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ABSTRACT At present, the energy consuming during the electrolytic copper foil preparation accounts for
more than 75% of the total energy consumption. In real-life production, the process parameters are set
by the operator empirically and the system may not work at the operating point with minimum energy
consumption. Therefore, it is critical to establish an effective model for predicting electrolysis energy
consumption to guide the parameters design. In this paper, a novel hybrid model (named PSVM-PMLP-
MLR) based on stacked ensemble learning is proposed. The model is divided into two parts: the base-
learning model and the meta-learning model. The support vector machine (SVM) model and multilayer
perceptron (MLP) model with different input structures are established by the former first. Then the particle
swarm algorithm is employed to determine the optimal value of SVM parameters and the optimal weight of
MLP by minimizing the mean absolute percentage error (MAPE). The multiple linear regression (MLR) is
finally employed as a meta-learning machine to compute the final predictions. Experimental results show
that the regression coefficient of this model reached 0.987, and compared with the traditional SVM andMLP
models, the accuracy of the model is improved by 10.29% and 8.28%, respectively.

INDEX TERMS Ensemble learning, electrolytic preparation of copper foil, energy consumption, machine
learning.

I. INTRODUCTION
With the continuous development of 5G, industrial intelli-
gence, and new energy vehicles, etc., the demand for copper-
clad laminate (CCL) and printed circuit board (PCB) is
growing rapidly. As the basic electronic material, electrolytic
copper foil is not only indispensable but also influences the
conductivity of circuits and the interconnection of electronic
components in producing CCL and PCB.However, during the
whole production process, the electrolytic preparation con-
sumesmore than 75% of energy consumption. It is imperative
to reduce this energy consumption to save cost.

The associate editor coordinating the review of this manuscript and

approving it for publication was Firooz B. Saghezchi .

The energy consumption of electrolysis is proportional to
the cell voltage and is inversely proportional to the current
efficiency. And electrolytic copper foil is produced at low
copper ion concentration and high current density. The former
makes the cathode undergo hydrogen evolution, resulting in a
decrease in current efficiency. And the later leads to high cell
voltage. The combined effects of these two aspects lead to the
high energy consumption. In real-life production, the process
parameters are set by the operator by virtue of experience.
Hence, the energy consumption is not under the specific con-
trol. Due to it is difficult to establish a mathematical model
to describe the functional relationship between the energy
consumption of electrolysis and the process parameters, most
researches try to reduce energy consumption by restructuring
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the electrolytic cell [1], [2], developing new cathode
materials [3], [4] and ion exchange membranes [5], etc.

As suitable materials are hard to find and their costs
are high, the consumption is hard to be further reduced by
modifying hardware equipment. To address this issue, a soft
method to reduce the consumption is proposed in this paper
which aims at finding a set of process parameters that can
minimize the consumption while ensuring production quality.
The key of themethod is to get an accurate and reliable energy
consumption prediction model.

In the past decade, the machine learning (ML) meth-
ods have been adopted to predict complex nonlinear pro-
cesses [6]–[8]. However, there are two difficult points in this
study:

(i) It is difficult to obtain a large amount of data.
(ii) During the whole production process of electrolytic

copper foil, the process parameters are characterized by large
number, strong coupling and strong nonlinearity.

Support vector machine (SVM), as one of the most classic
ML algorithms, is famous for its ability to efficiently solve
nonlinear problems with small samples [9], [10]. It has been
widely used in regression, classification, nonlinear function
approximation and some other analysis [11]–[13]. Related
research shows that SVM can be adopted for high-precision
energy consumption prediction [14]. Therefore, considering
the first difficult point (i), it is expected to use SVM to obtain
a higher performance energy consumption prediction model.

Inspired by a mathematical model of biological neural
networks, the artificial neural networks (ANN) represents a
model that imitates the work way of the brain. It is char-
acterized by strong robustness, memory, nonlinear mapping
ability and self-learning ability. As one of the commonly
utilized prediction algorithms in ANN, the multilayer percep-
tron (MLP) algorithm stands out in solving various prediction
problems because of its strong fitting ability [15], [16]. There-
fore, the MLP is adopted for the second difficult point (ii).

