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ABSTRACT Semantic information from images can be used to improve the performance of deep learning
methods in recognizing human emotions. In this paper, we propose a novel framework based on the graph
convolutional network for emotion recognition by utilizing the semantic relationships of different regions.
First, we extract the salient image regions within video frame clips by using the bottom-up attention module
to construct the node features of a graph. Then, we build the graphs containing the node features and the
semantic correlations of nodes by using the graph convolutional network. For refinement, each node feature
of graph vectors is enhanced via a gated recurrent unit consisting of gate and memory units to remove
redundant feature information. Experimental results show that our proposed method achieves superior
performance over state-of-the-art approaches for the emotion recognition on the CEAR and AFEW datasets.

INDEX TERMS Emotion recognition, graph convolutional neural networks, contextual spatiotemporal
features.

I. INTRODUCTION
Human emotions substantially affect the mutual commu-
nication and decision making of humans in daily life [1].
Nowadays, recognizing human emotions plays an increas-
ingly important role in various applications. The ability
of intelligent service robots to recognize the emotions of
an interactive user is indispensable. In social media plat-
forms, extracting social sentiment from textual data is ben-
eficial for digital monitoring and online information push-
ing. In the medical field, an emotion recognition model can
recognize the emotions of patients and provide appropriate
treatments by analyzing physiological signals. Unlike object
recognition and classification, emotion recognition in real
life requires sensory-based reasoning. For example, people
deduce the emotion category by subconsciously reasoning the
facial expressions, voice intonations, and body movements of
human beings.

The efforts in emotion recognition have mostly been
divided into two main categories: physiological signal-based
methods [2] and non-physiological signal-based methods.
Physiological signals include electroencephalogram (EEG)
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signal [3]–[5], galvanic skin response signal [6]–[8], and
electrocardiogram signal [9], [10].Other methods not based
on physiological signals identify emotions by extracting the
features from various types of data, such as videos/images,
speeches, and texts. Traditional methods based on the
videos/images recognize emotions by utilizing the hand-
crafted features [11]–[13]. Handcrafted features are extracted
to form vectors representing the geometry of the face, which
include the facial shape and locations. Shan et al. [11] used
support vector machine (SVM) classifiers to recognize facial
emotions with local binary pattern (LBP) representation.
Zhao and Pietikainen [12] recognized the dynamic texture
of facial expressions by extracting facial local information
and its spatial locations using volume local binary pat-
terns (VLBP) operator. However, handcrafted feature-based
methods normally require precise and reliable detection and
tracking of facial components, which are difficult in many
situations. With the proposal of deep learning methods, the
above problems can be solved.

In recent years, Convolutional Neural Network (CNN)-
based methods [14]–[16] have achieved more accurate and
robust emotion recognition than previous methods with
changes in surrounding information. Yu and Zhang [15] cre-
ated a model to recognize the emotions of static images,
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which contains three face detectors and amultiple deep CNNs
module. Unlike traditional algorithms that can only detect
facial emotions with frontal facial components, this recog-
nition system can detect spontaneous facial expression in the
wild. In visual emotion recognition, other visual cues such as
body gestures, actions, and environmental contexts can show
additional useful information. Thus, Lee et al. [14] integrated
the facial expressions and surrounding information of people
with adaptive fusion networks to demonstrate that the perfor-
mance of emotion recognition networks can be remarkably
boosted by integrating facial and context information. In fact,
the emotion recognition system can analyze features at the
local pixel level, which are extracted by a specific convo-
lution receptive field. However, learning the relationships of
high-level semantic information among regions is difficult.

In the topology data structures, the Graph Convolutional
Network (GCN) can fully extract the relationship features
between node vectors. Inspired by the application of GCN
in EEG emotion recognition and textual emotion recogni-
tion, we present a novel GCN-based framework to recog-
nize human emotions by globally capturing the relationships
between different semantic regions, which included face and
scene contexts. First, we identify salient regions in videos
at the object level with bottom-up attention [17], which is
achieved by using Faster R-CNN [18] and is similar to the
human visual system. Then, we convert multiple regions
of video frames into corresponding node vectors of the
graph structure. In this way, the data conversion between
Euclidean structure and graph structures can be achieved.
We also generate semantic relationships of node vectors by
utilizing GCN to explore the interrelation between these
node vectors of notable regions. Although diverse semantic
relationships could contribute to boosting the accuracy of
emotion recognition, part of the relationships among them
are redundant. Thus, we utilize a gated recurrent unit (GRU)
to select high-level graph features before generating the final
representation of the entire video frame. In specific, our
proposed GCN-based emotion recognition framework has the
following major contributions:

1) Unlike the traditional CNN-based methods that sim-
ply consider the context of images or video frame
input, our proposed network recognizes emotions from
context-aware emotion datasets with reasonable and
filter mechanism, which can reason the relationships
of different regions and remove redundant information
among node vectors.

