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ABSTRACT This research introduces a new method to estimate the position of a robot’s Tool Center
Point (TCP) using Inertial Measurement Units (IMUs), sensor fusion and Artificial Neural Networks
(ANNs). The objective is to make an accurate estimate of TCP navigation, using the signals from an IMU
as resources of a neural network capable of predicting the position. Considering that the IMU sensors
suffer noise in the measurements and the noise progresses over time, this proposal employs a technique
that eliminates the filtering step, and the process is done internally by the network. The work employs a
non-parametric approach to reset the reference dynamically, minimize noise from sensors, and converge
positioning to a nominal result. This method offers a solution for fast, cheap, and efficient robot calibration.
The work does not want to replace current techniques but to introduce a new design to the literature.
The concept does not require sophisticated mechanical parts and the production line to be idle during the
calibration process, and the results show that the developed technique can accurately predict the TCP position
with millimeter errors and in real-time. The study also implemented the concept with other neural networks,
for which it used a smaller set of data in an attempt to reduce training time. The research used the Multilayer
Perceptron and XGBRegressor networks to test the approach introduced with others algorithms. Different
applications that need real-time positioning can benefit from the proposal.

INDEX TERMS IMU calibration, neural networks, online robot calibration, sensor fusion.

I. INTRODUCTION
Robots today play a central role in the manufacturing indus-
try [1], [2], and for these machines to work correctly it
is necessary to perform their calibration. Robot calibration
is a systemic process of modeling, measuring, numerically
identifying its physical characteristics and implementing a
new model [3]–[5]. Thus, kinematic calibration is a way to
improve the positioning accuracy of the robot [6]. In the
case of industrial robots, it is a method of minimizing the
effects of various sources of errors that affect the position
and orientation (pose) accuracy of the robot TCP, due to
geometric deviations and other sources of errors during its
operation [7].

In the process of robot calibration, the robot’s TCP poses
are measured [8] and the deviations between the desired
poses in the robot program and those reached in its operation
are recorded. Then, complex nonlinear numerical techniques
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generally employ a function capable of adjusting the kine-
matic model and its parameters according to the measured
position [9], but for this, it is necessary to use sophisticated
measuring devices [10] and interrupt the machine’s opera-
tion. There are also non-parametric techniques [11], using
regression equations and neural networks [12] to perform
this procedure. All processes require measuring instruments
with high precision and, therefore, costly for the industry.
The aim of the research is to employ sensors and neural
networks to perform the estimated TCP navigation (Dead
Reckoning) [13], reducing the complexity of external mea-
surement systems.

A. MOTIVATION
To develop a robot calibration method, it is necessary to
measure the actual operating position and compare it with
the desired nominal position and then adjust the kinematic
model of the robot to compensate for deviations. This work
introduces a technique for mapping the robot’s TCP position
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using InertialMeasurement Units (IMUs), andArtificial Neu-
ral Networks (ANNs) as a software tool capable of mitigating
the progressive and inherent noise and error propagation of
the IMU sensors, thus predicting its real position in space.
Regarding this processes, there are two a priori approaches.
The first is the parametric one [14], [15], in which the
error is related to parameters that reflect geometry and other
mechanical characteristics such as elasticity, eccentricity,
clearance, and others. The second approach is known as non-
parametric [12], where the robot model is submitted to a
nonlinear regression equation or other methods, such as the
case of neural networks [12], [16], [17].

As for the practical aspect there are two types of robot
calibration processes: the offline calibration process and the
online one. In general, in the offline process the robot remains
out of work and a calibration program performs the pro-
cess. The algorithm guides the robot TCP to selected posi-
tions, then tools capable of measuring the actual position are
employed. Next, the error is calculated from measured points
and the desired nominal coordinates. In this case, the classic
calibration method involves the development of a kinematic
model with error parameters that is supposed to accurately
describe the real robot position [18], [19]. In the online
calibration process, the kinematic model in the controller is
adjustedwhile the robot operates, without the need to suspend
its operation to perform the calibration due to natural wear
and maintenance stops or tool changes. In this case, it is
necessary to estimate the robot’s TCP position while the robot
operates, using a sensing device that is sufficiently accurate
and fast. From an economic point of view, it is not necessary
to interrupt the service of the robot on the manufacturing line
to calibrate it.