However, problems often occur with these methods, such
as the sensitivity of parameter, local optimum and over-fitting
phenomenon. As result, it is difficult to determine which
one gives the better prediction. Hence, researchers have been
working on improving and optimizing these methods, and
the ensemble learning provides some new insight. Ensem-
ble learning algorithm overcomes over-fitting and initializa-
tion sensitivity by combining homogeneous or heterogeneous
ML models, improving the performance of the ML model,
which has attracted great attention [17], [18]. In recent years,
ensemble learning has been proved to be reliable in improving
the performance of the ML model, and it has been applied
in many practical projects [19]–[23]. Generally, better pre-
diction results of base-learning machines lead to better coun-
terparts of the ensemble learning model. Therefore, in order
to further improve the prediction performance of the base-
learning machine, the traditional SVM and MLP needs to
be optimized. For SVM, the hyper-parameter selection will
affect its performance to a certain extent. The selection of
the kernel function, penalty coefficient C and ε-insensitive

loss parameter is the key to get a SVM prediction model
with superior prediction performance [24], [25]. In the
MLP algorithm, hyper-parameter setting is also crucial.
Among the hyper-parameters, the number of nodes in the
hidden layer and the initial weight are the most important,
leading to different prediction results. An optimization algo-
rithm should be adopted to optimize the hyper-parameters of
these two types of traditional models to further improve their
prediction performance.

The grid algorithm [26], genetic algorithm [27], ant colony
algorithm [28] and particle swarm optimization (PSO) are
the most popular optimization algorithms. However, each
has some limitations. The grid algorithm is time-consuming,
computationally expensive and has low learning accuracy.
And the genetic algorithm method is complex as different
crossover ormutation is needed in different issues [29].While
the search time of ant colony algorithm method is long,
and it is easy to lead to local best solution. The PSO has
been proved with extensive capability of global optimization
for its fast convergence and easy implementation, and it is
widely used in various engineering applications [30]–[32].
Its successful application in function minimization [33], [34]
and ANN design [35]–[38] proves the promising future
of PSO algorithm. It offsets the adverse effects of the
MLP algorithm of the feed-forward neural network [39] (such
as the slow convergence speed in training and tendency to a
local minimum) due to it does not need gradient information
and differentiable information.

To the author’s knowledge, no one has adoptedMLmethod
to predict the energy consumption of electrolytic copper foil
preparation before. From the perspective of ML, a novel
hybrid model is proposed which based on a stacked gener-
alization ensemble to predict the energy consumption dur-
ing the preparation process of electrolytic copper foil. The
hybrid model takes SVM and MLP optimized by PSO as a
base-learning machine and multiple linear regression (MLR)
model as a meta-learning machine. This hybrid prediction
model is called PSVM-PMLP-MLR.

II. METHODS AND THEORIES
Six ML models have been introduced in this part, including
SVM, MLP, MLR, SVM and MLP based on PSO optimiza-
tion and PSVM-PMLP-MLR hybrid model. 75% of the pro-
duction data of electrolytic copper foil were utilized as the
training data while the remaining 25% as the test data.

A. SVM ALGORITHM
SVM is one of the most classic ML algorithms, and one of
the most robust and accurate methods in many data min-
ing algorithms [40]. In order to solve the linear regression
problems in feature space, SVM maps the input data X
into high-dimensional feature space Q through nonlinear
mapping. In such way, regression approximation solves the
problem of estimation function based on a given dataset X =
{(xi, yi)}ni , where xi is the input vector, yi is the desired value,
and n is the total amount of dataset. In SVM, the regression
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function is expressed as:

f (x) = ωφ(x)+ b (1)

where ω and b are the model parameters, and φ(x) is the
feature vector after mapping in the input space x.
The regularization function involving the sum of empirical

risk and complexity term ||ω||2/2 is minimized to avoid over-
fitting. The coefficients ω and b can be estimated by mini-
mizing the regularization risk function.

M in ||ω||2/2

s.t.

{
yi − φ(ω, xi) ≤ ε
φ(ω, xi)+ b− yi ≤ ε

(2)

The constraint equation can be expressed as:

M in
1
2
||ω||2 + C

n∑
i=1

ξ + ξ∗

s.t.