2) This work examines distinct approaches to verify that
the proposed framework extracts spatiotemporal fea-
tures more efficiently than previous methods over
the Context-aware Emotion Recognition (CAER) [14]
and Acted Facial Expressions in the Wild (AFEW)
[19] datasets, which includes the complex context
information.

3) The proposed method is more accurate than prior meth-
ods [14], [20], [21] for emotion recognition on the
CAER and AFEW datasets. Our network outperforms

these baseline methods by 7%-9% improvement on
the CAER dataset. Furthermore, we conduct ablation
studies to justify the effectiveness of combining GCN
and GRU.

II. RELATED WORK
A. TRADITIONAL METHODS FOR EMOTION RECOGNITION
Before the popularity of CNN-based methods, most emo-
tion recognition research has been dominated by traditional
methods using handcrafted features or shallow classifiers
such as the Facial Action Coding System (FACS) with action
units (AUs) [22], [23], local binary patterns (LBPs) [11],
[12], [24], and sparse learning [13]. Tian et al. [22] devel-
oped an Automatic Face Analysis (AFA) system to recognize
emotions by describing slight changes in a face into AUs
of FASC, which contains permanent and transitory facial
features. Different from some studies based on original face
images, some methods recognize facial expressions using
statistical local facial features. Shan et al. [11] extracted
Boosted-LBP features that represent the most salient LBP
features and then utilized SVMclassifiers to perform emotion
recognition using the extracted the Boosted-LBP features.
This method can also work well for low-resolution facial
expression. However, Zhong et al. [13] observed in facial
expression recognition that only a few facial components
are useful. In [13], a framework of two-stage multi-task
sparse learning was proposed to efficiently locate common
patches of each expression and learn particular expression
patches, and then emotional classification results were pre-
sented by trained SVM classifiers with the facial patches.
Wang et al. [23] exploited the complicated semantic rela-
tionships among facial AUs to recognize the facial emotions
generated by the restricted Boltzmann machine. Although the
above-mentioned traditional methods have shown excellent
emotion recognition results by extracting the facial features
on the datasets generated in lab-controlled environments, the
robustness of these methods is unsatisfactory when the face
images include various head pose changes, which may make
the traditional methods fail to extract the useful AUs or LBP
features.

B. DEEP LEARNING METHODS FOR EMOTION
RECOGNITION
With the rapid development of CNN in emotion recognition,
the approaches of extracting facial features have been injected
into the new vigor and vitality. CNN-based methods have
achieved more robust and superior performance than tradi-
tional methods in the wild datasets by extracting high-level
semantic features [25]. Liu et al. [26] presented a unified
framework, Boosted Deep Belief Network, for integrating
three training stages through joint training. The method based
on joint training strengthens the capabilities of facial fea-
ture selection and facial expression classification. Based on
the above methods, these facial expression systems detect
emotions through various spatial facial features. Considering
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FIGURE 1. The overview of Graph Reasoning-based emotion recognition network (GRERN).

