro-
posed in this paper can be used efficiently in the field only
when they are provided together.

Suk et al. [3] used PIN to analyze Themida. Based on
the analysis results, Themida’s unpacking method was imple-
mented by the algorithm, and the unpacking results were ver-
ified using a large data set. This is the first empirical study to
analyze almost all Themida-based obfuscation options simul-
taneously while reconstructing them closely to the original
program. However, Suk et al. treats the anti-VM option as
out of scope even though Themida has an anti-VM option.

VOLUME 9, 2021 7657



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

Suk et al. can remove in the unpacking process even if the
anti-VM option is applied, but this is limited to the case
in which unpacking is performed in the host OS. However,
unpacking the malware from the host OS may lead to a
situationwhere the host OS becomes infected by themalware.
When analyzing malware, it is important to analyze malware
in a virtual environment, making it is necessary to consider an
anti-VM option. Therefore, by applying Themida’s anti-anti-
VM algorithm presented in this paper, the analysis results will
be enhanced with a more empirical study that can be applied
in the field.

M.Polino et al. [12] collected a large volume of malware,
analyzed the anti-DBI techniques applied to them, and sug-
gested countermeasures. The researchers classified anti-DBI
techniques into four categories based on the 7,006 malware
programs they collected and analyzed in terms of how many
anti-DBIs were applied. The results of this analysis and
bypass were also described, and in order to show that their
results could be applied to commercial packers, unpackers
were produced in prototype form. Subsequently, the authors
also evaluated bypassing anti-DBI techniques and unpacking
results for commercial packers. However, although this study
described 1,093 of the 7,006 malware programs as applying
an anti-DBI technique, the existence of a ground truth appears
to be lacking. Therefore, the method lacks a definitive way
to check whether or not anti-DBI techniques were applied
to the 1,093 malware. Accordingly, there is a limitation in
that the possibility of false positives or false negatives can-
not be excluded. In fact, the researchers do not separately
indicate that an anti-DBI technique has been applied in the
1,093 malware included in the study. In addition, anti-DBI
bypassing and unpacking experiments were performed on
commercial packers used by malware in the wild. During the
experiment, there was a case in which unpacking was not
performed correctly. This was because the experiment was
performed in a virtual machine environment and an anti-VM
technique was applied to the malware. Therefore, in order
to empirically analyze malware using dynamic tools, not
only anti-anti-DBI but also anti-anti-VM techniques must be
provided.

Park et al. [13] suggested automatic anti-debugging tech-
nique detection and bypass methods using the PIN for a num-
ber of self-selected commercial protectors. The researchers
performed DBI detection analysis along with anti-debugging
techniques and suggested a bypass method for DBI detection.
In addition, it was described that the PIN works normally
for a program applying anti-analysis via each commercial
protector. However, there is insufficient explanation about
the anti-DBI algorithms used by each commercial protec-
tor and proposed bypassing methods. Therefore, there is a
limitation in that sufficient information cannot be provided
to analysts who want to assess the anti-analysis techniques
of commercial protectors using the information presented in
that study. In response to this, we present our results after
analyzing detailed algorithms used by each commercial pro-
tector, which means that it is possible to provide sufficient

information to the empirical analyst through the algorithm
proposed in this paper.

Cheng, Binlin, et al. [14] proposed a new unpacking pro-
cess called rebuilt-then-called, which differs from the existing
written-then-executed process. Rebuilt-then-called uses the
feature of redesigning the import address table (IAT) and
calling the API just before the original execution code is
executed in the packed program. It is also a technique of
searching for the original entry point (OEP). This process
can be analyzed without being detected by anti-debugging,
anti-DBI, or other anti-analysis techniques because it uses
kernel-level DLL hijacking without using dynamic analy-
sis tools. For performance evaluation, the authors collected
238,835 packed malware and conducted experiments. A lap-
top was used as the environment in which the malware was
unpacked, and as a result of the experiment, the tool described
unpacking to be successful with a 97.3% probability. This
experiment demonstrated that unpacking is possible even
when anti-VM techniques are applied. However, there is
no part that explains whether this success was due to the
application of the anti-anti-VM technique, or if it was merely
not necessary to bypass because the experiment was con-
ducted in the host OS. When experimentation occurs in the
host OS, if the part that the authors suggest would redesign the
IAT is not found, the host OS can be infected with malware.
In fact, the researchers state that unpacking has failed with
a 2.7% probability. Also, owing to the custom packer of the
malicious behavior payload that does not utilize IAT, there
is a limitation in that it is difficult to prevent packing-based
malware from affecting the host OS. Therefore, it is important
to perform the analysis in a virtual environment to cope with
various malware attack scenarios. In this paper, we propose
an anti-anti-VM study to complement the limitations of the
technique suggested by Cheng, Binlin, et al. Therefore, if the
above study were to consider the results of this paper, analysis
may be conducted in a safer environment.

D’Elia, Daniele Cono, et al. [15] proposed Bluepill,
a human-centered dynamic analysis system to facilitate mal-
ware analysis. Bluepill is based on DBI tool, and the authors
of the above mentioned study configured a rule set for auto-
matic bypass by analyzing known anti-analysis techniques.
The rule set is a form in which a bypass algorithm is built
for each detailed anti-analysis technique, such that it can be
automatically bypassed when using the framework. There-
fore, when analyzing malware using Bluepill, analysts can
assess only anti-analysis techniques that are not included in
the existing framework and add them to the framework’s
rule set. However, in the case of the anti-analysis technique
provided by commercial protectors, it is difficult to analyze
anti-analysis technique algorithms and add them to the rule
set because obfuscation is applied simultaneously. Therefore,
it is possible to supplement the anti-analysis bypass meth-
ods of commercial protectors by updating Bluepill using the
research results of this paper.

Choi, Seokwoo, et al. [16] proposed x64Unpack, which
analyzes the packed executable file and unpacks it.

7658 VOLUME 9, 2021



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

TABLE 1. Summary of anti-VM and anti-DBI techniques used in commercial protectors.

In addition, the study presents analysis results on how the
program packed with VMProtect 3.4 works using x64Unpack
and which API is used. The researchers used x64Unpack
to bypass and unpack VMProtect, Themida, UPX, and
MPRESS anti-reversing techniques. x64Unpack is a form
of running a packed program using a CPU emulator in a
host environment. If anti-reversing techniques appear in the
process of running, they are bypassed by having the authors’
proposal follow a predefinedAPI and exception handling rou-
tine. To extend x64Unpack so that other commercial protec-
tors can be unpacked, an anti-reversing technique bypassing
the API and exception handling routine must be added after
additional analysis of the commercial protector. Therefore,
the commercial protector bypass methods presented in this
paper may improve the x64Unpack extension.

IV. ANTI-VM & ANTI-DBI ANALYSIS OF COMMERCIAL
PROTECTORS
In this section, we describe the detailed algorithm after
analyzing anti-VM and anti-DBI techniques provided by
five commonly used commercial protectors (i.e., Themida,
Enigma, VMProtect, Obsidium, and ACProtect). Upon ana-
lyzing the five commercial protectors, we summarized
anti-VM and anti-DBI techniques provided by each commer-
cial protector as shown in Table 1. Anti-VM techniques are
provided as an option in all commercial protectors except
one. All the tools that provided the anti-VM option also
provided virtual environment detection techniques using the
hardware features of the guest OS. Unfortunately, the anti-
DBI technique has not yet been widely made available in
commercial protectors. Tools either contain one or three
anti-DBI techniques, which all provide an array of technique
types. Later in this section, detailed algorithms are described
related to anti-VM and anti-DBI used by each commercial
protector. With the detailed algorithms of anti-VM, analysis
was performed on VMware and VirtualBox, which are two of
the most commonly used virtual machines. VMware and Vir-
tualBox in a virtual environment are representative enough to
be featured in two performance comparison papers spanning
a wide window of time [17], [18].

A. THEMIDA
Themida is a protector tool that provides 21 obfuscation
options, including anti-analysis techniques at the binary
level [19], and it continues to operate with new versions being
released. In this paper, we performed our analysis on Themida
version 2.4.5. Note that Themida offers various anti-analysis
options, but no anti-DBI techniques.