{
yi − 〈ω, xi〉 − b 6 ε + ξiξi > 0
〈ω, xi〉 + b− yi 6 ε + ξ∗i ξ

∗
i > 0

(3)

where the constant C represents the penalty coefficient of the
sample, whose error exceeds ε. ξ and ξ∗ are two positive slack
variables, referring to the distance from the actual value to the
corresponding boundary value of the ε-tube.

Optimization methods can be adopted to maximize the
function. In this way, the dual problem is derived:

Max
n∑
i=1

yi(αi − α∗i )− ε
n∑
i=1

(αi − α∗i )

−
1
2

n∑
i=1

n∑
j=1

(αi − α∗i )(αi − α
∗
i )K (xi, yi)

s.t.
n∑
i=1

(αi − α∗i ) = 0 and 0 6 αi, α
∗
i 6 C (4)

where αi and α∗i are Lagrange multipliers.
Via the above-mentioned maximization function, the SVM

for function fitting obtained is thereby expressed as:

f (x) =
n∑
i=1

(αi − α∗i )K (xi, x)+ b (5)

In (5), those sampling points with non-zero coefficients are
called support vectors. The kernel function K (xi, xj)φ(xj) =
φ(xi)φ(xj) satisfies Mercer’s condition and performs nonlin-
ear mapping.

B. MLP ALGORITHM
Many types of algorithms are included in the neural network
architecture which are suitable for various application sce-
narios with unique properties [41], [42]. Among the various
ANN, MLP is a popular feed-forward ANN.

At present, there are several algorithms to train MLP net-
works: quick back propagation (QPROP), back propagation
(BP), quasi-newton back propagation (BFGS) and resilient

FIGURE 1. General structure of MLP feeds forward neural network.

back propagation (RPROP). The architecture of MLP is
shown in Fig. 1.

Each product of the input element (ai) and the weight (wij)
is input into the summing junction. Meanwhile, the bias of
neuron (bj) is utilized for summation, as shown below:

X = (
n∑
i=1

wijai)+ bj (6)

X generates the output through the transfer function F :

F(X ) = uj = F[(
n∑
i=1

wijaj)+ bj] (7)

Sigmoid, Tansig and Logsig are common activation func-
tions in hidden layers. The sigmoid function is the most
used nonlinear activation function, whose output ranges from
0 to 1. The sigmoid activation function can be expressed as:

F(X ) =
1

1+ e−X
(8)

During the training period, the training algorithm will
adjust the weight and biases to minimize the error of neural
network model by iteration. The input dataset is trained by
learning algorithms. The training process repeats until the
error is small enough for acceptance.

This architecture has many advantages, such as more
hidden layers and neurons and higher accuracy. However,
the number of hyper-parameters is relatively high, and the set-
ting of hyper-parameters affects the prediction performance
of the model.

C. PSO ALGORITHM
As a population-based algorithm, PSO imitates group behav-
ior for cooperative learning. Therefore, it leads to better
results and faster convergence in global search [43].

The population consists of n particles. The position of the
particle i in the D-dimensional space is expressed as a vector
Xi = (xi1, xi2, . . . , xiD), and the flying speed is expressed as a
vector Vi = (vi1, vi2, . . . , viD). Each particle can be regarded
as a search individual in the D-dimensional search space. The
current position of the particle is a candidate solution of the
corresponding optimization problem. The flight process of
the particle is the search process of the individual. The flying
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speed of particles can be dynamically adjusted according to
the historical optimal position of the particle and the popu-
lation. The optimal position of the i-th particle searched so
far is called the individual extreme value, denoted as Pi =
(pi1, pi2, . . . , piD).The optimal position searched by the entire
particle swarm so far is the global extreme value, denoted as
Pg = (pg1, pg2, . . . , pgD). In each iteration, the particle updates
itself by tracking two extreme values. This process repeats
until the maximum of iterations is set or the best fit condition
is reached. The speed and position of particles can be updated
using as:

vl+1id = wvlid + c1rd
l
1(p

l
id − x

l
id )

+c2rd l2(p
l
gd − x

l
id ) (9)

x l+1id = vl+1id + x
l
id (10)

where i = (1,2, . . . , n), d = (1,2, . . . , D), w is the inertia
weight coefficient, a positive number, which adjusts the over-
all optimization ability. c1 and c2 are learning factors; rd l1
and rd l2 are positive random numbers in the range of [0,1]
under normal distribution; l is the number of the iterations;
and x lid refers to the position of particle i in D-dimensional
space. vid ∈ [vmax ,vmin] represents the velocity of particle i in
the D-dimensional space, which determines the direction and
distance of the next generation of particles.