temporal information, Jung et al. [27] proposed a deep
network that includes two models combined with a new
integration method to extract temporal features from image
sequences and facial landmark points. The audio stream
information also contributes to the emotion recognition of
videos in addition to classical facial expression features.
Kahou et al. [28] developed a framework to merge four
modality models. The first model based on several convo-
lutional networks is trained to recognize emotion categories
by extracting the facial features in each video frame. Then,
another model captures emotion features from audio stream.
The third model captures body actions by analyzing the tem-
poral features of video frames. The final model is a shallow
network trained to learn themouth action features in the video
sequence. Although this method highlights the importance
of different data types for emotion recognition, the system
only works on the frontal face. Thus, the robustness of this
emotion recognition system is limited in the wild environ-
ment dataset. As described above, Zhang et al. [29] proposed
a framework to recognize pose-variant facial expression and
body pose. In addition, this network introduced the generative
adversarial network to enlarge and enrich the training dataset
by generating facial expression images under different poses.
However, those methods analyze the emotion features from
the facial expression dataset without exploiting the contextual
information of the environment. Lee et al. [14] provided a
dataset collected from 79 TV shows. This dataset contains not
only the facial expression but also complex and real surround-
ing contextual information. Lee et al. used this dataset to
evaluate the role of contextual information in emotion recog-
nition. They proposed a CNN-based framework to detect
emotions by fusing the facial features and contextual features.
Compared with methods focusing only on facial expression
features, such a method has achieved better accuracy of emo-
tion recognition.

C. GRAPH CONVOLUTION NETWORK
Recently, GCN has been widely used for emotion recog-
nition, especially in physiological signals and text emotion

recognition, because of its powerful capacity for extracting
the relationships of emotion features [30]. GCN can exploit
the relationship features between graph structure data, which
cannot be achieved by CNNs. Therefore, some studies based
on GCN have been proposed to effectively tackle tasks that
require rich relational structure data and depend on the global
information of graph data to achieve their goals, such as
skeleton action recognition [31], natural language processing
[32], and emotion recognition [20], [33]–[36]. However, most
GCN-based emotion recognition methods use texts or phys-
iological signals. Zhang et al. [20] established a two-branch
network for image emotion recognition. One branch utilizes
contextual features to deduce emotion information through
GCN. The other one learns body action features by training
the VGG-16 [37] network. This method was implemented
on the image dataset and utilized the context relationships
on the spatial domain. However, the research on the com-
bination of the spatial and temporal contextual features in
video emotion recognition is still a daunting challenge. In this
paper, we propose a network integrating the GCN andGRU to
recognize human emotions in the videos, which can consider
the contextual factors from video sequence to infer emotion
features in the surrounding.

III. PROPOSED METHOD
This section describes the detailed structure of the Graph
Reasoning-based Emotion Recognition Network (GRERN)
for videos, as shown in Figure 1. Our approach extracts
spatiotemporal features of environmental context and facial
expression for emotion recognition. However, GCN is limited
to directly process Euclidean structure data-like video frames.
Therefore, in the first stage, we convert the regions of video
frame to node vectors of graph structure (a set of video frames
corresponds to a graph structure) by the bottom-up attention
model [17] (Sec. III-A). In this way, we map the consecutive
video frames into the topology structure space to match the
next GCN operation. Then, we establish connections between
these node vectors of the graph with learnable weights. In the
second stage of learning semantic relationship information
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among the node features, we apply four layers of GCN after
the first stage of operation, which can extract the spatial
features and the temporal information of the surrounding
context (Sec. III-B). Then, we convert a set of video frames
to a graph structure. We use a GRU to refine the graph
features by removing redundant features. Finally, we input
the graph features into a SoftMax layer to classify the emotion
categories (Sec. III-C).

A. GRAPH NODE STRUCTURE TRANSITION
In the beginning, we denote a set of T video frames of the
CAER datasets as V = {v1, . . . , vT }. To obtain the graph
structure data from videos, we transform video frames V into
the graph structure G = {N1, . . . ,NT },Ni ∈ RK×D through
the bottom-up attention mechanism. This graph structure
is composed of multiple node vector sets. In other word,
we convert the i video frame vi into the i set of node vec-
tors Ni = {ni1, . . . , niK }, nij ∈ RD, and each single set
of node vectors contains K node vectors. In addition, the
single node vector isD-dimensional.We utilize the bottom-up
attention network to implement the conversion process with
Faster R-CNN [18]. To effectively extract the sets of node
vectors G for subsequent semantic reasoning, we detect the
discriminative regions of video frames with non-maximum
suppression, and set the 0.7 IoU threshold to select the salient
regions. In addition, we set the confidence threshold of 0.3 to
remove some regions with class probability lower than the
threshold. This attention network selects the top K regions
of the video frame vi and outputs the corresponding feature
vectors Xi = {xi1, . . . , xiK }, which are ranked according to
the detection confidence scores. In this way, each video frame
is represented by K node vectors. Finally, we utilize a fully
connected layer to transform the feature vector xij to a D-
dimensional node vector nij, and then concatenate all node
feature vectors to compose the final graph structure G as the
following equation:

nij = Wf xij + bf (1)

whereWf and bf are parameters of the fully connected layer.
xij is the feature vector of the detection model, and nij is the
corresponding node vector. In summary, we form a set of
node vectors Ni = {ni1, . . . , niK }with K node vectors, which
represents a video frame. Futhermore, G = {N1, . . . ,NT }
represents each video clip that consists of T video frames.

