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ABSTRACT This paper proposes an algorithm to infer the maneuver intention of an obstacle ship and to
check its compliance with the maritime traffic rules to avoid ship collision and ensure maritime traffic safety.
A probabilistic graphical model is constructed to represent the relationship between motion observations of
the obstacle ship and its hiddenmaneuver intention to complywith the traffic rules. The probabilistic belief of
the ship’s intention is modeled and quantified using probabilistic tools such as dynamic Bayesian networks.
Three different intent inference models are formulated considering the different levels of observation
configurations, and their calculation procedures are described. To demonstrate the feasibility of the proposed
intent inference algorithm, Monte-Carlo simulations were conducted and the results are presented.

INDEX TERMS Intent inference, COLREGs, ship collision avoidance, dynamic Bayesian network.

I. INTRODUCTION
SHIPS navigating in open waters are obliged to comply
with the international regulations for preventing collisions
at sea (COLREGs), which correspond to the traffic laws of
public roads [1]. The COLREGs, adopted by the interna-
tional maritime organization (IMO), contain various rules
for maritime traffic safety, such as the light and sound sig-
nals for communications and guidelines on vessel priority
[2]–[4]. In particular, the regulations provide a conflict res-
olution procedure to resolve encounters between ships. How-
ever, not all ships strictly follow this procedure and the
rules can sometimes be interpreted differently between the
encountering ships, which may lead to dangerous situations
[5]. Therefore, estimating the maneuver intention of the other
ships at sea regarding their compliance to the maritime traffic
rules is important and necessary to ensure safe ship nav-
igation, especially for autonomous surface ships and con-
ventional ships with automated collision avoidance systems.
However, information regarding the maneuver intention is
usually hidden and cannot be readily identified if not broad-
casted or shared through communication channels. There-
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fore, it has to be estimated from the ship’s trajectory, where
the operator’s maneuver intention has been reflected.

Much research for estimating maneuver intention has been
performed in the field of intelligent aerial vehicles and air
traffic management. There exist some similarities between
aviation and maritime traffic systems. Unlike cars on road-
ways, aircraft and ships are operated in open space with no
traffic infrastructure such as visible traffic lanes and signal
lights. In the aviation domain, the flight intention is repre-
sented by trajectory change points (TCPs) which can be pro-
vided via automatic dependent surveillance-broadcast (ADS-
B). However, considering the vulnerability of ADS-B to fake
data injection and system failures, many studies have focused
on predicting or estimating the aircraft intention using flight
trajectory observations. In [6], the navigation intention was
inferred from the given state of an aircraft in a horizontal-
vertical-speed dimension, and the intention was evaluated by
the likelihood function based on the estimation error of the
tracking filter and the sensor noises in [7] and [8]. In [9],
dynamic Bayesian networks (DBNs) were used for the joint
target tracking, classification, and intent inference (JTCI)
which is an extended version of the joint target tracking and
classification (JTC).

Although there exist some similarities between the aviation
and maritime traffic systems, there also exists a significant
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difference between them, and as a result, the intent inference
methods for aviation traffic management cannot be directly
applied to maritime applications. The roles of an aircraft pilot
and a ship’s captain in air traffic or vessel traffic management
systems are quite different. While the aircraft is constantly
monitored and guided by air traffic controllers, the ship’s
captain holds the full responsibility of the operation. In other
words, ships operate much more individually than aircraft.
Most importantly, all the ships are required to comply with
the maritime traffic rules, COLREGs, and therefore it is
important to consider thesemaritime specific rules in estimat-
ing the ship’s maneuver intention and predicting its poten-
tial evasive action. Little research on intent inference has
been performed in the maritime domain compared to that in
the aviation domain. The concept of intent-aware collision
avoidance between surface vehicles was addressed in [10].
A propagation model to deal with the intention of other
ships was proposed and it was applied in [11]–[13]. In [14],
the Douglas-Peucker algorithm and the nonlinear velocity
obstacle (NLVO) were used to predict the give-way vessel’s
intention; however, the study did not address the intention of
the stand-on vessel. The existing rules are quantified using
the case law to detect the other ship’s rule violation [15];
however, it did not consider the effect of inherent uncertainty
and measurement noise in quantifying the degree of rule
violation. In fact, the amount of information for intent infer-
ence may vary depending on sensor/communication config-
urations, and the information provided by navigation sensors
– such as automatic information system (AIS) and marine
radar – is corrupted by measurement noise. These issues
have not been sufficiently explored in the above-mentioned
studies, and to the best of the authors’ knowledge, none of
the existing studies in the maritime domain has provided an
explicit probabilistic model for intent inference.

