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ABSTRACT Transfer learning is a promising approach for reducing training time in a brain-computer
interface (BCI). However, how to effectively transfer data from previous users to a new user poses a huge
challenge. This paper presents a novel transfer learning approach that combines data alignment and source
subject selection for motor imagery (MI) based BCIs. The former is achieved by a reference matrix from
the regularization of the two reference matrices estimated in Riemannian and Euclidean space respectively,
whereas the latter is implemented by a modified sequential forward floating-point search algorithm. The
aligned training data from chosen source subjects are used for creating a classification model based on either
spatial covariance matrices in Riemannian space or common spatial pattern algorithm in Euclidean space.
The proposed algorithms were evaluated on twoMI based BCI data sets with different subjects and compared
with existing transfer learning algorithms with sole data alignment or subject selection. The experimental
results show that the hybrid-space data alignment methods for reducing the differences among subjects
significantly outperform two single-space alignment methods, and the source subject selection method can
substantially enhance the similarity between source subjects and the target subject. The combination of the
two methods achieves superior classification performance compared to either one. The proposed algorithms
will greatly facilitate the real-world applications of MI based BCIs.

INDEX TERMS Brain-computer interfaces, transfer learning, data alignment, hybrid Riemannian and
Euclidean space data alignment, source subject selection.

I. INTRODUCTION
A brain-computer interface (BCI) system provides a new
non-muscular channel for sending messages from the
brain to the external world by analyzing electrical brain
activity or other electrophysiological measures of brain
functions [1]. According to the generation of EEG signals,
BCI systems can be divided into two types: spontaneous and
evoked [2]. As a typical kind of spontaneous systems, motor
imagery (MI) based BCIs do not need additional stimulation
devices. Instead, their input signals are generated by users
via imagining their own limb movements or observing the
movements of others [3], [4]. Among the various imaging
models of brain signals, electroencephalography (EEG) can
be recorded by electrodes placed on the scalp and thus
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provides the advantages such as non-invasive, easy to acquire
and high time resolution.

Common spatial pattern (CSP) is the most commonly
used algorithm for spatial filtering and subsequent feature
extraction [5], [6]. Linear discriminant analysis (LDA) [7]
is a typical feature discrimination method. LDA is widely
applied in MI based BCIs because it is robust to noise and
has no parameters to tune. The combination of CSP and LDA
is an efficient method for creating a classification model
in Euclidean space. In MI based BCIs, the second-order
statistics of EEG signals contain the separable information of
brain states [8]. Spatial covariance matrix (SCM) is the most
commonly used second-order statistic of EEG signals [9].
The spatial interaction information among channels is com-
pletely embedded into its SCM. A optimization algorithm
based on the covariance matrix for either feature extraction
or classification is indeed in line with the rationale of MI
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based BCIs, which are topography-orientated technology.
Thereby, the performance of both CSP and LDA depends on
the accurate estimation of SCMs. On the other hand, SCM
is a symmetric positive definite (SPD) matrix that lies on a
differential Riemannian manifold. Each SCM is one point
in the manifold, whose Riemannian distance to a reference
point can be used as a discriminative feature signal classified
directly by a simple classifier called minimum distance to
mean (MDM) [10]–[12]. The combination of SCMandMDM
is another efficient method for creating a classification model
in Riemannian space.

Amajor assumption in machine learning is that the training
and testing data are drawn from the same feature space and
the same distribution. In MI based BCIs, the assumption does
not hold because large variability exists across subjects and
across sessions of the same subject. As a result, the classi-
fication model needs to be rebuilt from scratch of each use.
This problem severely limits the real-world application of a
BCI. Thereby, one major problem in the development of a
BCI is to reduce the training time or completely eliminate
it. Transfer learning (TL) is a promising approach to achieve
the goal. TL fuses the data from other subjects or previous
sessions into the current learning process [13]–[18]. How to
effectively transfer data from the previous subjects to a new
subject, however, poses a huge challenge due to the great
inter-subject variability.