1) ANTI-VM OF THEMIDA
Themida detects a virtual environment using two types of
anti-VM techniques. When detecting a virtual environment,
a message box like in Fig.1 appears and the program is
terminated.

FIGURE 1. A pop-up message box that appears when executing the
program applied Themida’s anti-VM in a virtual environment.

a: DETECTION USING REGISTRY KEY VALUE
In each registry key value, there are various features that can
be assumed to be virtual environments. However, features
used by VMware and VirtualBox are utilized differently.
When executing a programwith Themida obfuscation applied
in a VMware environment, it reads the DriverDesc1 value
VMware SVGA 3D among the values stored in the registry and
performs virtual environment detection through string match.
See the VMware part in Fig.2.

In VirtualBox, the virtual environment is detected through
string match by reading the VBOX −1 value of Sys-
temBiosVersion and the Oracle VM VirtualBox value of

1HKEY_LOAL_MACHINE\SYSTEM\ControlSet001\Control\
Class\{4d36e968-e325-11ce-bfc1-08002be10318}\0000

VOLUME 9, 2021 7659



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

FIGURE 2. Registry of VMware and VirtualBox used by Themida.

VideoBiosVersion among the values stored in the registry2

when executing the program with Themida obfuscation. In
addition, detection is performed by using the VBOX__ value,
which is the folder name inside HARDWARE in HKLM.3

See the VirtualBox part in Fig.2.

b: BYPASSING DETECTION USING REGISTRY KEY VALUE
In order to perform a DriverDesc value string match in
the VMware registry, the memory value is read using the
memmove API. When calling the memmove API, the third
parameter, a source address value, is checked to see if it has
the value as the VMware SVGA 3D. As shown in Fig.3, if the
value exists, the anti-VM can be bypassed by modifying it.

FIGURE 3. Bypassing a detection technique through modification of the
memmove API.

In VirtualBox, memmove API is used to read VBOX-1 and
Oracle VM VirtualBox values from the memory to perform
a string match. Therefore, bypass is possible through the
detection and modification of the corresponding value.

Additionally, VirtualBox is detected by checking whether
the VBOX__ folder exists in the registry using the
RegOpenKeyExA API. Therefore, as shown in Fig.4, it is
possible to bypass detection by modifying the value of the
registry folder name existing in the second argument.

2HKEY_LOAL_MACHINE \HARDWARE\DESCRIPTION\Control
\System

3HKEY_LOAL_MACHINE \HARDWARE\ACPI\DSCT\VBOX__

FIGURE 4. Bypassing a detection technique through modification of the
RegOpenKeyExA API.

c: DETECTION USING IN INSTRUCTION
The VMware virtual machine has an I/O port communication
channel, through which it exchanges data between the host
OS and the guest OS. If analysts use the IN instruction,
they can obtain information about I/O port. Additionally,
if analysts execute the IN instruction by inserting the value
0x5658 (i.e.,VX) in the DX register (i.e., the communication
channel), the value containing the information of the virtual
machine is stored in the EAX or EBX register. Therefore, it is
possible to detect the virtual machine using the IN instruction.

d: BYPASSING DETECTION USING IN INSTRUCTION
Themida uses the IN instruction twice to detect the VMware
environment. In the first case, 0x564D5868 (i.e.,VMXh),
which indicates a magic number, is put in the EAX register,
and 0x14 (memory size request) is put in the ECX register.
The host OS cannot execute the IN instruction, so a 0x0 value
is entered in the EAX register. However, the IN instruction
is executed in the guest OS, and a value other than 0x0 is
received. Therefore, the anti-VM can be bypassed by modi-
fying the EAX register value to 0x0 after the IN instruction
executes as shown in Fig.5.

FIGURE 5. Bypassing a detection technique through modification of the
register (IN1 instruction).

In the second case, 0x564D5868 (i.e.,VMXh) is put in
the EAX register, and 0xA (a request VMware Version
type) is put in the ECX register. Subsequent execution of
the IN instruction in the guest OS leaves a unique value
of 0x564D5868 (i.e.,VMXh) in the EBX register. Therefore,
the anti-VM can be bypassed by setting the EBX register
value to 0x0 after the IN instruction executes as shown
in Fig.6.

7660 VOLUME 9, 2021



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

FIGURE 6. Bypassing a detection technique through modification of the
register (IN2 instruction).

B. ENIGMA
Companies still operate and manage Enigma as a commercial
protector, which provides anti-VM but not anti-DBI. In this
paper, we performed our analysis on the Enigma version 6.00.

1) ANTI-VM OF ENIGMA
Enigma provides an anti-VM option to other environments
besides VMware and VirtualBox as shown in Fig.7 Because
the target of this paper is either VMware or Virtual-
Box, we did not perform any analysis for other environ-
ments. Despite this, we made sure to verify all options
before performing the experiment. Among the anti-VM
options provided by Enigma, there are three virtual envi-
ronment detection techniques used in both VMware and
VirtualBox. The three options are VMware, VirtualBox,
and Hyper-V (CPU feature enabled). Each anti-VM option
detection message box is shown in Fig.8. The Hyper-V
(CPU feature enabled) option can detect both VMware
and VirtualBox through the CPU information of the virtual
environment.

FIGURE 7. Anti-VM option provided by Enigma.

a: DETECTION AND BYPASSING USING IN INSTRUCTION
Programs applying Enigma detect VMware using the
IN instruction. Similarly, Enigma uses the Themida 2nd IN
instruction method, which executes 0xA in ECX register.

FIGURE 8. A pop-up message box that appears when executing a
program applying Enigma’s anti-VM option in a virtual environment.

Therefore, the bypass method is identical to that used in
Themida.

b: DETECTION USING RUNNING PROCESS
Enigma detects VirtualBox by detecting the use of VBoxSer-
vice.exe, an additional program provided by VirtualBox,
which is a file created by installing VirtualBox Guest Addi-
tions. By installing VirtualBox Guest Additions, Virtual-
Box users can conveniently adjust the window size and res-
olution. Therefore, most users who use VirtualBox will also
install and use VirtualBox Guest Additions.

c: BYPASSING DETECTION USING A RUNNING PROCESS
To detect VBoxService.exe, Enigma uses processs32next API
to obtain information on currently running processes, and this
information is stored in Unicode in the memory. After this,
Enigma uses WideCharToMultiByte API to compare against
the predefined VBoxSevice.exe ASCII value. Note that this
API converts Unicode values stored in the memory to ASCII.
After that, it performs a string comparison using the process
name changed to ASCII and performs detection. As shown
in Fig.9, the analyst can modify the process name value in
ASCII format stored in the memory, or they can bypass it by
modifying the comparison routine.

d: DETECTION USING CPUID INSTRUCTION
The CPUID instruction returns various processor informa-
tion, such as the serial number andmanufacturer ID according
to the EAX register value. Since most guest OS run on the
hypervisor, processor information that is distinct from the
host OS appears. Enigma uses these differences to detect
virtual environments.

e: BYPASSING DETECTION USING CPUID INSTRUCTION
If 0x1 is put in EAX and the CPUID instruction is executed,
information about the model and type of the processor is
returned. After executing the CPUID instruction, the 31st bit
of the ECX register indicates the existence of a hypervisor.
Therefore, by using this bit, the host OS and the guest OS can
be differentiated. If the bit is 1, it is deemed to be the

VOLUME 9, 2021 7661



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

FIGURE 9. Bypassing a detection technique through modification of the
WidecharToMultibyte API (VBoxService.exe).

guest OS CPU, and Enigma determines that it is a virtual
environment. To bypass the virtual environment detection
using theCPUID instruction, the anti-VM can be bypassed by
changing it to 0 through an eXclusive OR (XOR) operation
when the 31st bit of the ECX register is set to 1 as shown
in Fig.10.

FIGURE 10. Bypassing a detection technique through modification of the
register (CPUID instruction).

C. VMProtect
VMProtect is a powerful protector for virtualization obfus-
cation that provides various functions. In this paper, we ana-
lyzed VMProtect version 3.0.9, which includes both anti-VM
and anti-DBI techniques.