Inertia weightw is used to control the influence of previous
speed history on current speed. Larger inertia weight value
is beneficial to global exploration, while smaller counter-
parts contribute to local exploration. To reach more balance
between the two capabilities, the linear decreasing inertia
weight is employed. Generally, w(k) decreases linearly with
each iteration from wstart to wend . It can be expressed as:

w(k) = wstart − k ×
wstart − wend

Tmax
(11)

where wstart and wend represent the maximum and minimum
values of w, respectively, k represents the current iteration
number, and Tmax represents the maximum iteration number.

D. ENERGY CONSUMPTION PREDICTION MODEL OF
ELECTROLYTIC COPPER FOIL PREPARATION
BASED ON PSVM
In the SVM regression model, the input data is the five
features that affect the energy consumption of electrolytic
copper foil, and the corresponding energy consumption is
taken as the output. In this way, the correlation coefficient
of the regression function can be determined via (5). When
the energy consumption of electrolytic copper foil production
is predicted, the SVM will present the corresponding energy
consumption value according to the determined regression
function after the input of the relevant eigenvector. RBF,
sigmoid, poly, and linear are the kernel functions that are
commonly used in SVM. In order to determine the kernel
function with the best prediction performance, ten times
cross-validation (CV) method is used to verify the kernel
function according to the training dataset. The experimental
results are listed in Table 1.

TABLE 1. Result of the trial simulation based on different training
algorithms in SVM.

Based on the results in Table 1, the Gaussian kernel func-
tion RBF is employed to construct SVM regression model.
The PSO algorithm not only converges quickly, but also has
strong global optimization capabilities. Therefore, in order to
determine the penalty term C and ε-insensitive loss param-
eter that can enable SVM to obtain better prediction results,
the PSO method is adopted. Meanwhile, the MAPE (mean
absolute percentage error) of the predicted data is utilized as
the fitness function. The flow chart is shown in Fig. 2.

PSO algorithm parameters: particle swarm size at 150,
200 iteration times, learning factor c1 = c2 = 2, penalty
term C rang [1-10], and ε-insensitive loss parameter ranging
from [0.1-0.0001].

The training process of the PSVM algorithm is shown
in Fig. 3. As can be seen, when PSO iterations reach about
155 steps, the fitness value of the best particle tends to be
stable while the value of MAPE is 3.736. In this case, penalty
term C and ε-insensitive loss parameter are 6.2683 and
0.001327, respectively. It can be seen in Table 1 that the
MAPE of traditional SVM with RBF kernel function is
4.3261. Therefore, the MAPE value is reduced by 13.64%.

E. ENERGY CONSUMPTION PREDICTION MODEL OF
ELECTROLYTIC COPPER FOIL PREPARATION
BASED ON PMLP
In order to select the best basic training algorithm for
MLP network, ten times CV method is adopted. The results
are shown in Table 2.

TABLE 2. Result of the trial simulation based on different training
algorithms in MLP.

Based on the results, BFGS is employed as the kernel func-
tion in this paper. In order to determine the optimal number
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FIGURE 2. The flow diagram of the PSVM optimization.

FIGURE 3. The optimization process of the PSVM.

of hidden neurons in the model, a second calculation was
performed using samples from the dataset. Finally, according
to the minimum MAPE value, thirteen neurons are obtained
from models with the best performance.

However, in addition to the structure of the neural network,
the weight of each layer is another key parameter that affects
the final performance. MLP model tends to have the local

minimum error function value in the training process, which
leads to the low prediction accuracy of the network. There-
fore, the PSO algorithm is utilized to search the best fitness
of MLP prediction and get the corresponding particles. The
particle itself is used as the initial weight of the MLP.

The main steps of PMLP hybrid calculation are as:
1) Initialize the structure of MLP. Meanwhile, the number

of neurons in input and output layers should be set together
with network parameters. Via trial calculation, the optimal
number of neurons in hidden layer could be calculated.

2) Set the operation parameters of PSO algorithm and
initialize the position and speed of particles randomly in a
manner. After knowing the size and the individual dimension
of particles, map the particles to the corresponding weights.