Despite the little use of robot calibration methods
online, the development of Micro Electromechanical Sys-
tems (MEMs) [20]–[22], which has risen the interest of
researchers in various areas over time [23], has now encour-
aged research in robot calibration with IMUswith gyroscopes
and accelerometers coupled to measure the robot’s TCP ori-
entation at the programmed points [24], [25]. These inertial
devices, which used to be large and expensive and were
used mostly in the aerospace industry, are already available
at prices below one hundred dollars and weighing around
twenty grams. Thus, methods based on IMUs could remove
the complexity of the operation in terms of hardware, such as
measuring arms, interferometry systems, laser tracking, and
others. Current literature discusses the use of IMUs only to
calibrate the orientation of the robots [24], [25], excluding
position because IMU systems suffer from the fast accumula-
tion of errors during themeasurement process, and this makes
it impossible to measure the position. However, it is feasible
to compensate for such errors through software techniques.

Position and orientation can be obtained by integrating the
measurements made by the inertial sensor, but these esti-
mates are not accurate over time due to progressive noise.
To mitigate this situation, it is often essential to fuse sensors
with other devices [26]. Since sensors can provide estimates

with high sampling rate (accurate on a short time scale), it is
necessary to combine this method with sensors that have a
lower sampling rate [26]. This research aims to eliminate this
arrangement of devices, using only IMU signals to feed the
neural network and predict position in space during robot
displacement.

IMUs are composed of sets of inertial sensors, such as
gyroscopes and accelerometers [27], [28], which provide
rotation speed and linear acceleration along three directions
of the a body structure. There are several types of gyroscopes,
and those based on MEMs [29] are the selected type for
this study. They are commercially available, accessible, and
small [29]. However, some types of gyroscopes are limited
to military use due to their high performance or price [30].
Accelerometers are an integral part of inertial navigation
systems and they measure the acceleration of a body, indi-
rectly, by measuring the specific force in the body frame
of the IMU. Like gyroscopes, accelerometers have evolved
in terms of price, energy consumption and resistance to the
miniaturization characteristics observed in MEMs [31].

B. SENSOR FUSION
Many factors influence the error in an IMU, including insta-
bility in the gyroscope bias, uncertainty of the accelerometer,
scale factor, mechanization in the calculation of integrals,
non-linearities, and others [32]. Studies show that due to
inconsistencies the longer a gyroscope operates the higher the
stored rate or the error in the Angular RandomWalk position
and, since noise has a high-frequency element (short term)
and low-frequency component (long term), if noise is not
limited, the accuracy of the system will decrease [32], [33].

Researchers have concluded that adding other signal
sources to the IMUwould improve its performance [34]. Such
devices are integrated on the same circuit board that contains
MEMS-based IMUs to provide additional accuracy to the
entire system [32]. A microprocessor calculates, integrates
and combines the independent measurements of each device
and thus compensates the deviations.

This research uses noisy sensor data to feed an ANN and
get the actual robot TCP position along the guided trajectory.
The goal is not to filter the IMU signals but to use them
directly so that this step is eliminated. The filtering process is
done by the neural network, which during training correlates
the input to the expected output, thus being able to identify
the characteristic noise of the IMU signals and then remove
it. The noise removal process is implicit, avoiding the use of
additional filtering methods. The motivation is to use noisy
signals to predict a trajectory in 3D space, making unnec-
essary to filter them a priori, which eliminates the use of
expensive IMUs and sophisticated filtering mechanisms.

C. ARTIFICIAL NEURAL NETWORKS
An Artificial Neural Networks is a circuit composed of a
large number of simple processing units (neurons) inspired
by a natural neural network [35] and is a massively par-
allel and distributed system where these simple units can
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FIGURE 1. The IMU acquires the x, y, and z point coordinates using sensor fusion. Then the signal contaminated with noise is used to feed the ANN,
which mitigates errors and predicts the trajectory of the guided movement.

store and use the knowledge [35], [36]. The learning process
can be understood as the variation of synaptic weights over
time [37], depending on the inputs it receives, until it stabi-
lizes and reflects a correct relationship between a set of inputs
(domain) and its image, representing something significant
like the pattern recognition, the approximation of a function,
a type of regression and others.

Considering that the ANN can emulate a non-linear regres-
sionmethod capable of mitigating noise from sensors through
the correlation of variables, it is feasible to develop a system
that predicts the robot TCP position based on the data sam-
pled by the micro-sensor. The work describes the develop-
ment of a system capable of predicting the position of a robot
TCP in real-time, using the signals from the IMU and a neural
network. Figure 1 generalizes the concept presented.

FIGURE 2. Robot and IMU employed. The IMU was placed on the tip of
the robot.