1) ANTI-VM OF VMProtect
VMProtect uses three types of anti-VM techniques to detect
virtual environments. When detecting a virtual environment,

a message box like that shown in Fig.11 appears and the
program is terminated.

FIGURE 11. A pop-up message box that appears when executing a
program applying VMProtect’s anti-VM option in a virtual environment.

a: DETECTION USING FIRMWARE TABLE
VMProtect detects a virtual machine environment via a string
match routine from the firmware table information obtained
using GetSystemFirmwareTable API.

b: BYPASSING DETECTION USING THE FIRMWARE TABLE
The program applying VMProtect’s anti-VM option has a
routine to string match VMware and VirtualBox strings using
information in the firmware table. VMware is detected by
comparing the information of the firmware table by 1 byte
sequentially from the front of 0x564D7761 (i.e., VMwa),
and VirtualBox is detected by comparing 1 byte sequentially
from the front of 0x56697274 (i.e., Virt). As shown in Fig.12,
the routines that VMProtect detects using firmware table
information are notably unique, such as CMP BYTE PTR
DS:[EDX], 0x56. Therefore, the analyst can locate a rou-
tine to check the firmware table using a unique comparison
routine instruction. To bypass this, the value stored in the
memory can be altered as shown in Fig.12 since the first byte
of both VMware and VirtualBox is 0x56.

c: DETECTION AND BYPASSING USING CPUID
INSTRUCTION
Like Enigma, VMProtect puts 0x1 in the EAX register when
executing CPUID and detects that it is a virtual environment
with the 1 and 0 of the 31st bit of ECX after execution. The
bypass method is identical to the one described in the Enigma
portion of this paper.

The program did not operate normally when analyzed
using PIN, and the anti-DBI was applied.

2) ANTI-DBI OF VMProtect
VMProtect does not have an anti-DBI option, but it is
applied through an anti-debugging option. Anti-debugging
is provided in two modes: the user mode and the
user mode + kernel mode. For this paper, we conducted
research on both modes. The anti-DBI technique provided by
VMProtect is included in both modes. In addition, even when
the anti-debugging option was not set and only the anti-VM
option was set, it was confirmed that the anti-DBI effect
also occurred. The analyst can see that the program does not
work normally and terminates as shown in Fig.13 when using

7662 VOLUME 9, 2021



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

FIGURE 12. Bypassing a detection technique through modification of the
memory (firmware table information).

FIGURE 13. A program that has applied VMProtect anti-VM and
anti-debugging options is terminated during analysis using DBI.

DBI for the programs to which the VMProtect anti-debugging
and anti-VM are applied. There is one anti-DBI technique
provided by VMProtect, but the bypass method of this
technique is different depending on the anti-debugging and
anti-VM options.

a: DETECTION USING SINGLE STEP (ANTI-VM OPTION)
In VMProtect’s anti-VM option, a technique that forcibly
terminates DBI uses a single step exception handling tech-
nique. Single step is a technique that forcibly handles excep-
tions using the trap flag, which is activated by setting
0x100 in the EFLAGS register. Therefore, if 0x100 is
put on the stack and the POPFD instruction is executed,
exception handling occurs. In a normal program, exception
processing occurs by single stepping, but exception process-
ing does not occur in the state of analysis using a debug-
ger or a DBI tool. Therefore, programs not being analyzed
and using DBI work normally when the two anti-VM tech-
niques are bypassed in a virtual environment, but those being
analyzed using a DBI tool are abnormally terminated by
single step.

b: BYPASSING DETECTION USING SINGLE STEP (ANTI-VM
OPTION)
In order to bypass the anti-DBI technique in the anti-VM
option, the program operates normally by performing XOR
after checking whether or not the stack address is a trap flag
(0x100) before the POPFD instruction, as shown in Fig.14.

FIGURE 14. Bypassing a detection technique by a trap flag XOR operation
(single step (anti-VM)).

c: DETECTION USING SINGLE STEP (ANTI-DEBUGGING
OPTION)
This technique is the same as the single step technique applied
in the VMProtect anti-VM option. Though the detection pro-
cess is similar with that used in anti-VM, there are differences
in the bypassing process.

d: BYPASSING DETECTION USING SINGLE STEP
(ANTI-DEBUGGING OPTION)
With single step, exception handling occurs during program
execution. However, with debugging or DBI, it is executed
normally without any exception handling. This means that
single step can be used to detect the DBI tool by using this
principle. When using a DBI tool, exception handling does
not occur and the program executes, resulting in abnormal
termination of the program, thus revealing the DBI tools and
debuggers. Therefore, if a trap flag is set in the execution
timing of the POPFD instruction, as shown in Fig.15, it is
possible to bypass the program, thus allowing the program-
mer to operate it as intended by forcing exception handling
using the API provided by the DBI tool.

D. OBSIDIUM
Obsidium, like previously developed tools, is a protector that
continues to release new versions. In this paper, we analyzed
Obsidium version 1.6.7, which provides both anti-VM and
anti-DBI techniques.

1) ANTI-VM OPTION OF OBSIDIUM
The anti-VM technique provided by Obsidium includes three
types of techniques to detect virtual environments, during
which a message box like in Fig.16 appears and the program
is terminated.

VOLUME 9, 2021 7663



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

FIGURE 15. Bypassing a detection technique by raise exception
(VMProtect single step (anti-debugging)).

FIGURE 16. A program applying Obsidium’s anti-VM option is terminated
in a virtual environment.

a: DETECTION AND BYPASSING USING IN INSTRUCTION
Programs applying Obsidium’s anti-VM option detect the
VMware environment by using a feature that keeps the
VMXh unique value in the EBX register when IN instruc-
tion is used in VMware. This technique is the same as
the second IN instruction technique used in Themida. As
such, the bypass method is also identical to that used in
Themida.

b: DETECTION USING DISK DRIVE VALUE
The hardware contains various information such as model
names and serial numbers. Since the guest OS uses vir-
tual hardware, different features from the host OS envi-
ronment appear. Obsidium performs detection using the
disk drive model name information. The disk drive model
names of VMware and VirtualBox include the VMware
and VBOX strings, which Obsidium uses to detect virtual
environments.

c: BYPASSING DETECTION USING DISK DRIVE VALUE
As in Fig.17, we found a routine in the program with Obsid-
ium and checked the virtual environment using the disk drive
model name.

In fact, this program has a routine to string match VMware
and VirtualBox strings from the disk drive model name. Note
that the first letter of both VMware and VBOX is 0x56
(i.e., V). Therefore, analysts can see that there is a comparison
routine such as CMP BYTE PTR DS: [EAX], 0x56 as shown
in Fig.17. It is possible to bypass the anti-VM technique by
modifying the memory data in the EAX register value before
execution or by modifying the instruction to a value other
than 0x56.

FIGURE 17. Bypassing a detection technique through modification of the
memory (disk drive value).

d: DETECTION USING VBoxGuest FILE (ANTI-VM OPTION)
Obsidium detects the existence of the VBoxGuest name file in
order to detect the VirtualBox. VBoxGuest files are created by
installing VirtualBoxGuest Additions in VirtualBox. Regard-
less of whether it is VirtualBox or not, if VirtualBox Guest
Additions is not installed, it is certain that theVBoxGuest file
does not exist, and as such, the virtual environment cannot be
detected by the corresponding technique.

e: BYPASSING DETECTION USING VBoxGuest FILE
(ANTI-VM OPTION)
In Obsidium, CreateFileW API is used to check the exis-
tence of the VBoxGuest file. As shown in Fig.18, the pro-
gram inserts \\.\VBoxGuest as the file name argument value
and OPEN_EXISTING as the mode argument value in
CreateFileW API.

FIGURE 18. Bypassing a detection technique through modification of the
register (VBoxGuest file).