This paper presents a novel approach for inferring the
maneuver intention of a ship using its trajectory information
with measurement uncertainty. To quantify the probability
of compliance to the maritime traffic rules of an encoun-
tered obstacle ship, a graphical model is constructed based
on the DBN combining graphical models for state-action-
intention and measurement-state-action. The probability of
rule compliance is defined as the belief of intention based
on the proposed graphical model, and the procedure to fac-
torize the belief into familiar probability distributions is
newly proposed using various probabilistic techniques and
tools. The procedure of modeling the probability distribu-
tion and calculating the belief is described considering the
availability of trajectory observations and their uncertainty.
The performance of the proposed method is demonstrated
using Monte-Carlo-based ship traffic simulations, and the
simulation results are discussed.

The remainder of this paper is organized as follows:
Section II describes the problem formulation of the intent
inference to predict the maneuver intention and the math-
ematical derivation to factorize and calculate the belief.
Section III presents parametric and nonparametric modeling

FIGURE 1. Illustrations of compliant maneuvers in vessel encounter
situations defined in COLREGs: The blue ship takes a give-way maneuver,
while the red ship takes a stand-on maneuver.

of the probability distribution. The results of the Monte-
Carlo simulation are described in Section IV, and finally,
the conclusions are presented in Section V.

II. PROBLEM STATEMENT
A. MANEUVER INTENTION
The ship’s maneuver intention is described as a latent rea-
son or objective of the operator to manipulate the ship’s rud-
der and engine telegraph. The operator controls the ship with
various operational purposes and maneuver intentions. The
intention to be addressed in this study is the intention of com-
pliance of the vessels that are in sight of one another with the
maritime traffic rules, COLREGs. The COLREG-compliant
maneuvers of three encounter situations are depicted in Fig. 1.
In each encounter situation, at least one give-way vessel
exists, while the other has a stand-on duty so that they can
avoid each other. The obligations of give-way and stand-on
ships are described by rules 16 and 17 in the COLREGs as
follows:

• Rule 16 action by give-way vessel: Every vessel which
is directed to keep out of the way of another vessel shall,
so far as possible, take early and substantial action to
keep clear well.

• Rule 17 action by stand-on vessel-(a)(i): Where one of
two vessels is to keep out of the way, the other shall keep
her course and speed.

The ship’s maneuver intention is assumed to be reflected
on its trajectory. For example, when a ship with an obli-
gation to give way alters its course to the port side, this
behavior provides evidence of rule-violation. The elements
of the intention’s sample space I = {C,V} are assumed to
be mutually exclusive, which means that compliant and non-
compliant actions cannot be performed at the same time.

B. GRAPHICAL MODEL
The proposed graphical model based on a DBN for inferring
the intentions of ship maneuvering is shown in Fig. 2. The
DBN consists of four variables: x, u, I , and z, which represent
the state, action, intention, and measurement, respectively.
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FIGURE 2. Dynamic Bayesian network for intent inference of ship
maneuvering: The graphical model is constructed by merging the
dynamics model (blue box), intent model (orange box), and measurement
model (green box). x, u, z and I represent the state, action, measurement,
and intention, respectively. The subscript k represents a time step. The
horizontal direction represents the time axis.

The intention is denoted by I , which is defined as an element
of set I, and the subscript involving k is the index of the
time step. The maneuver intentions create actions, and the
actions evolve into the states. This procedure is described
in Fig. 2 with the state, action, and intention nodes along the
vertical axis, which is called the intent model. The change
of intention over time is shown along the horizontal axis,
which is called the intent transition model. The graphical
model is constructed by combining the intent model and the
intent transition model in the form of HMMs (hiddenMarkov
models) [16], which consists of the evolution of the state,
measurement, and action.

C. OBSERVATION CONFIGURATIONS
To infer the intention of the obstacle ship, a set of intent-
related information is gathered, and its time history is accu-
mulated. The amount and quality of information for inferring
the intention of the obstacle ship may vary depending on
the sensing and communication capabilities and operational
settings. In this study, we consider the following three cases
of information availability and show how the performance of
intent inference changes with the information availability.

Here, the measurement z represents the range and bearing
data (generally represented by a range and bearing) of the
encountering ships observed from the own ship. The state x
represents the position and heading data of the obstacle ship.

- Case 1: States (x), action (u), and measurements (z) are
available.

- Case 2: Only states (x) are available. (e.g., AIS data)
- Case 3: Only measurements (z) are available. (e.g., marine

radar measurements)

The action u is the control input data of the obstacle ship that
changes the state. Case 1 is the ideal case in which all the
information is obtained without noise. Cases 2 and 3 are more
realistic and practical cases assuming that the information is
corrupted by measurement noise. In the practical scenario of
Case 2, the AIS can provide the state information including
the other ships’ speed and course. Also, the onboard sensors
such as the marine radar can measure the other ships’ relative
range and bearing in Case 3.