II. MATERIALS AND METHODS
A. IMU AND ROBOT
In this research, an IRB-360 robot was used to perform a
guided movement. The IMU used was the BNO055, as it
is accessible (no controlled sale), cheap, and has a sensor
fusion algorithm that allows configuration. The IMU was
attached to the robot TCP. Figure 2 shows the components
mentioned. The IMU provided 19 outputs to the network, that
is, features were obtained from the fusion of sensor signals
that the hardware made available and are as follows:

• Three inputs related to orientation (x, y, z) based on a
360-degree sphere;

• Angular velocity vector with three axes (x, y, z) repre-
sented for three features;

• Three characteristics referring to the angular accelera-
tion vector in the three axes (x, y, z);

• Magnetic field in the three axes (x, y, z) represented by
three inputs;

• Three features are related to linear acceleration in the
three axes (x, y, z);

• Gravity in the three axes (x, y, z);
• The temperature in degrees Celsius.

B. TRAJECTORY SETS
The program generated several sets of trajectories for the
robot, and the coupled IMU produced the measured samples
to the algorithm. As the ANNs are sensitive to information,
the experiment provided the network with a large amount
of data in the first experiment, so 6.2 million samples were
collected. The paths that themethod considered are composed
of circles, squares, and ramps. The circles were programmed
in two directions (clockwise and counterclockwise) in the
planes (x, y) and (z, x), representing 30% of the samples. The
square trajectories are also in both directions (clockwise and
counterclockwise), but in this case, only in the plane (x, y)
and describe 30% of the sample set. The ramps are in the three
dimensions (x, y, z) and are responsible for 40% of the trajec-
tories. Figure 3 exemplifies the generation of trajectories by
software.

C. DATA PREPARATION
As discussed earlier, the measurements taken by the sensors
are not accurate, and noise tends to increase over time. One
way to place the values within the same range is through the
technique called Feature Scaling [38], which facilitates the
operation of most neural networks (normalize independent
variables on a specific scale. As the input is noisy, this implies
that the range of raw values varies widely and, therefore,
hampers the objective function of many networks to function
correctly. Any feature that has a large range of values will
have greater weights in the training process. The objective
of normalization is to ensure that the features are on the
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FIGURE 3. Example of the scheme used to generate the trajectories of the robot.

FIGURE 4. The 19 features delivered by the fusion of IMU sensors and
their respective normalization for the convergence process.

same scale of values, so there is no distortion between the
intervals of the inputs and the neural network processes all
information in a homogeneous way; therefore, despite the
variation, the system can better correlate data to specify the
model. Besides, the gradient method converges much faster
using normalization [39]. Figure 4 shows normalization using
the range (1, −1).

D. TRAINING PROCESS
During training, two unwanted situations can occur, over-
training and under-training [40]. The first case is known as
excessive training and happens when the network obtains
a specific solution. Therefore, the regression system is not
able to predict values outside a known series. In the second
case, the network is insufficiently trained, which leads to
poor resolution, even using known samples. To verify that the
network is not under-trained or over-trained, it is necessary to
divide the data set into three partitions, respecting a defined
percentage. The first partition is for training, used by the
algorithm in the adjustment process. Then, a cross-validation
protocol (suitable for time series) uses the validation set to
check the quality of the results. Finally, the programmer
observes the test data to evaluate the results and compare them
with the expected output.

FIGURE 5. Scheme of data division, cross-validation and testing.

As there is a temporal relationship between the samples,
it is not possible to randomize the data and then divide them
into a training and test set (random division or K-Foldmay not
deliver good results). The data are treated as a time series, and
therefore the methodology employed a validation technique
known as continuous cross-validation, which returns the first
K-folds as a training set and the (k + 1)th fold as a test
set. The method is a variation of the K-Fold suitable for
data sets that have a temporal relationship. The methodology
trained and validated the ANN-RB network in a data set with
different trajectories and varied directions and then tested the
model obtained in the test set. The other algorithms were
trained and evaluated in a series with 3825 samples and tested
with 4500 entries. Figure 5 shows the general design used
in the data preparation stage. Figure 6 illustrates how the
methodology organized the training and validation set splits.
• Training andValidation: 85%of the data in the training
and validation process with 6 splits. This procedure was
applied to both algorithms (respecting the number of
samples in each set).

• Test: This data is sent to the network after training as a
necessary step to check if themodel is robust. The survey

VOLUME 9, 2021 5681



B. A. N. Campos, J. M. S. T. Motta: Online Measuring of Robot Positions

FIGURE 6. Time Series cross-validation used in the preparation of data
for training.

considered 15% of the values measured in the test step
for the ANN-RB and employed 4500 samples to test the
others regressors.