If the return value of the EAX register is 0xFFFFFFFF
(−1) after executing the API, it means that the VBoxGuest

7664 VOLUME 9, 2021



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

file does not exist, and it is not a VirtualBox. Conversely,
if the return value of the EAX register returns with a value
other than 0xFFFFFFFF, it means that theVBoxGuest file
exists, and it is a VirtualBox. Therefore, it is possible to
bypass the anti-VM technique by changing the EAX register
value to 0xFFFFFFFF in the comparison routine CMP EAX,
0xFFFFFFFF immediately after CreateFileW API.

f: DETECTION USING SMBIOS INFORMATION ON THE
FIRMWARE TABLE
System Management BIOS (SMBIOS) is a standard for data
structures that is used to read information stored in the BIOS
on a computer. It contains a variety of information, such as
BIOS information and system information. The guest OS has
BIOS and system features that are distinct from the host OS,
which makes it detectable using these features.

g: BYPASSING DETECTION USING SMBIOS INFORMATION
FROM THE FIRMWARE TABLE
Obsidium usesGetSystemFirmwareTable API to obtain infor-
mation about SMBIOS. In the information obtained through
the API in the virtual environment is system informa-
tion, including VMware and VirtualBox strings. In Obsid-
ium, string matching is performed on the obtained system
information string. First, check the first character 0x56
(i.e., V) through the CMP BYTE PTR [ESI], 0x56 instruction
as shown in Fig.19. As shown in Fig.19, the first character
0x56 (i.e., V) is checked through the instruction CMP BYTE
PTR [ESI], 0x56 and then the routine to check the rest of the
string is executed. After that, a virtual environment is detected
using the signature stored in the EAX register (CMP EAX,
0x117A8875(=signature)), which is calculated through the
operation in advance. Signatures are configured differently
for each virtual environment.

FIGURE 19. Bypassing a detection technique through modification of the
memory (firmware table information).

In the instruction to check the first character, the ESI
register value as the address has a value of 0x564D7761 (i.e.,
VMwa) in the case of VMware and 0x56697274 (i.e., Virt)
in the case of VirtualBox. Therefore, to bypass this, when
the first character check routine is performed, the ESI reg-
ister value as the address is checked to see if it has a value
of 0x564D7761 (i.e., VMwa) or 0x56697274 (i.e., Virt).

If it indeed has that value, it can be bypassed by modifying
0x56, the first character in the memory, to 0x0.

2) ANTI-DBI OF OBSIDIUM
Obsidium’s anti-DBI technique is available when the
anti-debugging option is applied. There are three type of
anti-DBI techniques used in Obsidium. If an analyst attempts
to perform an analysis of the program applying Obsidium’s
anti-DBI technique using a DBI tool, the program will termi-
nate as shown in Fig.20.

FIGURE 20. A program applying the Obsidium anti-debugging option is
terminated during analysis using DBI.

a: DETECTION USING ZwQueryInformationProcess API
ZwQueryInformationProcess API is an API that allows you
to search for information in the process, and it can also detect
debugging. If an analyst enters 0x7 (ProcessDebugPort) as
the second argument to this API, the address value of the third
argument returns a value indicating whether or not the debug-
ger is running. If debugging is in progress, 0xFFFFFFFF
(−1) is returned. This technique detects debugging through
ZwQueryInformationProcess API as documented in MSDN.
However, there is an additional undocumented debugging
detection option. If an analyst calls the API with 0x1F as
the second argument, the analyst can check whether debug-
ging is being performed. If 0 is returned for the third address
value, debugging is in progress; if 1 is returned, debug-
ging is not in progress. The method of detecting by way of
positioning the documented 0x7 as an argument does not
detect DBI tools, but if 0x1F is inserted, the API can detect
them.

b: BYPASSING DETECTION USING
ZwQueryInformationProcess API
Obsidium detects DBI by inserting 0x1F in ZwQueryIn-
formationProcess API. Generally speaking, to bypass this,
the DBI tool is used to track the ZwQueryInformationProcess
API. If the second argument is 0x1F, it can be bypassed by
changing the value stored in the third address to 1 after API
execution. However, in order to inhibit analysis in programs
applying Obsidium, some APIs are not directly called. So
even after using the DBI tool to trace all the ZwQueryInfor-
mationProcess APIs used in the program, it cannot be traced
well. Therefore, it is necessary to locate the ZwQueryInfor-
mationProcess API that performs the anti-DBI technique via
a feature of argument values before calling ZwQueryInfor-
mationProcess API. As shown in Fig.21, the nearest call is
found using the argument value as a feature. As such, if the
value stored in the third address value after call is 0, it can be
bypassed by changing it to 1.

VOLUME 9, 2021 7665



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

FIGURE 21. Bypassing a detection technique by modifying the return
value (ZwQueryInformationProcess(0x1F) API).

c: DETECTION USING VBoxGuest FILE (ANTI-DEBUGGING
OPTION)
If theVBoxGuestfile does not exist while the program that has
applied Obsidium is being analyzed through DBI, the process
is forcibly terminated as shown in Fig.20. If the program is
not being analyzed, it executes normally. However, when the
program is being analyzed using DBI, the DBI is detected
using the existence of the VBoxGuest file. Therefore, when
theVBoxGuestfile is installed in the VirtualBox environment,
it can be analyzed without being detected if the program is
analyzed using DBI. The difference from VBoxGuest detec-
tion in the anti-VM option is that, in the anti-debugging
option, the VBoxGuest file must exist to bypass it.

d: BYPASSING DETECTION USING VBoxGuest FILE
(ANTI-DEBUGGING OPTION)
In order to bypass DBI detection using VBoxGuest, the ana-
lyst must do the opposite of what is necessary for the anti-VM
option. When the CreateFileW API is executed, the analyst
checks the argument to verify whether or not VBoxGuest is
set as the file name, andOPEN_EXISTING is set as the mode.
After that, CMP EAX, 0xFFFFFFF instruction appears as
shown in Fig.22. If the EAX register value is 0xFFFFFFFF,
program debugging is detected, so the analyst can bypass
the anti-DBI technique by changing 0xFFFFFFFF to another
value.

e: DETECTION USING SINGLE STEP
Obsidium’s anti-debugging option uses a single step tech-
nique to forcefully terminate the program during analysis
using DBI. This single step technique is performed sporad-
ically and not every time the program is executed, which
means that sometimes the analysis of the program can be
completed using DBI without bypassing the single step.

FIGURE 22. Bypassing a detection technique by modifying the return
value (VBoxGuest file).

However, cycles in which single step techniques appear are
quite frequent and must be bypassed.

f: BYPASSING DETECTION USING SINGLE STEP
To bypass a single step, the AND EAX, 0x7 instruction is
performed after the CALL DWORD PTR [EBX+0x12C]
instruction as shown in Fig.23. After executing the AND
EAX, 0x7 instruction, we confirmed that various values were
entered in the EAX register. The single step routine proceeds
only when the EAX register is 0x5 or 0x2. Therefore, bypass
is possible by changing the EAX register to a value other than
0x5 or 0x2 after executing the AND EAX, 0x7 instruction.

FIGURE 23. Bypassing a detection technique through modification of the
register (single step).

7666 VOLUME 9, 2021



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

E. ACProtect
ACProtect, unlike other tools, is a protector that does not
continue to release new versions. In this paper, we analyzed
the ACProtect version 2.0, which offers a variety of options
like anti-debugging. However, ACProtect does not provide an
anti-VM option.

1) ANTI-DBI OF ACProtect
Unlike previously developed protectors, even if the
anti-debugging option is not applied in ACProtect, the anti-
DBI technique is applied. ACProtect has one anti-DBI tech-
nique, and when the ACProtect-applied program is analyzed
by a DBI tool, the program does not operate normally and is
terminated as shown in Fig.24.