3) According to the MAPE value, the fitness value of
each particle is calculated to find the individual and global
extremum.

4) The velocity, position and fitness of each particle should
be updated until they meet the conditions. Then, individual
and global extremum will be updated according to the new
fitness value.

5) The optimal individual position is regarded as the weight
of MLP, which is used to train and predict the research object.

PSO algorithm parameters: the particle swarm size is 300,
the number of iterations is 200, the learning factor is c1 =
c2 = 2, and the overall weight range is set to [−2, 2.5].
The training process of PMLP algorithm is as shown

in Fig. 4, which shows that when PSO iterations reach about
125 steps, the fitness value of the best particle tends to be
stable with the MAPE value of 3.24, which has a 14.59%
reduction compared with that of traditional MLP whose
MAPE is 3.797 (it can be seen in Table 2).

FIGURE 4. The optimization process of the PMLP algorithm.

F. MULTIPLE LINEAR REGRESSION (MLR) MODEL
MLR model is one of the most used estimation models on
ML because of its simple structure, calculation, and inter-
pretation. According to the multiple linear regression model,
there is a linear relationship between dependent variable y and
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FIGURE 5. A stacked ensemble learning algorithm.

independent variables x1, x2,. . . , xn. MLR is expressed as:

Y = a+
n∑
i=1

bixi + ε = b1x1 + b2x2 + · · · + bixi+ε (12)

where Y is the output, xi (i = 1, 2, 3, . . . , n) is the input
variable, a is the intercept, bi is the regression coefficient, and
ε is the error term. In this paper, xi is the predicted value of
PSVM and PMLP model, and Y refers to the final prediction
result.

G. STACKED ENSEMBLE LEARNING ALGORITHM
Stacked ensemble learning [44] is a heterogeneous
integration strategy. Heterogeneous sets enhance the gen-
eralization ability of the strong classifier through integrat-
ing several base-learning machines into a strong machine.
Stacked ensemble learning algorithm adopts a two-tier frame-
work structure, as shown in Fig. 5. In this paper, the base-
learning model is the SVM model and MLP model based on
PSO optimization, while the meta-learning model is the
MLR model.

The training process is as:
1) The multiple base-learning machines are trained.
2) The prediction results of multiple base-learning

machines are employed as the input of meta-learning
machines. Afterward, the training should be conducted again.

3) The final ensemble algorithm uses the learning ability
of the base-learning machines and meta-learning machine to
improve the accuracy of prediction.

The effectiveness of stacked ensemble learning algorithm
depends on two factors. One is the prediction result of
base-learning machine. Generally, better prediction results
of base-learning machines lead to better counterparts of the
ensemble learning model. The other is that there are differ-
ences between the two base-classifiers as different factors of
the machines need to be considered. The stacked ensemble
learning algorithm is expressed as:

input: Train Dataset D = {(x1,y1),(x2,y2), . . . , (xm,ym)};
Primary learning algorithm L1,L2, . . . ,LT
Secondary learning algorithm L

process:
1: for t = 1,2,. . . , T do
2: ht = Lt (D);
3: end for
4: D′ = Ø
5: for i = 1, 2, . . . ,m do
6: for t = 1, 2, . . . ,T do
7: zit = ht (xi);
8: end for
9: D′ = D′ ∪ ((zi1, zi2, . . . , ziT ), yi);
10: end for
11: h′ = L(D′);
Output: H (x) = h′(h1(x), h2(x), . . . , hT (x))

III. CASE STUDY AND SIMULATION RESULTS
A. DATA SOURCES AND INTRODUCTION
1500 pieces of experimental data are employed in this paper,
which are provided by Anhui Tongguan Copper Foil Group
Co., Ltd of China. These data are exported from the database
of the Group and have been verified as valid data.
The experiment plan is roughly divided into the following

steps:
(i) According to the data, analyze the importance of related

factors affecting energy consumption.
(ii) Normalize the data.
(iii) Among the 1500 experimental data, 75% data are

utilized for training, while the remaining 25% are used to
predict the results.
The data include six dimensions, respectively being

electrolyte temperature, Cu2+ concentration, H2 SO4 con-
centration, current density, electrode spacing and power
consumption per ton of copper. The unit, maximum andmini-
mum of each index is shown in Table 1. In addition, the infor-
mation entropy gain of each feature in these data is calculated
and normalized to evaluate their importance. As shown in
Fig. 6, where A, B, C, D, and E represent Electrolyte tem-
perature, Cu2+ concentration, H2SO4 concentration, Inter-
electrode spacing, and Current density, respectively. More
specific score values of the importance are shown in Table 3.
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FIGURE 6. Importance score of features.