The research employed two criteria to evaluate the model.
The first is based on the construction of a Multi-layer Per-
ceptron (MLP) network, where we defined its parameters and
created the mathematical rules of the system. The second test
battery used third-party tools and a smaller data set to try to
get a solution that is not as dependent on the amount of data.

E. PROPOSED ANN
The developed network is based on the MLP algorithm with
back-propagation, as it guarantees the convergence of the
model and will be named hereafter ANN-RB network. Its
implementation can be parallel and, thus, allows fast calcu-
lation using high sampling frequencies; the algorithm allows
acceleration using of Nvidia’s graphics processing units. For
this, the algorithm was developed in the C++ language and
employed the following steps in its construction:

1) The ANN receives input signals, x1, x2, . . . , x19, from
IMU;

2) Existing weights (random at the beginning) w1,

w2, . . . ,w19 multiply the input signals;
3) The algorithm applies an activation function to the

output: threshold, sigmoid or linear, creating the output
signal y of this neuron;

4) The output y is then compared to the desired yd
(expected output): algorithm supervision factor;

5) The network calculates the error, which is the differ-
ence between the estimated value y and the expected
value yd ;

6) The adaptation process takes place, which in this case is
the change of the synaptic weights of the ANN neurons
in the function of the error signal received and the
derivatives in each synapse of the network;

7) After many passes of the sign, the weightswi are altered
and end up describing something relevant containing a
small associated error.

Mathematically, the value y calculated at the output of
each neuron depends on the input x, the weights w, and the
activation function f (.) that is applied to the weighted sum,

according to equation (1).

y(i) = f (
m∑
k=1

(wk (i) ∗ xk (i))) (1)

The error is the difference between this calculated value
and the desired value, known in the model output, described
by (2).

e(i) = d(i) − y(i) (2)

The learning process takes place by updating the weights
of neurons in each iteration. The objective is to obtain a set
of values that reduces the error between the output calculated
by the network and the actual output. The literature shows
that considering the objective of minimizing the error it is
interesting to apply an energy function to the error. Since E(w)
is a function of the energy applied to the weight vector w,
which is continuously differentiable, then there is a E(w∗) that
makes the values w * optimal. The relationship between them
is given by equation (3).

E(w∗) 6 E(w) (3)

The necessary condition to minimize the function
E(w∗) is:

∇E(w∗) = 0 (4)

where ∇ is the gradient operator:

∇ =

[
∂

∂w1
,
∂

∂w2
,
∂

∂w3
. . .

∂

∂wn

]T
(5)

The gradient of the cost function is:

∇E(W ) =
[
∂E
∂w1

,
∂E
∂w2

,
∂E
∂w3

. . .
∂E
∂wn

]T
(6)

The algorithm adopts a descending iteration, where at each
step the cost function decreases as in (7). Initially, the algo-
rithm starts with an initial estimate denoted by w(0) and
generates the weight vector sequence w(1),w(2), . . . ,w(n).
In equation (7), w(n) represents the old value of the weight
vector, and w(n + 1) is the new value. According to S.
Haykin [36], the function will decrease based on the differ-
ence calculated between the old and the new weight vector,
which is obtained by updating the weights.

E(w(n+ 1)) < E(w(n)) (7)

Adjusting the weights at each iteration is performed in the
direction of the steepest descent (against the gradient vector).
Equation (8) describes the steepest descent algorithm as:

w(n+ 1) = w(n)− η∇E(w) (8)

In (8), η is the learning rate (positive constant), known
as step size, and ∇E(w) is the gradient vector considered at
point w(n).

The last layer of the network has its value compared to the
final error, and its error signals are back-propagated tomodify
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the weights. In ANNwe can define an error signal e in neuron
j during a iteration n as equation (9):

ej(n) = dj(n)− yj(n) (9)

Thus the instantaneous energy of the error of the neuron j
in the iteration n is:

Einstantaneous =
1
2
e2j (n) (10)

The total energy obtained by adding the energy of all
neurons in the output layer in the n iteration would be defined
by equation (11):

E(n) =
1
2

∑
j∈c

e2j (n) (11)

Since N is the sum of all iterations n, the total average
energy will be:

Eaverage =
1
N
(
N∑

K=1

E(n)) (12)

Here, average as well as instantaneous energy are functions
of all free parameters such as synaptic weights and bias.
Setting v as the weighted sum of each neuron, according to
equation (13):

vj(n) =
m∑
i=0

(wij(n) ∗ yki(n)) (13)

In equation (13), m is the total number of inputs that reach
neuron j. The bias applied to neuron j is equal to the synaptic
weightwj0, so the output yj(n) of each neuron j corresponding
to iteration n is described in (14).