D. MATHEMATICAL MODELS
Here, the mathematical formulation for quantifying the inten-
tion and the resulting models are described. The value of the
quantified intention defined as the belief of intention bel(I )
is calculated by probabilistic approaches such as the Bayes’
rule and d-separation.

1) bel(Ik) FOR CASE 1
The belief of intention can be represented as the probability
of intention conditioned on the time history of all the infor-
mation except for the intention itself and it is expressed as
follows:

bel(Ik ) = p(Ik |u1:k , x0:k , z1:k ), (1)

where the subscript k1 : k2 represents the time history from k1
to k2. According to the d-separation rule, Ik is conditionally
independent of xk and z1:k given u1:k and x0:k−1 from the
graphical model in Fig. 2. Therefore, bel(Ik ) is simplified as

bel(Ik ) = p(Ik |u1:k , x0:k−1). (2)

This belief function is represented in a recursive form as

p(Ik |u1:k , x0:k−1)

= ηkp(uk |Ik , xk−1)
∑
Ik−1

p(Ik |Ik−1)p(Ik−1|u1:k−1, x0:k−2)

= ηkp(uk |Ik , xk−1)
∑
Ik−1

p(Ik |Ik−1)bel(Ik−1), (3)

where ηk = 1/p(uk |x0:k−1,u1:k−1) is the normalizer.
For more detail see Appendix A. The belief is separated
into the intention-reflected action probability p(uk |Ik , xk−1),
the intent transition probability p(Ik |Ik−1), and the prior belief
function bel(Ik−1).

2) bel(Ik) FOR CASE 2
If only the state information is given, the belief of intention
can be represented as

bel(Ik ) = p(Ik |x0:k ). (4)

The belief function is represented in a recursive form as
before:

p(Ik |x0:k )

= ηk

∫
uk
p(xk |uk , xk−1)p(uk |Ik , xk−1)

∑
Ik−1

p(Ik |Ik−1)
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FIGURE 3. A graphical representation of the coordinates between the
own ship and obstacle ship at time step k .

p(Ik−1|x0:k−1)duk

= ηk

∫
uk
p(xk |uk , xk−1)p(uk |Ik , xk−1)

∑
Ik−1

p(Ik |Ik−1)

bel(Ik−1)duk . (5)

Compared with (3), the state transition probability
p(xk |uk , xk−1) is included because the action information is
not directly given. Details of the derivation are presented in
Appendix B.

3) bel(Ik) FOR CASE 3
Finally, if only the measurement information is provided,
the belief of intention can be represented as

bel(Ik ) = p(Ik |z1:k ). (6)

The method for recursive calculation of the belief slightly
differs from the previous two calculation methods. The belief
can be represented by the marginalization of the joint proba-
bility of state and intention at the current time step as follows:

p(Ik |z1:k ) =
∫
xk
p(xk , Ik |z1:k )dxk . (7)

The joint probability is calculated recursively as

p(xk , Ik |z1:k )

= ηkp(zk |xk )
∫∫

xk−1,uk
p(xk |uk , xk−1)p(uk |xk−1, Ik )∑

Ik−1

p(Ik |Ik−1)p(xk−1, Ik−1|z1:k−1)dukdxk−1. (8)

The measurement probability, p(zk |xk ) is added because the
state has to be inferred from the measurement data. Details of
the derivation are presented in Appendix C.

III. INTENT INFERENCE MODELS
The belief for each case has been modeled in a probabilistic
manner, and the probability distributions associated with the
belief need to be defined. Both parametric and nonparametric
models are used to represent the probability distributions
considering their definition and properties. The modeling and
evaluation procedures are described in the following.

A. PARAMETRIC MODELING
A graphical representation of the coordinate system between
the own ship and the obstacle ship is shown in Fig. 3. The
state xk is expressed as

xk =
[
xT,k yT,k ψT,k VT,k

]>
, (9)

where xT,k and yT,k represent the position of the obstacle ship
at time k in the north-east-down (NED). ψT,k and VT,k are
the course and speed of the obstacle ship, respectively. The
action of the obstacle ship is expressed as

uk =
[
ωT,k aT,k

]>
, (10)

where ωT,k and aT,k are the rate of turn and linear acceler-
ation, respectively. The marine radar provides the position
information in polar coordinates, and the measurement zk is
expressed as

zk =
[
rk βk

]>
, (11)

where rk and βk are relative range and bearing. The measure-
ment probability is designed using the Gaussian distribution
and is expressed as

p(zk |xk ) ∼ N (zk ; h(xk ),Rk) , (12)

where N (·) is the Gaussian distribution with the covariance
Rk and the mean h(xk ). h(xk ) represents the measurement
function defined by the relative position δxk and δyk (see
Fig. 3), which is expressed as

h(xk ) =

[ √
δx2k + δy

2
k

tan−1(δyk/δxk )