A typical method for improving the TL in BCIs is to use
the experimental samples of other subjects to regularize the
model of a target subject in order to improve the performance
of the model [19]–[21]. Kang et al. measured the similarity
between subjects by KL-divergence to improve the covari-
ancematrix by regularization [19]. The premise of themethod
is that the covariance matrices of source subjects are highly
similar to those of the target subject. However, the assumption
is violated due to the large individual discrepancy. To allevi-
ate the problem, Lotte et al. used a subset of automatically
selected subjects to formulate a weighted sum of covari-
ance matrices [20]. Another method for improving the TL in
BCIs is to align EEG data from different subjects [22]–[24].
Rodrigues et al. [22] proposed a method based on Procrustes
analysis for matching the statistical distributions of two data
sets using geometrical transformations (translation, scaling
and rotation) over the data points. The method handles the
statistical variability of EEG signals from different subjects.
Zanini et al. [23] proposed a Riemannian space data align-
ment (RA) approach that aligns the covariance matrices of
a subject with the reference matrix estimated by the EEG
data of resting states, i.e. the transitional periods between two
trials. The implicit assumption is that the covariance matrix
shift relative to the reference matrix caused by different
source configurations and electrode positions can be regarded
as the covariance matrix moving in the same direction on
the SPD manifold when the brain is involved in a specific
task. The aligned covariance matrices are then transferred to
the target subject for creating a classification model based
on Riemannian geometry. The RA can improve the perfor-

mance of the MDM classifier by making use of subsidiary
data from other subjects. Subsequently, He et al. [24] pro-
posed a Euclidean space data alignment (EA) approach that
aligns the EEG trials of a subject with the reference matrix
estimated by the EEG data in task states without using the
label information. The aligned trials are then transferred to
the target subject for creating a classification model with
CSP and LDA in Euclidean space. The EA further improved
the classification performance of MI based BCIs compared
to RA.

The above two alignment methods aim to make EEG data
of source subjects more similar to those of the target sub-
ject, so that the classification model for a new subject can
be built using EEG data from previous subjects. However,
the two methods still have room for improvement due to
the limitations of the calibration space and/or the reference
matrix. After data alignment, the difference in data distribu-
tion between source subjects and a target subject is decreased,
but not EEG data from all previous subjects are suitable for
transferring. The reason is that huge difference exists in the
statistical distribution of EEG data among subjects [25], [26]
due to individual discrepancy of subjects in physiology and
anatomy, the change of electrode positions as well as the
difference in subjects’ mental states. Thus, it is reasonable to
select those source subjects relevant to a target subject, and
then use their data as training data of the target subject for
creating a classification model.

In the study, we propose a novel transfer learning algorithm
for MI based BCIs that combines a new method for data
alignment and a method for subject selection. The former is
named hybrid Riemannian and Euclidean space data align-
ment (REA), which aligns EEGdatawith the referencematrix
yielded by regularizing the two reference matrices estimated
in Riemannian and Euclidean space (RA and EA) respec-
tively, whereas the latter selects relevant source subjects with
a sequential forward floating-point search algorithm [27],
which was originally proposed by Pudil et al. for feature
selection, modified for subject selection (SS) by Lotte and
Guan [20] and adopted in this study. The proposed transfer
learning algorithm was evaluated by systematic comparisons
with existing algorithms on two MI data sets.

II. METHOD
Human limbs are associated with specific brain regions, for
example, left hand, right hand and both feet correspond
respectively to right lobe, left lobe and anterior central
gyrus. Motor imagery results in two physiological phenom-
ena known as event-related desynchronisation (ERD) and
event-related synchronization (ERS), i.e., the power of the
mu rhythm (8–12 Hz) will decrease in the specific lobe of his
brain when a subject imagines a limbmovement, whereas that
of beta rhythm (14–18Hz)will rebound in the same lobewhen
the motor imagery is over. The topographical representation
and band power changes of the mental tasks are the basis for
creating a MI based BCI.
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A. SPATIAL COVARIANCE MATRIX
SCM reflects the power distribution of EEG signals on single
channels and across channels and thus is used as a significant
descriptor to develop various algorithms for discriminating
mental tasks in a BCI system. In general, a single MI trial
consists of a task period and a resting period, and is denoted
by a short segment of data (say 2 s) in the task period.
Rhythmic signals are extracted via bandpass filtering, typ-
ically in 8–30 Hz because the frequency band includes mu
and beta rhythms. Let X ∈ RNc×Ns be a single-trial bandpass
filtered EEG signal, whereNc denotes the number of channels
and Ns denotes the number of sampling points. The SCM of
signal X is estimated by sample covariance matrix calculated
as