FIGURE 24. A program applying ACProtect is terminated during analysis
using DBI.

a: DETECTION USING SELF-MODIFICATION CODE
ACProtect uses self-modification code to detect DBI tools.
This code modifies its own instruction code while the pro-
gram is running. As shown in Fig.25, this poses no prob-
lems for normal program execution, but when an analyst
executes a program with DBI tool, the program terminates.
This is because DBI tools use a just-in-time (JIT) compiler
to compile and run programs in real time. When a DBI tool
executes, instructions for programs of a certain size are put in
the cache, and the program is executed through real-time JIT
compilation. When self-modification is applied, the instruc-
tion appropriately self-modifies during program execution. If
themodified code is placed inDBI cache beforemodification,
the modified code is not applied. Therefore, when using a
DBI tool, the instruction is executed before modification so
that the program does not execute, indicating that, as a result,
the DBI tool can be detected using this principle.

b: BYPASSING DETECTION USING SELF-MODIFICATION
CODE
In Fig.25, the MOV DWORD PTR SS: [EBP+F], EAX
instruction is a memory write instruction. If the instruction
to write the memory is executed, MOV EAX, 5A is changed
toMOV EAX, ACP_NONE.0041B462. However, when a pro-
gram is executed using a DBI tool, a certain amount of

FIGURE 25. A program applying ACProtect crashes due to
self-modification during analysis using DBI.

instructions are put into the cache and executed line by line
as shown in Fig.25. When the memory write instruction
MOV DWORD PTR SS: [EBP+F], EAX is executed in DBI
cache, the memory area of the program is altered, but not the
instruction in the DBI cache. Therefore, the DBI tool causes
a crash by executing an instruction that is not self-modifying.
To bypass this, the analyst should check the instructions that
write the memory region in the DBI cache. Once this is
located, the analyst should check if the instruction to write
the memory modifies the instructions in the DBI cache. If the
instruction to be modified is an instruction included in the
DBI cache, it can be bypassed by clearing the cache after
executing the instruction to write memory and collect the
changed instruction again.

V. ANTI-ANTI VM & ANTI-ANTI DBI OF COMMERCIAL
PROTECTORS
This section presents an algorithm that can bypass anti-VM
and anti-DBI techniques for each tool by using a DBI tool
based on the preceding analysis.

In all algorithms, the current instruction (curINS), the cur-
rent instruction address (curAddr), and the current API
routine (curRTN) are entered as arguments. Input options
curINS,curRTN, or curAddr helps the algorithm determine
whether or not an anti-analysis technique is applied based on
which is received.

A. ANTI-ANTI-VM OF THEMIDA
Themida detects the virtual environment using two types
of techniques. The algorithm to bypass Themida’s anti-VM
option using a DBI tool is shown as Alg. 1.
The program applying Themida’s anti-VM technique

detects a virtual environment using the IN instruction. If the
EDX register contains value 0x5658 (VX) in the execution
order of the IN instruction, it means that information about the
virtual machine is obtained from the port. The algorithm then
removes the IN instruction to bypass the anti-VM technique
and checks if the value of the ECX register is 0x14 or 0xA.
If the ECX register value is 0x14, the EAX register changes
to 0. Also, if the ECX register is 0xA, the EBX register
value changes to 0. By changing the EAX and EBX register

VOLUME 9, 2021 7667



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

Algorithm 1 Anti-Anti-VM Algorithm for Themida
Input: Current Instruction (curINS), Current API (curRTN)
1: if (curINS = IN_ins) AND (EDX = ‘‘VX ’’) then
2: INS_Delete(curINS)
3: if ECX = Memsize_Request (= 0x14) then
4: EAX ← 0
5: else if ECX = Version_Request (= 0xA) then
6: EBX ← 0
7: end if
8: end if
9: if curRTN = memmove_API then
10: if Src = (‘‘VMware_SVGA_3D’’ OR ‘‘Oracle_VM ’’)

then
11: Src← 0
12: end if
13: end if
14: if curRTN = RegOpenKeyA_API then
15: if hKey = HKLM then
16: if Subkey = ‘‘VBOX__’’ then
17: Subkey← 0
18: end if
19: end if
20: end if

values to 0, the analyst can bypass the anti-VM using the IN
instruction.

The program applying the Themida anti-VMoption detects
a virtual environment using registry values with an algo-
rithm that saves each signature for three special registry
values used by Themida. The algorithm checks for the
existence of VMware SVGA 3D and Oracle VM through
memmove API tracking, and if it exists, it changes to 0.
To check the VBOX registry key of Virtualbox, the algo-
rithm traces RegOpenKey_A API. When opening HKLM
(HKEY_LOCAL_MACHINE), if the VBOX__ is included,
it is possible to bypass anti-VM by changing the value to 0.

B. ANTI-ANTI-VM OF ENIGMA
Enigma detects a virtual environment using two types of tech-
niques. The algorithm to bypass Enigma’s anti-VM option
using a DBI tool is shown as Alg. 2.
The program applying Enigma’s anti-VM option detects

a virtual environment using the CPUID instruction, which
is tracked by the algorithm. After executing the CPUID
instruction to check whether the 31st bit of the ECX register
is set to 1, the algorithm performs an AND operation of
0x80000000 (GuestOS_Sig) to the value of the ECX register.
If the 31st bit is set to 1, a bypass is possible by changing the
bit value to 0 through an XOR operation.

The program applying to Enigma’s anti-VM option uses
the IN instruction to detect a virtual environment. The dif-
ference from Themida is that only the IN instruction is used
when the ECX register is 0xA. The algorithm traces the IN
instruction and removes it if the value of the EDX register

Algorithm 2 Anti-Anti-VM Algorithm for Enigma
Input: Current Instruction (curINS), Current API (curRTN)
1: CPUID_Flag← False
2: GuestOS_Sig← 0x80000000
3: if CPUID_Flag = True then
4: if (ECX & GuestOS_Sig) 6= 0 then
5: ECX ← (ECX xor GuestOS_Sig)
6: end if
7: CPUID_Flag← False
8: end if
9: if curINS = CPUID_ins then
10: CPUID_Flag← True
11: end if
12: if (curINS = IN_ins) AND (EDX = ‘‘VX ’’) then
13: INS_Delete(curINS)
14: if ECX = Version_Request (= 0xA) then
15: EBX ← 0
16: end if
17: end if
18: if curRTN = WideCharToMultiByte_API then
19: if WideCharStr = ‘‘VBoxService.exe’’ then
20: WideCharStr ← 0
21: end if
22: end if

is 0x5658 (VX). If the ECX register is 0xA, an analyst can
bypass the anti-VM using the IN instruction by changing the
EBX register value to 0.

Enigma checks whether or not VBoxSevices.exe has been
executed to detect VirtualBox, but the string match deter-
mines whether or not VBoxSevices.exe executes. In a program
to which Enigma is applied,WideCharToMultiByte APImust
be used to match string format, which allows a string match
of a VBoxSevices.exe string to be performed. Therefore, when
changing the string format of VBoxSevices.exe by tracking
WideCharMultiByte API, the anti-VMoption can be bypassed
by changing the string to 0.

C. ANTI-ANTI-VM OF VMProtect
VMProtect detects virtual environments using two types of
techniques. In order to bypass VMProtect’s anti-VM option
using DBI, one of the anti-DBI techniques (single step) needs
to be bypassed. The algorithm used to bypass using aDBI tool
in this case is shown as Alg. 3.

The program applying the VMProtect anti-VM option uses
the CPUID instruction to detect a virtual environment. The
bypass method for the CPUID instruction is the same as the
method used in Enigma.

The program applying the VMProtect anti-VM option uses
firmware table information to detect a virtual environment.
In the firmware table information, the string ‘‘VMware’’
exists for VMware and the string ‘‘Virtual’’ exists for
VirtualBox. There is a unique instruction called CMP BYTE
PTR DS:[EDX], 0x56 that is used for virtual environment

7668 VOLUME 9, 2021



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

Algorithm 3 Anti-Anti-VM Algorithm for VMProtect
Input: Current Instruction (curINS), Current API(curRTN)
1: VM_CheckRoutine ← ‘‘CMP BYTE PTR

DS:[EDX], 0x56’’
2: CPUID_Flag← False
3: GuestOS_Sig← 0x80000000
4: if CPUID_Flag = True then
5: if (ECX & GuestOS_Sig) 6= 0 then
6: ECX ← (ECX xor GuestOS_Sig)
7: end if
8: CPUID_Flag← False
9: end if

10: if curINS = CPUID_ins then
11: CPUID_Flag← True
12: end if
13: if curINS = VM_CheckRoutine then
14: if ∗EDX = (‘‘VMware’’ OR ‘‘Virtual’’) then
15: ∗EDX ← 0
16: end if
17: end if
18: if curINS = POPFD_ins then
19: if (∗ESP & TrapFlag(= 0x100)) 6= 0 then
20: ∗ESP← (∗ESP xor TrapFlag(= 0x100))
21: end if
22: end if

Algorithm 4 Anti-Anti-DBI Algorithm for VMProtect
Input: Current Instruction (curINS), Current API (curRTN)
1: if curINS = POPFD_ins then
2: if (∗ESP & TrapFlag(= 0x100)) 6= 0 then
3: DBI_RaiseException(EIP+ 1,ESP+ 1))
4: end if
5: end if

detection with the corresponding firmware table information.
With this, a CMP BYTE PTR DS:[EDX], 0x56 instruction
trace is performed and the value is checked against the value
of the EDX register as an address before the instruction is
executed. If a the string ‘‘VMware’’ or ‘‘Virtual’’ value exists,
it can be bypassed by changing the value to 0.