]
. (13)

The state transition probability with Gaussian white noise
is expressed as

p(xk |uk , xk−1) ∼ N (xk ; f (xk−1,uk ),Qk) , (14)

where Qk is the covariance of the process noise. The process
model f (xk−1,uk ) is written as

f (xk−1,uk )

=


xT,k−1 + VT,k−1 cosψT,k−11t
yT,k−1 + VT,k−1 sinψT,k−11t

ψT,k−1
VT,k−1

+


0
0

ωT,k1t
aT,k1t

 ,
(15)

where 1t is the time difference between each step.
The intent transition probability p(Ik |Ik−1) is modeled as a

transition probability matrix which is written as

p(Ik |Ik−1) =

{
pα, if Ik = Ik−1
1− pα, otherwise,

(16)

where pα represents the probability of maintaining the inten-
tion, which is assumed to be independent of time.
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FIGURE 4. Illustrations of compliant and non-compliant velocities for the
obstacle ship according to rules 16 and 17: The blue ship is the own ship
and the red ship is the obstacle ship. The main coordinate system is
defined as the velocity coordinate system of the obstacle ship.

B. NONPARAMETRIC MODELING
The conditional probability p(uk |Ik , xk−1) represents the
probability distribution of the action to take given the previ-
ous state and the intention. The compliant and non-compliant
velocity regions in the velocity coordinates centered at the
location of the obstacle ship according to COLREG rules
16 and 17 are depicted in Fig. 4. Figure 4(a) shows the case
when the obstacle ship is the give-way ship and Fig. 4(b)
shows the case when the obstacle ship is the stand-on ship.
The red region represents the non-compliant velocity of the
obstacle ship, whereas the blue region represents the compli-
ant velocity. For the give-way situation shown in Fig. 4(a),
if the velocity of the obstacle ship is inside the blue region,
the ship is following the rules by passing port-to-port; how-
ever, if the velocity is inside the red region, the ship is
violating the rules by passing starboard-to-starboard. For the
stand-on situation shown in Fig. 4(b), if the ship’s velocity
is inside the blue region, it means that the ship maintains its
speed and course within a certain range and complies with
the rules as the stand-on ship; otherwise, the obstacle ship is
violating the rules. It is not straightforward to represent the
probability of intention-reflected action using a parametric
model. Therefore, the distribution is modeled using a non-
parametric model with particles, which is expressed as

p(uk |Ik , xk−1) ≈
M∑
m=1

1
M
δ
(
uk − u[m]I ,k

)
, (17)

where M is the number of particles. u[m]I ,k describes the m-th
sampled particle of action with intention I at step k , and δ(·)
is the Dirac delta function [17].

The procedures for obtaining u[m]I ,k are described in Fig. 5.
It includes 3 steps: sampling of the non-compliant and com-
pliant velocities, calculation of the difference in speed and
course, and a sample-based approximation of the probability
of intention. The leftmost figure in Fig. 5 shows the particles
of the intention-reflected velocity vd,k =

[
ψd,k Vd,k

]> with
respect to the region in Fig. 4. The coordinate transformation
from the Cartesian coordinates to the polar coordinates is
applied to the sampled velocity to calculate the difference,

and is expressed as 1vd,k = vd,k −
[
ψT,k VT,k

]>. The ship
takes action to reduce 1vd,k to reflect the intention whose
intensity depends on the decreasing rate of1vd,k . The asser-
tion of intention, which is defined as a degree of how much
intention can be reflected, is inversely proportional to the time
it takes for the velocity to reach vd,k . Therefore, the time
is inversely proportional to the magnitude of the action, and
the reflection of intention is proportional to the magnitude of
the action. The rightmost figure in Fig. 5 shows the particles
of the action u[m]k whose magnitude is proportional to the
probability, and the action is bounded using its maximum and
minimum values owing to the constraints of its dynamics.

If the states of the ship are satisfied with the operator’s
intentions, then the operator may not take any action. There-
fore, no action indicates that the purpose has already been
achieved. To reflect this fact, some particles of intention-
reflected action which the obstacle ship has at the previous
step are converted to zero action u =

[
0 0
]>.

C. BELIEF EVALUATION
The evaluation procedures of the three belief models with
different information availability and their algorithm imple-
mentations are described.