P =
1

NS − 1
XXT (1)

where T represents transpose operation. The SCM is a sym-
metric positive definite (SPD) matrix that lies in the particu-
lar Riemannian manifold, a subset of Euclidean space. The
Riemannian distance between two SCMs and the mean of
multiple SCMs are often used for designing discriminative
algorithms in machine learning field and can be calculated in
either Euclidean or Riemannian space [28].

The Riemannian distance is defined as the shortest
geodesic length between P1 and P2, which has a closed-form
solution [29]–[32] calculated as follows

δR (P1,P2) =
∥∥∥log (P−11 P2

)∥∥∥
F
=

√∑N

n=1
log2 λn (2)

where λn is the eigenvalues of matrix P−11 P2. Since P1 and
P2 are SPD matrices, their Riemannian distance have an
important property termed as congruence invariance [33]

δR (P1,P2) = δR
(
UP1UT ,UP2UT

)
(3)

where U represents an invertible and orthogonal matrix.
Because of the excellent property, the linear transformation
of two SPD matrices will not change their relative distance in
the Riemannian space.

The arithmetic (or Euclidean) mean of multiple SPDmatri-
ces minimizes the sum of the squared Euclidian distances:

P̄E (P1, · · ·,PN ) = argmin
P∈P(n)

∑N

i=1
δ2E (Pi,P) =

1
N

∑N

i=1
Pi

(4)

where P(n) belongs to the set of SPD matrices with dimen-
sionality of n × n. The geometric (or Riemannian) mean of
multiple SPDmatrices is defined as the matrix that minimizes
the sum of the squared Riemannian distances [34]

P̄R (P1, · · · ,PN ) = arg min
P∈P(n)

∑N

i=1
δ2R (Pi,P) (5)

The existence and unicity of the Riemannian mean were
proved in [29], [35]. However, an explicit solution exists only
for N = 2, where it coincides with the middle point of the
geodesic connecting the two SPD matrices. For N > 2,

a solution can be found iteratively, and several algorithms
following different approaches have been developed
in [36].

B. DATA ALIGNMENT
As a signal transformation method, data alignment aligns
single-trial EEG signals with a reference matrix to make
them moving toward the reference matrix. Data alignment
increases the similarity of EEG data between different sub-
jects, improves the performance of TL in BCI [37]–[39],
and hence makes cross-subject classification efficient. The
choice of a reference matrix is crucial because it defines
the center of all single-trial EEG signals from the same
subject. Data alignment can be conducted in Riemannian
space (RA) [23] or Euclidean space (EA) [24]. In the study,
we propose a hybrid Riemannian and Euclidean space data
alignment (REA) method.

1) DATA ALIGNMENT IN RIEMANNIAN SPACE
RA utilizes Riemannian mean of the covariance matrices
from all EEG signals in resting periods as the reference
matrix, in which the subject does not perform any mental
tasks, to align the covariance matrices in the Riemannian
manifold. The reference matrices of different subjects can
be approximated as an identity matrix [23]. The aligned
covariance matrix for ith trial Xi is computed as follows

P′i = P̄−1/2R PiP̄
−1/2
R (6)

where Pi is the covariance matrix of Xi and P̄R is the refer-
ence matrix for a subject. Since classification in Riemannian
space is based on the distance between a single-trial covari-
ance matrix and the mean covariance matrix of each class,
data alignment is performed for covariance matrices. Since
all aligned EEG data from any one subject are positioned
nearby identity matrix, the similarity of data distributions
between the source subject and target subject increases sub-
stantially and thus classification of mental tasks becomes
easy.