B. GRAPH RELATIONSHIP REASONING
In the Fourier domain, a GCN model can extract the features
between the node vectors. Therefore, we apply the GCN
model to extract the emotional information hidden in the node
vectors. To start with node vectors N as well as an adjacency
matrix A, a multi-layer GCN model can be expressed as
follows:

H l+1
= ReLu(D̂−

1
2 ÃD̂−

1
2H lW l) (2)

where Ã = A + IN is the adjacency matrix A with added
an identity matrix IN . D̂ii =

∑
j Ãij is the degree matrix.

W l is l th layer learnable weights, and H l is the output after
l th activation layer.

To illustrate the effect of the adjacent matrix, we define
D̂−

1
2 ÃD̂−

1
2 as Â. The adjacent matrix Â represent the inter-

action intensity between each pair of node vectors. The
high element value Âij of the adjacent matrix means that
the relationship between ni and nj node vectors is strongly
correlated. In [30], the adjacent matrix Â is calculated before
the convolutional operation. To consider the changes in the
relationship between the node vectors in the GCN propaga-
tion, we convert the adjacent matrix Â to be a trainable matrix
in accordance with the following rule:

Â(ni, nj) = 2(ni)T9(nj) (3)

where ni and nj denotes the node vectors of the graph. 2(vi)
and 9(vj) are two trainable vectors calculated with weights:

2(vi) = Wθvi, 9(vj) = Wψvj (4)

In the reasoning stage, we use GCN to transmit the emo-
tional information of nodes through the adjacent matrix.
Finally, we introduce residual connections into each GCN
layer:

Gl+1 = ReLu(Wr (ÂGlW l)+ Gl) (5)

where W l denotes the parameters of the l th GCN layer and
Wr is the weight of residual connection. We apply a ReLU
activation function after each layer of GCN. In this way,
we realize four times such well-defined GCN operations on
the node vectors of the graph to extract spatial-temporal emo-
tion features effectively. In particular, to recognize emotions
in a single image, we can set the number T of video frames
to 1.

C. GRAPH INFORMATION FILTRATION
In this section, we refine graph features and extract the dis-
criminative features of the graph by removing the redundant
features to obtain the final emotional features. In specific,
we input the node vectors of graph G one by one into the
GRU layer to capture the long-term information and remove
the redundant information. As shown in Figure 2, the GRU
adaptively captures the emotion features through different
gates, such as update gate uij and reset gate rij. The update
gate uij controls howmuch information is transferred from the
previous state to the hidden state. The reset gate rij effectively
controls the hidden state to ignore the information from the
previous state which is irrelevant to the current state.

The presentation of the updated memory hij is a linear
interpolation between the hidden state ĥij and the previous
state h(i−1)j/hT (j−1) based on the update gate uij as:

hij =

{
uij ◦ ĥij + (1− uij) ◦ h(i−1)j, i 6= 1
uij ◦ ĥij + (1− uij) ◦ hT (j−1), i = 1

(6)

where ◦ is an element-wise multiplication. The update gate
uij ∈ [0, 1] decides the degree of the unit updated, which is
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FIGURE 2. Architecture of gated recurrent unit.

calculated by:

uij =

{
σ (Wunij + Uuh(i−1)j + bu), i 6= 1
σ (Wunij + UuhT (j−1) + bu), i = 1

(7)

where σ denotes a sigmoid activation function.Wu,Uu and bu
indicate the weight and bias parameters of the GRU model.
nij is the node vector of graph structure G.