TABLE 3. Statistical parameters pertaining to each of the attributes of
dataset.

B. DATA PREPROCESSING
1) DATA NORMALIZATIONS
In terms of prediction based on data, it is necessary to nor-
malize training data and test data, which is aimed to avoid
the attribute in larger numerical range dominating that in
smaller range. In addition, normalization helps avoid numer-
ical difficulties in the calculation process. For a group of
electrolytic copper foil production data {x1k , x2k , . . . , xik} can
be normalized to {X1k , X2k , . . . , Xik} according to (16).

Xik =
xik − xmin

k

xmax
k − xmin

k

(13)

where Xik is the scaling value, xik is the original value, xmax
k

is the maximum of feature k in the dataset, and xmin
k is the

minimum of feature k in the dataset.

2) CONSTRUCTION OF TRAINING SAMPLES
For a group of energy consumption training data of elec-
trolytic copper foil production, the training sample set is
constructed and expressed as:

X =


b1 b2 ... bm
b2 b3 ... bm+1
...

...
...

bn−m bn−m+1 ... bn−1

 , Y =


bm+1
bm+2
...

bn


(14)

where X is the input vector, Y is the output vector, and m is
the dimension of the input vector. In this paper, X refers to the

electrolyte temperature, Cu2+ concentration, H2SO4 concen-
tration, current density, and electrode spacing. Meanwhile, Y
is the power consumption per ton of copper. Table 3 sum-
marizes the six attributes in the dataset (five inputs and one
output) and the importance of the feature score.

C. PERFORMANCE EVALUATION OF ML MODEL
1) PERFORMANCE EVALUATION INDEX
For quantitative measurement of the prediction performance
(relative to test set) of ML model, four accuracy evalu-
ation indexes were selected: MAE (mean absolute error),
RMSE (root mean square error), MAPE (mean absolute per-
centage error), and R2 (regression coefficient). The formulas
for estimating these errors are shown as (15) - (18).

MAE :
1
n

n∑
i=1

|yi− ŷi| (15)

RMSE :

√√√√1
n

n∑
i=1

(yi− ŷi)2 (16)

MAPE :
100%
n

n∑
i=1

|
yi− ŷi
yi
| (17)

R2 :

n∑
i=1

[(yi− yi)(yi− ŷi)]
2√

n∑
i=1

(yi− yi)2.

√
n∑
i=1

(yi− ŷi)2
(18)

where ŷ is the predicted values, y is actual values, and n is the
total number of data records in the test dataset.

(i) MAE: As the most basic evaluation method, it is usually
used as a reference for the other three methods to compare the
pros and cons.

(ii) RMSE: It is mainly adopted to compare the stability of
different prediction models due to its characteristics that are
easily affected by large deviations.

(iii) MAPE: The overall prediction accuracy of the model
can be more intuitively reflected due to its calculation method
in percentage form and is not easily affected by large
deviations.

(iv) R2 is often utilized to evaluate how well the model fits
the true value.

The higher the values of MAE, RMSE and MAPE,
the worse the prediction performance of the model. The value
range of R2 is [0-1], and the closer the value is to 1, the better
the fitting optimization effect of the model is.

Theoretically, all of the above four indicators can be
employed as a measurement of prediction accuracy in the
statistical field. In this study, it is expected to obtain a pre-
diction model with higher accuracy. Generally, the higher
the accuracy of a model, the higher its stability. Compared
with the other three evaluation indicators, MAPE can not only
reflect the accuracy of the model more comprehensively, but
also more intuitively reflect the performance of the model due
to its percentage expression.

VOLUME 9, 2021 5827



Z. Liao et al.: Novel Stacked Generalization Ensemble-Based Hybrid PSVM-PMLP-MLR Model

FIGURE 7. Flowchart for training and testing process of PSVM-PMLP-MLR models.