As described above, an anti-DBI technique must be
bypassed to circumvent the anti-VM option. To bypass a
single step, thePOPFD instruction must be traced. Before
executing the POPFD instruction, the analyst should check
whether 0x100 (trap flag) is set in ESP. If 0x100 (trap flag)
exists, it can be bypassed by removing the trap flag through
an XOR operation.

D. ANTI-ANTI-DBI OF VMProtect
There is only one technique that can detect DBI tools
in VMProtect. The algorithm that bypasses VMProtect’s
anti-debugging option using a DBI tool is shown as Alg. 4.

In order to bypass the anti-DBI technique provided by
VMProtect’s anti-debugging option, an analyst must bypass

Algorithm 5 Anti-Anti-VM Algorithm for Obsidium
Input: Current Instruction (curINS), Current API (curRTN)
1: VM_Diskdirve← ‘‘CMP BYTE PTR [EAX], 0x56’’
2: VM_firmware← ‘‘CMP BYTE PTR [ESI], 0x56’’
3: VGuest_Cmp← ‘‘CMP EAX, 0xFFFFFFFF’’
4: VGuest_Flag← False
5: if (curINS = IN_ins) AND (EDX = ‘‘VX ’’) then
6: INS_Delete(curINS)
7: if ECX = Version_Request (= 0xA) then
8: EBX ← 0
9: end if

10: end if
11: if curINS = VM_Diskdirve then
12: if ∗EAX = (‘‘VMware’’ OR ‘‘VBOX ’’) then
13: ∗EAX ← 0
14: end if
15: end if
16: if (curINS = VGuest_Cmp) AND VGuest_Flag then
17: if EAX 6= 0xFFFFFFF then
18: EAX ← 0xFFFFFFF
19: VGuest_Flag← False
20: end if
21: end if
22: if curRTN = CreateFileW_API then
23: if FileName = \\.\VBoxGuest then
24: ifMode = OPEN_EXISTING then
25: VGuest_Flag← True
26: end if
27: end if
28: end if
29: if curINS = VM_firmware then
30: if ∗ESI = (‘‘VMware’’ OR ‘‘Virtual’’) then
31: ∗ESI ← 0
32: end if
33: end if

the single step. There is a slight difference from the method
used in the anti-VM option of VMProtect. The algorithm
performs a POPFD instruction trace and checks whether
0x100 (trap flag) is set in ESP before executing the POPFD
instruction. If 0x100 (trap flag) is set, a bypass is possible
by forcibly making an exception using the exception API
provided via the DBI tool.

E. ANTI-ANTI-VM OF OBSIDIUM
Obsidium detects a virtual environment using three types of
techniques. The algorithm that bypasses Obsidium’s anti-VM
option using a DBI tool is shown as Alg. 5.

The program applying Obsidium’s anti-VM option uses
the IN instruction to detect virtual environments. The IN
instruction technology used in Obsidium is the same as the
technique that inserts 0xA into the ECX register and executes
it in Enigma. The bypass method is similar to that of the
previously discussed method for Enigma.

VOLUME 9, 2021 7669



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

The program applying the Obsidium anti-VM technique
detects the virtual environment using disk drive information.
In the disk drive information, the string ‘‘VMware’’ exists
for VMware and the string ‘‘VBOX’’ exists for VirtualBox.
There is a unique detection instruction called CMP BYTE
PTR DS:[EAX], 0x56, which uses the corresponding disk
drive information. Therefore, theCMPBYTEPTRDS:[EAX],
0x56 instruction trace is performed, and the value is checked
against the value of the EAX register as an address before the
instruction is executed. If the string ‘‘VMware’’ or ‘‘VBOX’’
value exists, it can be bypassed by changing the value to 0.

The program applying the Obsidium’s anti-VM option
detects VirtualBox by the existence of VBoxGuest files. Cre-
ateFileW API is executed in order to determine the existence
of a VBoxGuest file, and when executing the CreateFileW
API, \\.\VBoxGuest exists in the FileName value. After exe-
cuting the CreateFileW API, it is determined whether or
not the VBoxGuest file exists through the result value that
is stored in the EAX register. If the file does not exist,
0xFFFFFFFF is stored in the EAX register, and if the file
exists, a value other than 0xFFFFFFFF is stored. There-
fore, to bypass this, an analyst must check if \\.\VBoxGuest
exists in the FileName value in the CreateFileW API. After
that, the algorithm traces whether or not the CMP EAX,
0xFFFFFFFF instruction appears. If the EAX register is
any value other than 0xFFFFFFFF, it can be bypassed by
changing it to 0xFFFFFFFF.

The program applying the Obsidium anti-VM option uses
the firmware table information to detect virtual environments.
In the firmware table information, the string ‘‘VMware’’
exists for VMware and the string ‘‘Virtual’’ exists for Virtual-
Box. There is a unique instructionCMPBYTEPTRDS:[ESI],
0x56 that is used for virtual environment detection with the
corresponding firmware table information. Therefore, aCMP
BYTE PTR DS:[ESI], 0x56 instruction trace is performed,
and the value is checked against the value of the ESI register
as an address before the instruction is executed. If either
the string ‘‘VMware’’ or ‘‘Virtual’’ value exists, it can be
bypassed by changing the value to 0.

F. ANTI-ANTI-DBI OF OBSIDIUM
There are three types of techniques that can be used to
detect DBI tools in Obsidium. The algorithm that bypasses
Obsidium’s anti-debugging option using a DBI tool is shown
as Alg. 6.

In order to bypass the anti-DBI provided by Obsidium’s
anti-debugging option, an analyst must bypass the ZwQuery-
InformationProcess(0x1F) API. In general, the analyst can
bypass the anti-DBI option by tracking the ZwQueryInfor-
mationProcess(0x1F) API using the API tracking function of
the PIN and modifying the return value, but in the case of
Obsdium, API tracking is not possible because the ZwQuery-
InformationProcess(0x1F) API is not called directly. There-
fore, Obsidium’s anti-DBI technique should be tracked and
bypassed using the argument value pattern inserted when
calling the ZwQueryInformationProcess(0x1F) API found

Algorithm 6 Anti-Anti-DBI Algorithm for Obsidium
Input: Current Instruction (curINS), Current API (curRTN)
1: Debug_Check_Address← 0
2: ZwQuery_Flag1← False
3: ZwQuery_Flag2← False
4: VGuest_Cmp← ‘‘CMP EAX, 0xFFFFFFFF’’
5: VGuest_Flag← False
6: Single_Sig1← ‘‘CALL DWORD PTR