The hidden state ĥij is presented as follows, which is trained
to capture the relationship over different time states through
reset gate rij:

ĥij =

{
tanh(Whnij + Uh(rij ◦ h(i−1)j)+ bh), i 6= 1
tanh(Whnij + Uh(rij ◦ hT (j−1))+ bh), i = 1

(8)

whereWh, Uh and bh indicate the weight and bias parameters
of the GRU model, and ◦ is an element-wise multiplica-
tion. Moreover, the reset gate rij in (8) controls the degree
to forget the previous features based on the previous state
h(i−1)j/hT (j−1) and the current node vector nij, which is com-
puted as follows:

rij =

{
σ (Wrnij + Urh(i−1)j + br ), i 6= 1
σ (Wrnij + UrhT (j−1) + br ), i = 1

(9)

where the calculation of rij is similar to that of the update
gate uij. In addition, σ,Wr ,Ur , and br respectively denote a
sigmoid activation function and the parameters of the GRU
model.

In the end of the sequence G, we regard the memory cell
hTK as the final feature vectors. As illustrated in Figure 1,
the updated features after the GCN and GRU modules are
forwarded into an SoftMax classifier.

P = Softmax(WphTK + bp) (10)

where Wp and bp are the weights and bias of a fully con-
nected layer that compresses the input dimension of 2048×k
into only seven dimensions for subsequent emotion classi-
fication. The loss function for optimization calculates the
cross-entropy loss over all the nodes as follows:

L = −
6∑
i=0

Yi lnPi (11)

where Y is the emotion label indicator matrix.

IV. EXPERIMENTS
A. DATASETS
Our method has been evaluated on two benchmark datasets,
namely, CAER and AFEW. These datasets not only have
multi-angle and natural facial expressions but also retain
the surrounding context around the human face. For our
experiments, the surrounding context of videos is particu-
larly important. CAER has collected the 13,201 video clips
from 79 TV shows, which are manually labeled as seven
basic categories: Angry, Disgust, Fear, Happy, Sad, Surprise,
and Neutral. In addition to the video dataset, Lee et al. [14]
extracted frames from the video clips to set up the static image
dataset named CAER-S, which contains about 70K static
images. These two datasets are randomly split into a training
set (70%), a validation set (10%), and a testing set (20%).
To better validate the effect of spatial-temporal contextual
features for emotion recognition, we compared our method
with the baseline of CAER and CAER-S. In addition, AFEW
contains about 1809 video clips from TV shows or movies.
These video clips have been divided into a training set (773),
a validation set (383), and a testing set (593). All video clips
are labeled with the same seven basic categories as those in
the CAER. We also evaluate our model on the AFEW.

B. CHOOSING HYPERPARAMETERS
In the pre-training stage, the bottom-up attention model is
trained with ResNet-101 as the backbone on the Visual
Genomes dataset [38], which follows the same settings as
[17], [39]. We train our model from scratch using RAdam
optimizer [40] with learning rates initialized as 1 × 10−3

and descended the learning rate with 0.1 every 8 epochs.
In addition, we use a mini-batch size of 32. Considering that
CAER datasets have various video clip lengths, we randomly
extract 16 consecutive video frames from each video clips at a
sample rate of 10 frames per second. We further perform data
augmentation operations to horizontally flip video frames.

In our model, the number (T ,K ) of video frames and
regions are particularly significant parameters. Different
parameters choices will affect the performance of our model.
To achieve the best recognition performance, we carry out
further experiments with different settings of video frames T
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FIGURE 3. The recognition accuracy of different video frames and node
numbers.

TABLE 1. Ablation studies on CAER dataset. Results are reported in terms
of recognition accuracy.

and numbers of region K . In these experiments, we select the
video frames T from [2, 3, 4, 5, 6] and the number of regions
K from [12, 24, 30, 36]. We analyze the emotion recognition
of these experiments in the CAER dataset. As shown in the
Figure 3, the horizontal axis denotes the numbers of the
regions from video frames and the vertical axis denotes the
accuracy of emotion recognition. In addition, we show the
curves of different video frames in the different colors. These
data indicate that the emotion recognition accuracy is the
highest when the video frame number T is 3 and then the
node number K is 30. Therefore, we set the video frame
number T and node numberK to 3 and 30 in our experiments,
respectively.