yj(n) = ϕj(vj(n)) (14)

The correction ∇wij(n) in the synaptic weight wji(n)
applied by the back-propagation algorithm is proportional to
the partial derivatives ∂E(n)

∂wji(n)
, and according to the chain rule

(calculus) the gradient can be defined as [36]:

∂E(n)
∂wij(n)

=
∂E(n)
∂ej(n)

∗
∂ej(n)
∂yj(n)

∗
∂yj(n)
∂vj(n)

∗
∂vj(n)
∂wij(n)

(15)

Differentiating equation (11) results in:

∂E(n)
∂ej(n)

= ej(n) (16)

Then equation (9) is differentiated with respect to yj(n),
resulting in:

∂ej(n)
∂yj(n)

= −1 (17)

The next step is to differentiate equation (14) concerning
vj(n) and we get:

∂yj(n)
∂vj(n)

= ϕ′(vj(n)) (18)

Differentiating equation (13) with respect to wji(n)
results in:

∂vj(n)
∂wij(n)

= yj(n) (19)

Applying equations (16), (17), (18), and (19) in formula
(15) we obtain:

∂E(n)
∂wij(n)

= −ej(n) ∗ ϕ′(vj(n)) ∗ yj(n) (20)

The correction applied to the synaptic weight ∇w will be
defined by the delta rule [36]:

∇wyj(n) = −η
∂E(n)
∂wij(n)

(21)

Here, η represents the learning rate applied to the algo-
rithm. Thus, the local gradient also called the sensitivity
factor will be equal to equation (22):

δj(n) =
∂E(n)
∂vj(n)

(22)

Weights are randomly initialized and then updated through
back propagation. The δj(n) sensitivity factor is propagated
backward to support the update of the synaptic weights. The
error resulting from the difference between the output value
of the last layer and the desired value is multiplied by ϕ′ and
the new weight w will be updated according to equation (23):

wyj(n) = wyj(n−1) + η
∂E(n)
∂wij(n)

(23)

Thus, at each cycle or time run in the algorithm the weights
w are updated to learn the function rule that takes the values
from the input set to the output set. With this mathematical
basis, the proposed ANN-RB network was implemented.

F. HYPERPARAMETER ADJUSTMENT
Factors that influence the error behavior, such as the num-
ber of layers, the number of neurons or the learning rate,
are named hyperparameters [41], [42]. These values are not
usually obtained from a rigid method, but from heuristics,
which depend a lot on the experience of those who build
the neural network [43]. As it is not possible to know in
advance the best ANN-RB topology, it is reasonable to start
from known patterns and modify them by measuring the
response performance of the network to each change of its
hyperparameters. A useful method in the search for efficient
topologies is called Grid Search [44], [45].

The technique consists of setting up a series of exper-
iments whose design variables have variable factors, each
with discrete values and whose experimental units assume all
possible combinations of these levels [46]. This step allows
for a refined adjustment of the positioning sensor calibration
process.

The grid search performs a training process for each
combination of hyperparameters and saves the network that
presents the best result (least error). In this way, the experi-
ment was configured to scan many possible combinations of
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the number of hidden layers, the number of neurons per layer,
different learning rates, and activation functions (according
to pre-selected values). The process can be considered brute
force and is generally used in the choice of hyperparameters
when there is no heuristic or reference value about the ideal
set of values. The model saved the network that showed the
highest accuracy at the end of the training, and the swept
hyperparameters were:

1) Number of neurons per layer (50, 100, 200, 300, 400);
2) Learning rate (0.1, 0.01, 0.001, 0.0001);
3) Number of hidden layers (1, 2, 3, 4, 5).
The methodology did not define the activation function

a priori, and its choice was made by the network during the
training process, through the grid search. The adjustment of
the network hyperparameters tested three activation functions
(logistic sigmoid, hyperbolic tangent, and rectified linear).

G. TEST WITH OTHER REGRESSORS
Three other algorithms were used in this study to train the
model rapidly. As the tests took a long time, it would be
impractical to repeat them in various configurations using
all samples. Therefore, a smaller set of data (4500 samples)
was implemented in the research to solve the problem in
a more objective and fast way. The idea is not to counter
the classifiers but to test other settings that might solve the
problem. The assessment included the following networks:
MLP and XGBoost Regressor.