Algorithm 1 shows the evaluation method when actions,
states and measurements are all available. In line 2 of Algo-
rithm 1, bel(I ck ) is equal to 1 − bel(Ik ), where superscript c
represents the complement set of the event. ηk in line 7 of
Algorithm 1 is the normalizer which is obtained by

ηk = 1/(LIk ,kbel(Ik )+ LI ck ,kbel(I
c
k )). (18)

To calculate ηk , the likelihood and prior of all intentions
are calculated first. The likelihood L is calculated by the
summation of the probability density of sampled action u[m]I ,k
obtained from the modeled distribution with the mean and
covariance of action, µu,k and 6u,k .

Secondly, Algorithm 2 describes the belief evaluation
when only the state information is available. To compensate
for the lack of action information, the likelihood is calculated
by accumulating the probability density of the state.

Algorithm 1 Belief Evaluation for Case 1
Input: Mean and covariance of action µu,k , 6u,k , Belief of

previous intention bel(Ik−1), Intent transition probability
pα , Previous state µk−1

Output: Belief of intention bel(Ik )
Procedure:
1: LI ,k = 0
2: bel(Ik )← pαbel(Ik−1)+ (1− pα)bel(I ck−1)
3: for m = 1 to M do
4: Sample u[m]I ,k ∼ p(uk |Ik , µk−1)
5: LI ,k ← LI ,k +N (u[m]I ,k ;µu,k , 6u,k )
6: end for
7: bel(Ik )← ηkLI ,kbel(Ik )
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FIGURE 5. Sample-based approximation of the intention-reflected action model: The leftmost image shows the compliant and non-compliant regions in
the velocity coordinates and the particles uniformly distributed in the accessible velocity area. The center image shows the particle distribution in the
coordinates of speed and course changes (upper part) and its histogram representation (lower part). The rightmost image shows the corresponding plots
of the particles in terms of control input u[m]

I,k (yaw rate and acceleration). Red dots represent samples of non-compliant cases, whereas blue dots
represent the samples of compliant cases. The state of the obstacle ship is [-14.47 -323.37 1.65 6.09]> and that of the own ship is
[-335.24 -13.84 6.14 5.33]>.

Algorithm 2 Belief Evaluation for Case 2
Input: Mean and covariance of state µk , 6k , Covariance of

process noise Qk , Belief of previous intention bel(Ik−1),
Intent transition probability pα , Mean and covariance of
previous state µk−1, 6k−1

Output: Belief of intention bel(Ik )
Procedure:
1: LI ,k = 0
2: bel(Ik )← pαbel(Ik−1)+ (1− pα)bel(I ck−1)
3: for m = 1 to M do
4: Sample x[m]k−1 ∼ N (xk−1;µk−1, 6k−1)
5: Sample u[m]I ,k ∼ p(uk |Ik , x

[m]
k−1)

6: Sample x[m]I ,k ∼ N (xk ; f (xk−1,u
[m]
I ,k ),Qk )

7: LI ,k ← LI ,k +N (x[m]I ,k ;µk , 6k )
8: end for
9: bel(Ik )← ηkLI ,kbel(Ik )

Finally, Algorithm 3 shows the evaluation of the belief
when onlymeasurements are available. To calculate the belief
efficiently with a smaller number of particles, the probability
of the intention-reflected state p(xk |Ik , z1:k ) is approximated
using a Gaussian distribution. p(xk |Ik , z1:k ) is updated from
p(xk |Ik , z1:k−1) using an extended Kalman filter to avoid
particle deprivation. As a result, the probability of the state
is represented by a Gaussian mixture model (GMM) with
weights bel(Ik ), which is expressed as

p(xk |z1:k ) =
∑
Ik

p(Ik |z1:k )p(xk |Ik , z1:k )

=

∑
Ik

bel(Ik )p(xk |Ik , z1:k ). (19)

Algorithm 3 Belief Evaluation for Case 3
Input: Measurement zk , Covariance of process and mea-

surement noise Qk ,Rk , Previous GMM p(xk−1|z1:k−1),
Intent transition probability pα

Output: Belief of intention bel(Ik )
Procedure:
1: for m = 1 to M do
2: Sample x[m]k−1 ∼ p(xk−1|Ik−1, z1:k−1)
3: Sample u[m]I ,k ∼ p(uk |Ik , x

[m]
k−1)

4: Sample x[m]I ,k ∼ N (xk ; f (x
[m]
k−1,u

[m]
I ,k ),Qk )

5: w[m]
I ,k ← N (zk ; h(x

[m]
I ,k ),Rk )pαbel(Ik−1)

6: end for
7: for m = M + 1 to 2M do
8: Sample x[m]k−1 ∼ p(xk−1|I

c
k−1, z1:k−1)