C. ABLATION STUDIES
To evaluate our proposed methods quantitatively, we perform
ablation studies to analyze each component in our frame-
work. We propose a basic baseline model (noted as ‘‘Average
Pooling’’) without any GCN and GRU layers. In the baseline
model, we apply an average-pooling layer after the graph
structure transition and then input the features to the emotion
classifier. The emotion classifier is the same as the one used
in GRERN. In Table 1, the Average Pooling model achieves
36.19% accuracy of emotion recognition. To demonstrate
the capability of the GCN layer to reason the relationships
between node vectors in our model, we adopt one GCN layer
on the graph features to extract the emotional relationships in
a similar way to the baseline model. This model is denoted as
‘‘GCN’’. The role of GRU is also validated by establishing
a model marked as ‘‘GRU’’. This model adopts one GRU
layer on the initial graph features without any GCN layers
to capture the global emotion features. In summary, the GRU

FIGURE 4. Confusion matrix of GRERN on the CAER-S and CAER datasets.

and the GRU model both generate effective emotion features
and improve the emotion recognition accuracy.

In addition, we combine a GRU layer with different GCN
layers to further study the performance of our proposed
method. We mark these models as ‘‘1GCN+GRU’’, . . . ,
and ‘‘5GCN+GRU’’, which respectively integrates a GRU
layer with [1, 2, 3, 4, 5] GCN layers. Table 1 shows that the
emotion recognition performance of our model is gradually
improved by applying multiple GCN layers before the GRU
layer. These results illustrate that the GCNmodule can extract
the enhanced emotion features by learning the relationships
between node vectors and that the GRU module can capture
the discriminative spatiotemporal information bymaintaining
long-term information and removing the redundant features.
The emotion recognition accuracy becomes the best when
four GCN layers are added into the model by maximiz-
ing utilizing the spatiotemporal contextual information. The
best recognition accuracy can be further improved by about
1% in comparison with 1GCN+GRU. Finally, we choose
4GCN+GRU as GRERN to compare with the SOTA meth-
ods.

Figure 4 demonstrates the confusion matrix of GRERN
on the CAER-S and CAER datasets to analyze the recogni-
tion performance of our proposed method in each emotion
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FIGURE 5. Each category of GRERN compared with baseline methods in the CAER benchmark.

category. The Neutral category has the lowest accuracy in the
seven categories. As shown in the Figure 4, a large number of
Neutral categories are misclassified as Happy categories in
the CAER-S dataset. Moreover, when we perform GRERN
on the CAER dataset, Happy and Neutral categories can be
clearly distinguished. However, GRERN performs poorly in
recognizing the Disgust and Fear categories, which may be
attributed to the similar emotion features of the two categories
in dynamic movement.

D. RESULTS OF EXPERIMENTS
To demonstrate the strength of our model in extracting the
spatiotemporal information, we compare our model with sev-
eral SOTA methods in the CAER and AFEW datasets. These
methods are shown as follows:

1) Lee et al. [14] built a two-branch encoding framework.
One branch achieved facial expression encoding to
extract the emotional features of the human face. The
other branch implemented the contextual information
encoding to extract the surrounding context informa-
tion around the human face. In the end, the model
utilized an adaptive fusion module to fuse the extracted
emotional features after the two branches.

2) Zhang et al. [20] established a network by integrating
GCN and CNN. First, the network utilized the Region
Proposal Network to convert images into node vectors.
Then, those node vectors were fed into GCN to extract
the emotion relationships. The body features of images
were captured with CNNs. Finally, the features from
GCN and CNN were connected to predict the emotion
category.

3) Fan et al. [21] developed an architecture based
on deeply supervised CNN. The model extracted
multi-level and multi-scale human face features
through different convolutional layers. The final

features from each convolutional layer were used to
predict the emotion label.

We evaluated our model and above SOTA methods on the
CAER and CAER-S benchmark. However, Zhang et al. [20]
and Fan et al. [21] did not provide open-sourced imple-
mentations. We have reproduced Zhang et al. [20] and
Fan et al. [21] on the CAER and CAER-S datasets and com-
pared the obtained results on the same datasets.

To quantitatively evaluate the importance of temporal
information for emotion recognition, we first conduct some
experiments on the CAER-S dataset. CAER-S is an image
subset of CAER, which only contains the spatial features.
In Table 2, the top four rows shown the emotion recognition
accuracy of SOTA methods on the CAER-S dataset, and
the bottom four rows illustrated the performance of SOTA
methods on the CAER dataset. As shown in Table 2, the
recognition performance of these methods trained on the
CAER dataset is better than that of the methods trained
on the CAER-S dataset. Therefore, the results demonstrate
that the temporal information is beneficial for the emotion
recognition.