1) XGBoost REGRESSOR
The XGBRegressor method does not allow modeling of a
particular architecture, and only a few hyperparameters were
adjusted at the beginning (GridSearchCV), such as the learn-
ing rate and the number of estimators. The configuration
hyperparameters that have been adjusted are as follows:

1) Learning rate: (0.5, 0.1, 0.05);
2) Number of estimators: (100, 200, 500, 1000);
3) Booster gbtree;
4) Maximum depth 20.

2) MLP
The MLP network was configured using the grid protocol
and employed a proprietary algorithm (GridSearchCV) to
make the selection of hyperparameters. The number of hidden
layers varied between 1 and 3. The tested learning rates
were 0.1, 0.01, 0.0001. The optimizer employed was Adam.
The remaining hyperparameters were the same as the default
provided by the developer (scikit-learn). Two metrics were
used for comparison in all algorithms, i.e., the Mean Square
Error and the Maximum Error.

H. HARDWARE
Backpropagation guarantees a high probability of
convergence. However, the success of this convergence is
proportional to the number of analysis points collected in
an experiment and the computational power associated with

recurrent matrix calculations. To allow the computational suf-
ficiency necessary for the experiment, the following hardware
was employed:

1) Twelve Nvidia cards of the GTX 1070 model with
1920 CUDA cores;

2) TwoXEONprocessors with 24CPU cores, with 64 gigs
of memory and liquid cooling;

3) 1 TERA HD SSD workstation.

III. RESULTS
This section presents the results of the three test batteries with
the robot performing different trajectories, using the network
developed in this research in conjunction with the sensor
fusion. Next, it is shown results of other neural networks
of general use. The first results (before the grid search) are
related to the proposed ANN-RB and were unsatisfactory,
with large differences between the IMU position and the
nominal position values of the robot controller, as shown in
the Figure 7. The poor result shows the importance of the
adjustment process and the search for the ideal hyperparam-
eters. The initial outcomes do not suggest that the network is
poorly implemented, but it does indicate the need for compre-
hensive training that takes into account various combinations
of hyperparameters.

FIGURE 7. ANN-RB values (red) vs. Controller values (blue). The network
did not obtain satisfactory results before the adjustment.

A. THE ANN-RB ALGORITHM
The network input is the 19 features provided by the IMU,
and the output is a prediction of the TCP position provided
by the algorithm. The network output is compared with the
nominal value of the robot controller software. The red points
in the center of the figure show what the IMU recognized
as the robot’s TCP position, and the blue ones are the TCP
trajectories read in the robot controller. This demonstrates
that the ANN-RB had not yet learned to correct the values
from the errors of the IMU, and it would still be necessary to
make changes to the hyperparameters of the neural network
and its topology. The result plots are presented according
to a subsample of the test set. The validation method is a
variation of the K-Fold suitable for data sets that have a tem-
poral relationship. The results delivered by ANN-RB were
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FIGURE 8. Comparison between robot controller values (A) and IMU
sensors (B), considering the test set.

satisfactory (with millimeter errors) but, the training time was
high due to the range of tested hyperparameters, and for this
reason, the survey looked for other algorithms and means to
accomplish the same task and obtain good performance with
reproducible time.

After performing the grid search, the network output con-
verged to points closer to the actual TCP position values.
Figure 8 shows that the path predicted by the network is very
close to the desired one. The blue line represents the robot’s
nominal trajectory, and the purple line describes the results
obtained by the approach. The method presented a maximum
error of 0.9 mm. According to the IRB-360 manual, the TCP
accuracy is 0.04mm, so themaximum error of the approach is
(0.9 ± 0.04). The Mean Square Error was (0.68 ± 0.21) mm
and the Root Mean Square Error was (0.82 ± 0.46) mm.

The experiment evaluated approaches on different trajecto-
ries, such as uphill, ramps, and circles at the three coordinates.
Figure 9 shows circular paths. Thus, the intelligent system can
perform the estimated navigation of the robot’s TCP from the
data provided by the fusion of sensor signals from the IMU.
Figure 10 exhibits the error distribution.

The approach could predict the robot position using data
obtained from the sensors with the proposed neural network,
with high accuracy and submillimetric errors. The apparent
disadvantage of the model is the need for a large volume
of data, which resulted in a 20-day training. The training

time obtained is due to two factors. First, the sample
size set (6.2 million samples) is considerable. Second,
the grid search analyzed several possibilities of arrangements
for hyper-parameters, and this increased the time. There-
fore, the methodology employed other regression algorithms
adopting a smaller data set and using a smaller search proto-
col. Also, the results in the sequence suggest the potential of
the approach, since in the worst case, it took a few minutes to
perform the training.