9: Sample u[m]I ,k ∼ p(uk |Ik , x
[m]
k−1)

10: Sample x[m]I ,k ∼ N (xk ; f (x
[m]
k−1,u

[m]
I ,k ),Qk )

11: w[m]
I ,k ← N (zk ; h(x

[m]
I ,k ),Rk )(1− pα)bel(I

c
k−1)

12: end for

13: bel(Ik ) = ηk
2M∑
m=1

w[m]
I ,k

IV. SIMULATION FOR VALIDATION
A. SIMULATION SETTING
The scenario settings of the traffic simulations for evaluating
the performance of the proposed intent-inference method is
depicted in Fig. 6. Two ships, an observing ship and an obsta-
cle ship observed by the observing ship, cross each other. The
observing ship gathers information on the obstacle ship and
predicts its intention using the gathered information.
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TABLE 1. Parameter settings for performance test of the algorithm.

The obstacle ship is set to randomly perform either a
compliant or non-compliant maneuver against the observing
ship. When the obstacle ship has an obligation to maintain
its course and speed, it maintains its course and speed if
it intends to comply with the rule; however, it alters its
course to a randomly biased course if it intends to vio-
late the rule. According to the rule, if the obstacle ship
needs to avoid the other ship, then non-compliant inten-
tion makes the evasive maneuver on the port side, whereas
the compliant intention makes the evasive maneuver on the
starboard side.

In every simulation run, two ships appear simultaneously
from two randomly chosen points among eight starting
points, and then they cross each other as shown in Fig. 6. To
make a sufficiently close encounter in every single scenario,
both the ships approach the center point of the simulation
field with a randomly biased course and speed. The size
of the simulation field is a square 10 nautical miles (nmi)
long on one side. The length and breadth of the ship are
175 m and 25.4 m, respectively. The mathematical model
of a container ship is used for dynamic simulations, and the
detailed model information is available in [18], [19]. The
transition probability of the intention, pα , is set to 0.95. The
frequency of the sensor measurement, and its inference is set
to 0.1 Hz.

The information of AIS and marine radar is calculated by
adding noise components to the true data. The noise of the
AIS is modeled using the Gaussian distribution [20], and
the noise of the marine radar in range and bearing is mod-
eled using the uniform distribution. Four-hundred random-
encounter traffic simulations were conducted for the three
cases of observation settings defined in Section II-C. In the
first case, the observing ship obtains all the necessary infor-
mation without noise. In the second case, the observing ship
uses the noisy state information of the obstacle ship. Finally,
in the third case, the observing ship uses only the noisy mea-
surement of the obstacle ship. The details of the simulation
setting are shown in the Table 1.

FIGURE 6. A graphical representation of the simulation setting. The own
ship and the obstacle ship are set to randomly appear from 8 possible
different directions.

FIGURE 7. Average probability of compliant intention. The blue represents
the scenario with compliant intention, while the red represents the
scenario with non-compliant intention. Circles and asterisks represent
encounters with give-way and stand-on obligations, respectively.

B. RESULT AND DISCUSSION
The result of estimating intention using the proposed algo-
rithm through the Monte-Carlo simulation for the three cases
of observation settings is shown in Fig. 7. The x-axis of
each graph is the index of the scenario, and the y-axis
is the estimated probability of compliant intention. In the
resulting graph, a blue represents the case with the com-
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TABLE 2. Quantitative performance of intent inference result according to the distance between the two ships.

FIGURE 8. Belief of compliant intention in each scenario (Case 1). Circles are the relative positions in the body-fixed coordinates of the observing
ship. The color of the circles represents the belief of intention. The radius of the polar coordinates is 10.0 nmi. (P: precision, R: recall, F: F1 score).

FIGURE 9. Belief of compliant intention in each scenario (Case 2). Circles are the relative positions in the body-fixed coordinates of the observing
ship. The color of the circles represents the belief of intention. The radius of the polar coordinates is 10.0 nmi. (P: precision, R: recall, F: F1 score).

pliant intention, while a red represents the case with the
non-compliant intention. Therefore, the blue has a higher
probability, whereas the red has a lower probability. This
further indicates that the intentions are properly estimated
by the proposed algorithm. In particular, the more reliable
information provided, the more clearly the intention can be
distinguished.