On the CAER dataset, GRERN has achieved the best
performance with an emotion recognition accuracy of
86.73%. Compared with the results of Lee et al. [14] and
Fan et al. [21], the emotion recognition performance of our
GRERN is improved by 9.69% and 6.01% respectively in
terms of accuracy. These results indicate that our model
extracts better spatiotemporal emotion features through GCN
and GRU than other methods. Moreover, Zhang et al. [20]
outperformed the method proposed in [21] with a recogni-
tion accuracy of 81.66% through combining GCN and CNN.
However, GRERN combined the GRU and GCN can highly
improve the performance for emotion recognition by further
refining the relationships of the node vectors.

To further analyze the effectiveness of combining the GCN
and GRU for emotion recognition on the CAER dataset,
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FIGURE 6. Visualization of heatmaps with the six basic emotions.

TABLE 2. Comparisons of the emotion recognition accuracy of SOTA
methods on the CAER datasets.

TABLE 3. Comparisons of the emotion recognition accuracy of SOTA
methods on the AFEW datasets.

we visualize the recognition rate of each emotion category
in all methods. As shown in Figure 5, the performance
improvement of our model is mainly achieved by improving
the recognition rates of the Happy, Sad, and Neutral cate-
gories. This result means that GRERN can better capture the
dynamic changes of these categories than the above state-of-
the-art methods. However, GRERN does not perform well in
the recognition of the Fear category compared with the above
methods. Table 4 shows the number of data for each category.
The number of Fear categories in the CAER dataset is the
least. Therefore, the bottleneck of GRERN for recognizing
the Fear category may be caused by the lack of training data.

TABLE 4. Amount of video clips in each category on CAER dataset.

We conduct more experiments on the AFEW dataset.
The differnt methods are compared on the AFEW dataset.
As shown in the Table 3, GRERN is robust in context-aware
emotion recognition. However, the model of Fan et al. [21]
performs better in emotion recognition when compared
with GRERN only trained with the AFEW dataset. Their
model has been pre-trained on the Real-world Affective
Face Database (RAF-DB) [41] which includes large facial
expression samples. To verify the robustness of GRERN
to context-aware emotion recognition, we pretrain GRERN
on the CAER dataset and then fine-tune our model on the
AFEW dataset. Finally, the performance of GRERN has
been highly improved by 1.42% compared with the model
of Fan et al. [21].

For visualizing the correlation between final features and
salient regions that include the facial expression and discrim-
inative contextual information, we calculate the similarity
scores between the node vectors G = {N1, . . . ,NT } and
the final features hTK generated in the GRU through inner
product operation. Then, we color these regions with different
weights according to their score ranking. Figure 6 shows
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FIGURE 7. Attention visualization of video frames in CAER and AFEW
datasets.

the heatmaps of each category in the AFEW and CAER
datasets. The first and third rows are the each categories of
original video frames in the AFEW and CAER datasets. The
next rows are the corresponding heatmaps. As shown in Fig-
ure 6, GRERN can recognize the correct emotion categories
through facial expressions and surrounding information even
in complex scenarios. In addition, we visualize the heatmaps
on multiple frames in a single video in the AFEW and
CAER datasets to analyze the effectiveness of our methods
in extracting temporal features. In Figure 7, the top two
rows are the input video frames and heatmaps in the AFEW
dataset, and the bottom two rows are the input video frames
and heatmaps in the CAER dataset. As shown in Figure 7,
GRERN can capture the changes in faces and gestures in
time dimension to extract temporal video information. Thus,
GRERN captures not only the facial expressions, but also the
changes in body movements or gestures.

V. CONCLUSION
We propose the novel method GRERN that combines GCN
with GRU to use the relationship between salient regions for
emotion recognition. The GCN enriches the node features
and constructs the connections between regions. The GRU in
GRERN enables the network to remove redundant features of
the graph and retain significant parts. Extensive experiments
under the CAER and AFEW datasets show that GRERN
outperforms state-of-the-art methods for context-aware emo-
tion recognition. Compared with state-of-the-art methods,
GRERN can better capture the spatiotemporal emotion fea-
tures in video clips containing complex context information.
In the future, we will conduct emotion recognition experi-
ments on blind people or people with facial deformities.
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