FIGURE 8. Comparison curves between the prediction value and actual value of each model.

Fig. 7 describes the overall training and testing process of
the ML model mentioned in this paper. As can be seen, after
75% of the original data is processed, the SVM and MLP
based on PSO optimization are trained in a 10-fold cross-
validation method. Then, the results obtained by PSVM and
PMLP are utilized as input data and passed into the MLR
model to obtain the final prediction results.

2) PREDICTION RESULTS AND COMPARATIVE ANALYSIS
Considering that too much data will lead to the problem of
insufficient graphics clarity, a small part of the test data is
randomly selected so that the effect differences of the five
models can be observed more clearly and intuitively, and the
results are shown in Fig. 8. To further compare the perfor-
mance of the five models, a detailed comparison based on the
four evaluation indicators as mentioned above is conducted.
The comparison results are listed in Table 4. Based on the test

data, the residual curve of each model is shown in Fig. 9. The
following can be learned from Table 4 and Fig. 8:

1) Compared with the traditional SVM model and MLP
model, the MAE and RMSE values of PSVM and PMLP
models are lower, while R2 is closer to 1. From Fig. 9,
the predicted values of PSVM and PMLPmodels are closer to
the real values when compared with those of SVM and MLP.
Therefore, they have better prediction performance.

2) The residual curve fluctuation of PSVM-PMLP-LR is
the slightest among these models. The MAE, RMSE and
MAPE of this model are lower than those PSVM and PMLP.
Especially its MAPE value is 65.25%, 60.27%, 59.76% and
53.47% less than that of the other four models respectively.
Besides, its R2 reaches 0.9876, indicating that the predicted
value of the model is close to the actual one.

In summary, the MAE, RMSE, MAPE, and R2 of
PSVM and PMLP are better than what their corresponding
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FIGURE 9. Comparison of predicted residual curves of each model.

TABLE 4. Comparison of error indicators of each prediction model.

base-learningmachines, which shows that the performance of
the base-learning machine can be improved by adopting PSO.
Thereafter, the performance of each base-learning machine
will be balanced by the ensemble learning machine based on
the strategy of stacked-ensemble generalization, as well as the
generalization, stability and accuracy of the predictionmodel.

IV. CONCLUSION
In this paper, 1500 energy consumption data of electrolytic
copper foil production were provided by Anhui Tongguan
Copper Foil Group Co., Ltd of China for training and testing
MLmodel to achieve accurate prediction of energy consump-
tion in the electrolytic copper foil preparation. To further
improve the accuracy, a novel PSVM-PMLP-MLR hybrid
model is proposedwhich based on stacked ensemble learning.

Six kinds of ML models are introduced, namely SVM,
MLP, PSVM, PMLP, MLR and PSVM-PMLP-MLR. Com-
parison and analysis have been done on the performance of
these ML models in energy consumption prediction in the
process of electrolytic copper foil preparation according to
four error indexes: R2, MAE, RMSE and MAPE. The results
show that the performance of traditional SVM and MLP

models can be improved by PSO optimization. Therefore,
SVM and MLP after PSO optimization are combined as the
base-learning machine andMLR as a meta-learning machine.
They were combined through stacked ensemble strategy to
improve the prediction performance of ML model. The R2

of the proposed PSVM-PMLP-MLR hybrid model can reach
0.9876. Compared with any individual ML model in this
experiment, it showed stronger predictive ability.

According to our research, no one has adopted MLmethod
to predict the energy consumption of electrolytic copper foil
preparation before. From the perspective of ML, an effective
way to predict the energy consumption of the electrolytic cop-
per foil preparation is proposed in this paper, which is of great
significance for energy saving and consumption reduction in
the production process.

Compared with traditional SVM and MLP, PSVM-PMLP-
MLR is inevitably accompanied by some limitations even if
it has better generalization ability, stability and prediction
accuracy, such as the increased complexity of the model,
resulting in higher computing cost and time consumption.
Therefore, PSVM-PMLP-MLR is more suitable for solving
the time insensitive prediction problem, but not suitable for
short-term real-time online prediction. In future work, further
improvement of the performance of the model is considered.
In addition, extending the model to other industrial electrol-
ysis based on transfer learning has been considered, such as
electrolytic aluminum, electrolytic zinc and so on.
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