The result of trajectory and belief are depicted in Figs. 8,
9, and 10. The circle represents the position of the obstacle
ship in the body-fixed frame of the observing ship during
every minute. The heading angle of the observing ship points
upward in the coordinate system. The first two figures (from
the left) in each of the cases show the result of the give-
way situation of the obstacle ship, and thus the obstacle
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FIGURE 10. Belief of compliant intention in each scenario (Case 3). Circles are the relative positions in the body-fixed coordinates of the observing
ship. The color of the circles represents the belief of intention. The radius of the polar coordinates is 10.0 nmi. (P: precision, R: recall, F: F1 score).

ship approaches from the bow port side of the observing
ship. Meanwhile, the other figures in each case show the
results of the stand-on situation of the obstacle ship, and thus
the obstacle ship approaches from the starboard side. The
obstacle ship avoids the observing ship by turning to the stern
of the observing ship in the give-way situation with compliant
intention (see first column), whereas it avoids the observing
ship by turning to the bow of the observing ship in the
give-way situation with non-compliant intention (see second
column).

The color of the circles represents the belief of compliant
intention. The red, blue, and green represent the violation,
compliance, and neutrality, respectively. In the situations with
compliant intentions, most of the circles are blue.Meanwhile,
most circles are red in non-compliant situations. The resultant
color of the circle indicates that the inference is performed
correctly. In particular, the closer the obstacle ship is to
the observing ship, the more accurate the inferred maneuver
intention is.

Table 2 summarizes the quantitative results for precision,
recall, and F1 score depending on the detection distance.
The inferred probability value is approximately 0.5, and this
indicates that the intent inference algorithm may not clearly
distinguish the intention. Therefore, a neutral range is pre-
defined and the intention is estimated outside the neutral zone
with a width of 2pm. The inferred intention that varies with
the width of the neutral zone is expressed as

Intent =


Compliant, if bel(Ik = C) > 0.5+ pm
Non-compliant, if bel(Ik = V) > 0.5+ pm
Neutral, otherwise.

(20)

The precision is the fraction of the correct answers among the
estimation of the algorithm, whereas the recall is the fraction
of the correct answers with respect to the corresponding
situations. As the value of the threshold increases, the com-
pliance or violation is more carefully estimated. Therefore,
because the algorithm gives the answer ‘‘neutral’’ more fre-
quently in the ambiguous situations, the recall decreases,

whereas the precision increases. The more accurate and reli-
able the information is, the higher the F1 score is. Figures 8,
9, and 10 show that the intention is not clearly identified at
far distance where evasive actions are not taken yet; however,
the performance of intent inference improves as the two
ships get closer. The quantitative performance is evaluated
at varying distances. Note that 4.5 nmi is the range where
the collision risk exists according to the case law [21], and
3.0 nmi is the minimum range of the onboard lights in rule
22 of the COLREGs. The computational efficiency of the pro-
posed algorithm was confirmed to be very satisfactory. The
update rate higher than 5 Hz was obtained using MATALB
and an even higher rate can be achieved by optimizing the
algorithm software and the hardware system, which is fast
enough for ship applications.

V. CONCLUSION
This study proposes a systematic procedure for estimating
the maneuver intention of an encountered ship to predict its
compliance/violation of COLREGs. Themain contribution of
this paper is summarized as follows:

• The DBN-based graphical model which represents the
relationship between the intention and observations of
traffic ships was constructed, and the conditional inde-
pendence between the variables in the graphical model
was determined.

• The probability distribution associated with the graph-
ical model was factorized using the probabilistic tools
and evaluated using the parametric and nonparametric
methods. Then, the systematic intent inference proce-
dure was designed and implemented for three different
cases of information availability.

• Monte-Carlo-based ship-encounter simulations were
performed and their results were analyzed in order to
verify the performance of the proposed approach. The
results confirmed that the proposed intent inference
method can achieve a satisfactory accuracy even with
a limited amount of trajectory information of obstacle
ships, such as noise-corrupted range and bearing mea-
surements provided by marine radar.
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APPENDIX MATHEMATICAL DERIVATION OF THE BELIEF
OF INTENT
A. DERIVATION OF EQUATION 3
Here, the details of mathematical derivation of (3) are pre-
sented. The first process of the derivation involves application
of the Bayes’ rule to (2):

p(Ik |u1:k , x0:k−1)

=
p(uk |Ik ,u1:k−1, x0:k−1)p(Ik |u1:k−1, x0:k−1)

p(uk |u1:k−1, x0:k−1)
= ηkp(uk |Ik ,u1:k−1, x0:k−1)p(Ik |u1:k−1, x0:k−1), (21)

where ηk is used as a normalizer. The intention is described
as a discrete random variable and p(Ik |u1:k−1, x0:k−1) can be
expanded using the law of total probability:

p(Ik |u1:k−1, x0:k−1)

=

∑
Ik−1

p(Ik |Ik−1,u1:k−1, x0:k−1)p(Ik−1|u1:k−1, x0:k−1).