[EBX+0x12C]’’
7: Single_Sig2← ‘‘AND EAX, 0x7’’
8: Single_Flag← False
9: if ZwQuery_Flag2 then
10: if ∗Debug_Check_Address = 0x0 then
11: ∗Debug_Check_Address← 0x1
12: end if
13: end if
14: if (curINS = RET_ins) AND ZwQuery_Flag1 then
15: ZwQuery_Flag2← True
16: end if
17: if ZwQueryInformation_Argument_Check then
18: if curINS = CALL_ins then
19: Debug_Check_Address← ∗(ESP+ 12)
20: ZwQuery_Flag1← True
21: end if
22: end if
23: if (curINS = VGuest_Cmp) AND VGuest_Flag then
24: if EAX 6= 0xFFFFFFF then
25: EAX ← 0xFFFFFFF
26: VGuest_Flag← False
27: end if
28: end if
29: if curRTN = CreateFileW_API then
30: if FileName = \\.\VBoxGuest then
31: ifMode = OPEN_EXISTING then
32: VGuest_Flag← True
33: end if
34: end if
35: end if
36: if (curINS = Single_Sig2) AND Single_Flag then
37: if (EAX & 0x7) = (0x2 OR 0x5) then
38: EAX ← 0x0
39: Single_Flag← False
40: end if
41: end if
42: if curINS = Single_Sig1 then
43: Single_Flag← True
44: end if

through the analysis. Obsidium’s anti-DBI technique sequen-
tially executes instructions for push 0x4, push EDX, and
push 0x1F in order to insert argument values and call
ZwQueryInformationProcess(0x1F) API. In the algorithm,
this series of processes is expressed as ZwQueryInfor-
mation_Argument_Check. After that, Obsidium’s anti-DBI

7670 VOLUME 9, 2021



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

Algorithm 7 Anti-Anti-DBI Algorithm for ACProtect
Input: Current Address (curAddr), Current Instruction

(curINS)
1: DBI_Head ← TRACE_Address(trace)
2: DBI_Tail ← DBI_Head + TRACE_Size(trace)
3: FirstWritten← 0x0
4: if INS_MemoryOperandIsWritten(curINS) then
5: Write_addr ← MemoryWriteAddress
6: if DBI_Head ≤ Write_addr < DBI_Tail then
7: FirstWritten← Write_addr
8: end if
9: end if

10: if curAdd < FirstWritten ≤ curAdd + ins_size then
11: FirstWritten← 0x0
12: DBI_Cache_Collection(curAdd)
13: end if

technique indirectly calls the ZwQueryInformationPro-
cess(0x1F) API using the CALL instruction. Since these
patterns appear, the algorithm tracks them to locate which
part calls the ZwQueryInformationProcess(0x1F) API. The
return value of the ZwQueryInformationProcess(0x1F) API
is stored in value with the 3rd parameter value (ESP+12)
as the address. Therefore, Alg. 6 stores the value of ESP
+12 in theDebug_Check_Address variable in advance.When
the ZwQueryInformationProcess(0x1F) API is terminated,
theRET instruction is called. Therefore, after theRET instruc-
tion, if it is in a debugging environment, 0 is stored in the
value addressed to Debug_Check_Address such that it can be
bypassed when changed to 1.

Obsidium’s anti-DBI option detects DBI using the exis-
tence of VBoxGuest files. The algorithm performs a trace
of the CreateFileW API and checks if the \\.\VBoxGuest is
included as an argument. After that, the algorithm traces
whether or not the CMP EAX, 0xFFFFFFFF instruction
appears. If the EAX register is 0xFFFFFFFF, it can be
bypassed by changing that value to anything other than
0xFFFFFFFF.

Obsidium’s anti-DBI option uses a single step technique
to detect DBI and then forcibly terminates the program.
However, the single step routine does not appear every time
a program is executed, and its appearance is dependent on
the state of the EAX register after the CMP DWORD PTR
[EBX+0 x 12C] instruction and AND EAX, 0x7 instruction.
If the EAX register is 0x2 or 0x5 after the AND EAX,
0x7 instruction, the single step routine proceeds so it can be
bypassed by changing the EAX register to 0x0.

G. ANTI-ANTI-DBI OF ACProtect
There is one type of technique for ACProtect to detect DBI
tools. The algorithm to bypass ACProtect’s anti-DBI option
using a DBI tool is shown as Alg. 7.
In order to bypass ACProtect’s anti-DBI, self-modification

must be bypassed. The algorithm stores the start address value

and the last given value in the DBI cache. The algorithm
stores which address was written when each instruction that
writes memory is executed. If the newly written address
value is included between the DBI cache start address value
and the last address value, a bypass is possible through the
DBI API that collects the cache again. Through this process,
the instructions altered during execution are newly collected
and executed in the DBI cache, so that the program operates
normally.

VI. IMPLEMENTATION & EVALUATION
We implemented a tool using the DBI framework to exper-
iment with the proposed algorithm as shown in Fig. 26.
The input of the tool is malware, into which the anti-VM
and anti-DBI techniques of commercial protectors are
applied. When the malware goes through the three modules,
it bypasses the anti-VM or anti-DBI option, and the program
runs normally without interruption. Therefore, malware can
be analyzed using DBI in a virtual environment.

The following describes the three aforementioned mod-
ules.

API Trace Module traces and bypasses the API used
by anti-DBI and anti-VM techniques by using the API
trace function of a DBI tool. This module traces mem-
move, RegOpenKeyA, CreateFileW API, and others to bypass
anti-VM and anti-DBI techniques.

Instruction Trace Module tracks and bypasses instruc-
tions used by anti-DBI and anti-VM techniques using the
instruction tracking function of a DBI tool. This module
detects and bypasses special instructions that are used to
detect virtual environments, such as CPUID, IN instructions.
MemoryWriteCheckModule bypasses self-modification

technique, which employs the JIT compiler characteristics
among anti-DBI techniques. This module detects instructions
that write memory, and then it checks whether the newly
written memory address is included in the DBI cache. If it
is included, DBI collects a new cache to bypass the anti-DBI
technique.

For our evaluation, 1,573 test execution files were gen-
erated using Juliet Test Suite version 1.3 provided by the
National Institute of Standards and Technology (NIST). The
Juliet Test Suite code is categorized into a set of 118 secu-
rity weaknesses based on common weakness enumeration
(CWE). Each set has one or more flaw types that cause
security weaknesses, and the Juliet Test Suite code contains
1,617 vulnerability types. Since Juliet Test Suite code can
trigger vulnerabilities, it can also be used to create malware.
Therefore, in this experiment, the experiment was performed
assuming that the Juliet Test Suite code was malware.

The evaluation environment is as follows. The virtual
environment used in the experiment was performed in
VMware Workstation 15 Player and Oracle VirtualBox 6.0,
both of which were configured in Windows 7. The experi-
ment was performed using PIN version 2.7 of a DBI tool.
Experiments were performed by applying anti-VM and
anti-DBI techniques to 1,573 test portable executable (PE)

VOLUME 9, 2021 7671



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

FIGURE 26. Overview of implementation.

files using five commercial protector tools (Themida 2.4.5,
Enigma 6.00, VMProtect 3.0.9, Obsidium 1.6.7, and ACPro-
tect 2.00). ACProtect does not provide any function that
obfuscates large data sets automatically, and as such,
no obfuscation options provided by ACProtect were applied
to every test set. As a result, 30 test sets were manually
generated and evaluated.

In terms of our experimental method, it was confirmed
that the test set with an anti-VM technique in a virtual
machine environment was bypassed using PIN, and the pro-
gram executed successfully. We also performed an anti-
anti-DBI experiment to check whether the test set with an
anti-DBI technique was bypassed, and the program was
successfully executed using PIN. The evaluation results are
shown in Table 2. Test data sets obfuscated through each
protector were all bypassed using the proposed algorithm.
The experimental results indicate that if the malware uses
an anti-VM technique and an anti-DBI technique from each
commercial protector, the proposed algorithm makes it pos-
sible to bypass.

TABLE 2. Proposed anti-anti-VM & anti-anti-DBI algorithm evaluation.

VII. DISCUSSION
At first glance, the method presented in this paper may
appear to be applicable only to anti-DBI and anti-VM
techniques for five commercial protectors. However, from
the results of previous studies, the types of anti-DBI and
anti-VM options are somewhat limited [5], [6], [12], [20],
[21]. Branco, Rodrigo Rubira, Gabriel Negreira Barbosa, and
Pedro Drimel Neto [20] mentioned that IN instruction is
the most used anti-VM technique found in malware. Polino,
Mario, et al. [12] mentioned that the Self-modification tech-

nique is the most used when investigating the anti-DBI
technique applied to malware. We are presenting a bypass
algorithm for both techniques. Therefore, by finely adjusting
the bypass algorithm proposed in this paper, it will be possible
to cover most cases. As such, we believe it would be inac-
curate to claim that the general applicability of our proposal
is insufficient in that the experiment was performed on five
typical commercial protectors.