The data points were acquired during the IMU operation,
which made it possible to train the network with real data.
The results obtained in the testing phase are based on these
samples and, therefore, on a robot operation arrangement
under real conditions. That means that it is not necessary
to embed a neural network of sensors onto the robot but to
use the data collected by the IMU to predict the position and
correct nominal deviations.

B. THE MLP ALGORITHM
The MLP algorithm presented interesting results with a MSE
of 2.81 mm and a Maximum Error of 135.2 mm. The val-
idation process known as rolling cross-validation improved
the results, and the path described in Figure 11 approached
the real trajectory taken by the robot’s software. The training
process took approximately 5 minutes.

C. XGBoost REGRESSOR
This algorithm presented promising results, and the expected
trajectory started to converge satisfactorily. The training pro-
cess did not last more than a few seconds, and this is an
intrinsic feature of the algorithm. The experiment tried many
arrangements and the results were similar. It is possible to
perceive that with the known data, the system follows the
nominal trajectory of the robot, but when the values are new
and contaminated with the progressive noise of the IMU,
the network cannot maintain the same precision. It is possible
to assume that the model has become specific or sensitive
to noise amplitude. As the variation in the results was small
between the different arrangements of this model, it is pos-
sible to infer that the lack of data was the limiting factor.
Figure 12 shows the results obtained by XGBoost.
The table 1 shows the overall result of the experiment.

Graphically, it is possible to see that all networks started to
describe the real trajectory. Quantitatively, the algorithms that
were trained on a limited data set showed greater errors.

TABLE 1. General results.

IV. DISCUSSION
The results achieved in this research demonstrate that it is
feasible to perform the estimated navigation of the robot’s
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FIGURE 9. Circular path predicted by the network. In this case, the highest deviations occurred.

FIGURE 10. Gaussian distribution of errors.

TCP using a non-linear regression method through the fusion
of micro-sensor signals. The ANN-RB network was able to
accurately predict the test path, as shown in Figure 6 (with
a maximum error of 0.9 mm). The study fed the regressor in
serial mode, and the algorithm made the prediction instantly
(online). Therefore, the methodology did not consider the
forecast time (since it was insignificant).

With these results, it is viable to develop a method to
perform the calibration of the robot kinematic model in a non-
parametric strategy. In this research, the method performed
the regression of the trajectory coordinates tracked in a guided
movement. Feeding a neural network with signals from an
IMU proved viable to predict the trajectory of a robot TCP
in a guided movement. Even with the use of an inexpensive
software solution and the acquisition of noisy measurements,

FIGURE 11. Results obtained by the MLP network.

it is possible to correlate nonlinear inputs in a black-box
system and obtain a solution capable of measuring the robot’s
path with acceptable accuracy. With the regression obtained
by the proposed network, the network predictions can be used
with the nominal positions calculated on the controller to
predict the robot position error, correcting the robot position
via software in real-time whenever necessary.

Initially, as the objective was extensive training and the
prospect of adjusting the network parameters the experiment
provided the algorithm with a large volume of raw data. This
decision was made considering that the amount of data is a
limiting factor for machine learning. In the same way that this
choice helped to fulfill the initial challenge and confirm the
proposition, it also introduced a contradiction, i.e. a necessary
training time of approximately 20 days. Despite this, it is
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FIGURE 12. This regressor delivered the best results regarding a decreased data set, with training time in the seconds.

not reasonable to state that the model is inefficient for two
reasons:
• The procedure to optimize a model and identify its ideal
operational range is always expected, avoiding redun-
dant training. In addition, one can test the network with
a smaller number of samples and find a good relationship
between accuracy and data volume.

• After training the network, it is possible to replicate
the system without time restrictions. Supposing that in
the worst case, after all the improvements, the interface
needs 2 days to supply the model. At the end of that
period there would be a functional and cheap product
of acceptable precision.

The estimated errors were sub millimetric and acceptable
for the proposal, which encourages the expansion of the
research to other subjects. First, one can improve the model
and look for other ways to cancel the progressive IMU noise.
Second, several real applications that do not require larger
accuracy can benefit from the concept, i. e. any device that
needs spatial calibration over time and whose adjustment is
millimetric can make use of the technique. It can also be
considered that IMUs will become more and more accurate
over time. The first benefit of using this method is to encour-
age a production line to be more efficient and to reduce
undesirable downtime. In addition, a more comprehensive
search for possible applications can provide insights for more
general and sophisticated solutions. A complex device that
can benefit from this technique would be a vehicle navigation
system. In that case, the accuracy improvement may be even
higher, considering that navigation methods are expensive
and that it turns to be interesting to use a more accurate and
less noisy IMU in conditions where the positioning accuracy
may have a larger range of errors.