(22)

In order to reduce the equations to ones with only the mean-
ingful variables, the conditional independence is checked
using d-separation. uk is conditionally independent of u1:k−1
and x0:k−2 given Ik , xk−1 in (21):

p(uk |Ik ,u1:k−1, x0:k−1) = p(uk |Ik , xk−1). (23)

In (22), Ik is conditionally independent of u1:k−1 and x0:k−1
given Ik−1. Also, Ik−1 is conditionally independent of xk−1
given u1:k−1, x0:k−2. Above conditional independence of the
probability distribution can be written as

p(Ik |Ik−1,u1:k−1, x0:k−1) = p(Ik |Ik−1)

p(Ik−1|u1:k−1, x0:k−1) = p(Ik−1|u1:k−1, x0:k−2). (24)

By applying (24) to (22), and then (22) and (23) to (21), (3)
is obtained.

B. DERIVATION OF EQUATION 5
The law of total probability is firstly applied for the derivation
of (5):

p(Ik |x0:k ) =
∫
uk
p(Ik ,uk |x0:k )duk , (25)

where uk is a continuous random variable. Above equation is
expanded using the Bayes’ rule:∫

uk
p(Ik ,uk |x0:k )duk

=

∫
uk

p(xk |Ik ,uk , x0:k−1)p(Ik ,uk |x0:k−1)
p(xk |x0:k−1)

duk

= ηk

∫
uk
p(xk |Ik ,uk , x0:k−1)p(Ik ,uk |x0:k−1)duk , (26)

where ηk is constant with respect to the uk . Using a condi-
tional probability, the joint probability of intention and action
is expanded as

p(Ik ,uk |x0:k−1) = p(uk |Ik , x0:k−1)p(Ik |x0:k−1). (27)

Once again, p(Ik |x0:k−1) is expanded using the law of total
probability as follow:

p(Ik |x0:k−1) =
∑
Ik−1

p(Ik |Ik−1, x0:k−1)p(Ik−1|x0:k−1). (28)

In (26), xk is conditionally independent of Ik , x0:k−2 given
xk−1, uk , and the resulting equation can be simplified into

p(xk |Ik ,uk , x0:k−1) = p(xk |uk , xk−1). (29)

The probability of action in (27) is simplified using d-
separation as follows:

p(uk |Ik , x0:k−1) = p(uk |Ik , xk−1), (30)

where uk is conditionally independent of x0:k−2 given Ik ,
xk−1. Also, the probability of intention in (28) is simplified
using d-separation as follow:

p(Ik |Ik−1, x0:k−1) = p(Ik |Ik−1), (31)

where Ik is conditionally independent of x0:k−1 given Ik−1.
All substitutions of (27) and (28) and simplification of (29),
(30), and (31) are applied to (26) yielding (5).

C. DERIVATION OF EQUATION 8
The first step of mathematical derivation includes Bayes’ rule
to (8):

p(xk , Ik |z1:k ) =
p(zk |xk , Ik , z1:k−1)p(xk , Ik |z1:k−1)

p(zk |z1:k−1)
= ηkp(zk |xk , Ik , z1:k−1)p(xk , Ik |z1:k−1). (32)

Since zk is conditionally independent of Ik and z1:k−1 given
xk , the above equation can be rewritten as

ηkp(zk |xk )p(xk , Ik |z1:k−1). (33)

The joint probability of state and intention is expanded using
the law of total probability as follows:

p(xk , Ik |z1:k−1)

=

∫∫
xk−1,uk

p(xk , Ik , xk−1,uk |z1:k−1)dukdxk−1. (34)

The joint probability inside the integral sign is equal to the
product of three probabilities by the chain rule:

p(xk , Ik , xk−1,uk |z1:k−1)

= p(xk |uk , xk−1, Ik , z1:k−1)

p(uk |xk−1, Ik , z1:k−1)p(xk−1, Ik |z1:k−1). (35)

By d-separation, the probability of state and the probability
of action can be written as

p(xk |uk , xk−1, Ik , z1:k−1) = p(xk |uk , xk−1)

p(uk |xk−1, Ik , z1:k−1) = p(uk |xk−1, Ik ). (36)

The joint probability of previous state and intention can be
expanded by the law of total probability with discrete random
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variable:

p(xk−1, Ik |z1:k−1)

=

∑
Ik−1

p(Ik |xk−1, Ik−1, z1:k−1)p(xk−1, Ik−1|z1:k−1)

=

∑
Ik−1

p(Ik |Ik−1)p(xk−1, Ik−1|z1:k−1), (37)

where p(Ik |xk−1, Ik−1, z1:k−1) is rewritten as p(Ik |Ik−1) using
d-separation. The resulting equation is equal to (8) from
applying (34), (35), (36), and (37) to (33).
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