There are many options for any one commercial protector.
In this paper, since only anti-VM and anti-DBI techniques
were analyzed, it is difficult to present experimental results
on whether the proposed bypass algorithm works properly
even when other obfuscation options are applied. However,
in the case of Themida, it is a structure in which unpack-
ing is executed if it is not detected after the anti-analysis
technique is performed, and these two parts can be consid-
ered to be separate [3]. Even when other protection tech-
niques are applied, anti-analysis techniques are performed
first and followed by other techniques. Therefore, even if
other options are applied, deobfuscation should be applied
after bypassing the anti-analysis technique, according to Suk
et al. [3]. Since other commercial protectors have a simi-
lar structure, the bypass algorithm presented in this paper
can work normally even when other obfuscation options
are applied.

VIII. CONCLUSION
In order to analyze malware protected by commercial pro-
tectors in a virtual environment using DBI, we needed
to additionally analyze anti-VM and anti-DBI techniques.
We presented a detailed analysis and proposed bypass algo-
rithms for anti-VM and anti-DBI techniques for commercial
protectors in this paper, which is the first empirical study
to propose detailed bypass algorithms of this capacity. The
results of this study can serve as guidelines for easy anal-
ysis of malware protected by an anti-VM or an anti-DBI
option supported by commercial protectors. In addition, other
recent research has focused on unpacking DBI tools, and
we believe that our bypass algorithm will aid in achieving
higher success rates in future research. However, our paper

7672 VOLUME 9, 2021



Y. B. Lee et al.: Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools

only addresses solutions for current techniques used in com-
mercial protectors, and malware using customized protec-
tors along with new versions of commercial protectors using
anti-analysis techniques are emerging constantly. Consider-
ing these developments, anti-anti-analysis techniques must
be studied further, which will form the basis of our future
research.

REFERENCES
[1] S. D’Alessio and S. Mariani, ‘‘PinDemonium: A DBI-based generic

unpacker for Windows executables,’’ Black Hat USA, Tech. Rep., 2016.
[2] D. Reynaud and J.-Y. Marion, ‘‘Dynamic binary instrumentation for deob-

fuscation and unpacking,’’ in Proc. In-Depth Secur. Conf. Eur. (Deepsec),
2009.

[3] J. H. Suk, J.-Y. Lee, H. Jin, I. S. Kim, and D. H. Lee, ‘‘UnThemida: Com-
mercial obfuscation technique analysis with a fully obfuscated program,’’
Softw., Pract. Exper., vol. 48, no. 12, pp. 2331–2349, Dec. 2018.

[4] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, ‘‘Towards
an understanding of anti-virtualization and anti-debugging Behavior in
modern malware,’’ in Proc. IEEE Int. Conf. Dependable Syst. Netw. FTCS
DCC (DSN), 2008, pp. 177–186.

[5] D. C. D’Elia, E. Coppa, S. Nicchi, F. Palmaro, and L. Cavallaro, ‘‘SoK:
Using dynamic binary instrumentation for security (And how you may get
caught red Handed),’’ in Proc. ACM Asia Conf. Comput. Commun. Secur.,
Jul. 2019, pp. 15–27.

[6] P. Chen, C. Huygens, L. Desmet, and W. Joosen, ‘‘Advanced or not? A
comparative study of the use of anti-debugging and anti-vm techniques in
generic and targeted malware,’’ in IFIP Int. Conf. ICT Syst. Secur. Privacy
Protection. Springer, 2016, pp. 323–336.

[7] C. Collberg, C. Thomborson, and D. Low, ‘‘A taxonomy of obfuscating
transformations,’’ Dept. Comput. Sci., Univ. Auckland, Auckland, New
Zealand, Tech. Rep. 148, 1997.

[8] G.-R. Uh et al., ‘‘Analyzing dynamic binary instrumentation overhead,’’ in
Proc. WBIA Workshop ASPLOS, 2006.

[9] Pin. Accessed: Aug. 13, 2020. [Online]. Available: https://software.
intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

[10] Dynamorio. Accessed: Aug. 13, 2020. [Online]. Available: https://
dynamorio.org/

[11] Valgrind. Accessed: Aug. 13, 2020. [Online]. Available: https://valgrind.
org/

[12] M. Polino et al., ‘‘Measuring and defeating anti-instrumentation-equipped
malware,’’ in Proc. Int. Conf. Detection Intrusions Malware, Vulnerability
Assessment. Cham, Switzerland: Springer, 2017, pp. 73–96.

[13] J. Park, Y.-H. Jang, S. Hong, andY. Park, ‘‘Automatic detection and bypass-
ing of anti-debugging techniques for microsoft windows environments,’’
Adv. Electr. Comput. Eng., vol. 19, no. 2, pp. 23–29, 2019.

[14] B. Cheng, J. Ming, J. Fu, G. Peng, T. Chen, X. Zhang, and J.-Y. Marion,
‘‘Towards paving the way for large-scale windows malware analysis:
Generic binary unpacking with Orders-of-Magnitude performance boost,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2018,
pp. 395–411.

[15] D. C. D’Elia, E. Coppa, F. Palmaro, and L. Cavallaro, ‘‘On the dissec-
tion of evasive malware,’’ IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 2750–2765, 2020.

[16] S. Choi, T. Chang, C. Kim, and Y. Park, ‘‘X64Unpack: Hybrid emulation
unpacker for 64-bit windows environments and detailed analysis results on
VMProtect 3.4,’’ IEEE Access, vol. 8, pp. 127939–127953, 2020.

[17] P. Li, ‘‘Selecting and using virtualization solutions: Our experiences
with VMware and virtualbox,’’ J. Comput. Sci. Colleges, vol. 25, no. 3,
pp. 11–17, 2010.

[18] D. T. Vojnak, B. S. Eordevic, V. V. Timcenko, and S. M. Strbac, ‘‘Per-
formance comparison of the type-2 hypervisor VirtualBox and VMWare
workstation,’’ in Proc. 27th Telecommun. Forum (TELFOR), Nov. 2019,
pp. 1–4.

[19] Themida. Accessed: Aug. 13, 2020. [Online]. Available: https://www.
oreans.com/themida.php

[20] R. R. Branco, G. N. Barbosa, and P. D. Neto, ‘‘Scientific but not academ-
ical overview of malware anti-debugging, anti-disassembly and anti-vm
technologies,’’ Black Hat, vol. 1, pp. 1–27, Jul. 2012.

[21] H. Shi, J. Mirkovic, and A. Alwabel, ‘‘Handling anti-virtual machine
techniques in malicious software,’’ ACM Trans. Privacy Secur., vol. 21,
no. 1, pp. 1–31, Jan. 2018.

YOUNG BI LEE received the B.S. degree in infor-
mation security engineering from Soonchunhyang
University, Asan, South Korea, in 2019. He is
currently pursuing the M.S. degree in information
security with the Graduate School of Information
Security, Korea University. His research interests
include software protection, program obfuscation,
program deobfuscation, reverse engineering, mal-
ware analysis, and digital forensic.

JAE HYUK SUK received the B.S. degree in elec-
trical and computer engineering from the Uni-
versity of Seoul, Seoul, South Korea, in 2012,
and the M.S. degree in information security from
Korea University, Seoul, in 2014, where he is cur-
rently pursuing the Ph.D. degree in information
security with the Graduate School of Informa-
tion Security. His research interests include soft-
ware protection, program obfuscation, program
deobfuscation, reverse engineering, and malware
analysis.

DONG HOON LEE (Member, IEEE) received
the B.S. degree from Korea University, Seoul,
South Korea, in 1985, and the M.S. and Ph.D.
degrees in computer science from The University
of Oklahoma, Norman, OK, USA, in 1988 and
1992, respectively. Since 1993, he has been with
the Faculty of Computer Science and Information
Security, Korea University. He is currently a Pro-
fessor with the Graduate School of Information
Security, Korea University. His research interests

include cryptographic protocol, applied cryptography, functional encryption,
software protection, mobile security, vehicle security, and ubiquitous sensor
network security.

VOLUME 9, 2021 7673