A. TEST WITH OTHER NETWORKS
The proposed methodology had been used with a protocol
to test its results with other algorithms to investigate its
feasibility and sensitivity to the data set. The idea was to
verify whether it is possible to train and test other approaches
faster, as some tests with the proposed one took up to 20 days.
Despite worse results, the networks compared started to pre-
dict the trajectory with a shorter training time.

The algorithms used to verify the robustness of the system
were able to achieve interesting preliminary results, even with
a small amount of data compared to the architecture initially
proposed. All regressors were able to initiate the convergence
to the robot path, which means that the abstraction between
the input and the output can probably be solved by these
other algorithms, helping to generalize the proposed scheme.
In addition, there is a drastic drop in the training time. Some
observations about the networks are:
• MLP: The training process took a fewminutes and there
was little difference between different configurations of
the network. The quality of the results indicate that the
potential limiting factor of MLP is the reduced data set.
Therefore, even before performing the research on the
network, it is necessary to create a relevant and objective
abstraction of the data.

• XBoost Regressor: This algorithm presented the most
favorable results among third party networks. Accuracy
is noticeably better and training time has been limited to
a few seconds.

TABLE 2. Comparison table.

B. COMPARISON WITH OTHER APPROACHES
Unlike traditional (parametric) calibration methods, the noise
removal process is implicit in the network, and this elimi-
nates the need to know how this step is performed, elimi-
nating the use of expensive IMU and sophisticated filtering
mechanisms. In [47] it is presented a comparison of some
parametric methods with purposes similar to this work, where
the IMU is used to track the movement of a link. Although
the application is different, the concept of space tracking
is the same. Table 2 shows the maximum error of each
approach [47].

1) The first method aims to track the position in real-time
and also uses IMU signals. The article [48] introduced
the technique;
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2) Method 2 employs an extended Kalman filter to per-
form real-time tracking of human limbs by processing
the signals from inertial sensors [49];

3) Technique 3 estimates linear acceleration during the
walking movement and can predict the limb position.
The research [50] details the algorithm;

4) Method 4 uses a recursive filtering and sensor fusion
technique to do the tracking, also, it employs a camera
to compensate and replace the magnetometer measure-
ments, as described in the article [51];

5) The system 5 employs a Kalman filter in conjunction
with inertial sensors to estimate the position with up to
7 degrees of freedom [52].

C. FUTURE WORK
As the data provided by the sensors was noisy and the amount
of information needed to train the network was large, future
work will be on software methods capable of mitigating IMU
noise, making the input data smoother. Also, we want to
adjust the ANN-RB architecture to consider a smaller set
of hyperparameters and a smaller input series. When it is
no longer possible to improve the results, the inputs will be
doubled to reassess the product.

A different stage of the investigation is to develop a system
that could perform an online robot calibration in realistic
terms, working as a compensation model that mitigates the
deviations when they are detected. For instance, supposing
that the measurements obtained by the ANN-RB start to
vary from the nominal values, that difference could feed the
robot controller software to make corrections in the positions
recursively.

V. CONCLUSION
It can be concluded from the research work that the use
of IMUs and ANNs was successful to estimate the robot’s
TCP position and to provide measurement data for robot
calibration. The approach was able to perform a nonlin-
ear correlation between inputs and outputs in a black-box
model. The IMU collected data for the ANN-RB in a sen-
sor fusion scheme that proved to be sufficient to provide
the dynamic characteristics of the guided movement. The
data collected by the micro-sensors were noisy and did not
accurately describe the real dynamics of the robot’s TCP
movement, hiding information of its signals, such as a ramp,
limit switching, or change of direction. It was precisely this
subjective relationship that the proposed system was able to
describe, accomplishing the online calibration of the sensor.
Processing time was not favorable, but this does not reflect
a disadvantage, since after training the network can be easily
replicated. Particularly, this study scheme usedmany samples
to perform the tests.

The study also provided a comparison of the results
with parametric approaches and this showed the capacity of
the proposed method. Unlike traditional methodologies that
employmathematical means of compensation and estimation,
the use of neural networks allowed to make this correlation in
an automated and accurate way.

This research developed its neural network, and as the tests
took too long, it was decided to examine other approaches
using fewer samples. This step was carried out with differ-
ent algorithms disseminated in the academic environment
to test more possibilities, configurations, and networks. The
results were satisfactory and showed that it is possible to
generalize the model. The smaller set of data used with these
networks reduced the training time, but the quality of the
results decreased.
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