2) DATA ALIGNMENT IN EUCLIDEAN SPACE
EA employs Euclidean mean of covariance matrices from all
EEG signals in task periods as a reference matrix, in which
the subject conducts mental tasks of motor imagery. The
reference matrix of a subject is strictly equivalent to an iden-
tity matrix [24]. Different from RA, EA aligns EEG trials
instead of covariance matrices because in Euclidean space,
classification is based on spatially filtered EEG trials. Like
RA alignment, the purpose of EA alignment is to increase
the similarity of data distributions between a source subject
and the target subject so that classification of mental tasks
becomes easy. The aligned EEG signal X ′i for ith trial Xi is
computed as

X ′i = P̄−1/2E Xi (7)

where P̄E is the reference matrix for a subject.
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3) DATA ALIGNMENT IN HYBRID RIEMANNIAN AND
EUCLIDEAN SPACE
REA aims to overcome the limit of both RA and EA in
alignment space and/or reference matrix so that the aligned
data can be utilized for creating a classification model in
both Riemannian and Euclidean space. The reference matrix
of REA, P̄RE , is generated by regularizing the two reference
matrices P̄R and P̄E yielded respectively in Riemannian and
Euclidean space, and formulated as follows

P̄RE = λP̄R + (1− λ)P̄E (8)

where λ ∈ [0, 1] is a regularization parameter for controlling
the weights of the two reference matrices. The optimal value
of λ is determined by classification accuracy using exhaustive
search in the range of [0, 0.1, 0.2, . . . , 1]. With the reference
matrix, the ith trial Xi and its covariance matrix Pi are respec-
tively aligned as

X ′i = P̄−1/2RE Xi,P′i = P̄−1/2RE PiP̄
−1/2
RE (9)

where X ′i and P
′
i are the aligned EEG signal and covariance

matrix respectively.

C. SUBJECT SELECTION
The purpose of subject selection is to select those source
subjects relevant to the target subject in order to ensure all
transferred data useful for the target subject. The sequential
forward floating-point search algorithm [27], proposed by
Pudil et al. for feature selection, was modified for subject
selection (Algorithm 1). This algorithm sequentially adds or
deletes one subject from the current subset of source subjects
at each loop as long as the resulting subset is better than the
previously evaluated one at that level. The process proceeds
until the classification accuracy of testing data from the target
subject no longer increases. In the algorithm, the function
Acc= trainThenTest(trainingSet, testingSet) returns the accu-
racy yielded by training a classification model based on either
CSP and LDAor SCMandMDMon training set (trainingSet)
and testing it on test set (testingSet). The training set is ini-
tialized as the aligned data from all source subjects available,
whereas the testing set is the aligned EEG data from the target
subject.

D. CLASSIFICATION MODEL
The classification model of a BCI can be constructed in either
Euclidean space or Riemannian space. In Euclidean space,
the typical algorithm for feature extraction is common spatial
pattern (CSP) and that for classification is linear discriminant
analysis (LDA). The CSP aims to find a spatial filtering
matrix W ∈ RNC×NC that maximizes the variance of one
class while minimizes the variance of the other class [5], [6].
By jointly diagonalizing the two-class signals, CSP enhances
the difference in variance (or band power) between the two
conditions. The spatial filtering matrix (also called projection
matrix) W is obtained by maximizing or minimizing the

Algorithm 1 Selecting relevant transfer subjects
Input:
Ds: Aligned EEG training data from the source subjects.
DT : Aligned EEG testing data from the target subjects.
Output:
DTr : A subset of relevant subjects whose data can be used to

classify data DT of the target subject
Initialization:

stop when the certificate does not increase
Acc(Dk ) ≈ Acc(Dk−1)

step 1 (inclusion):
D+ = arg max

DkεDs
Acc(Dk + Ds,DT ),

Dk+1 = Dk + D+, k = k + 1
step 2 (conditional exclusion):

D− = arg max
DkεDs

Acc(Dk − Ds,DT )

If Acc(Dk − D−) > Acc(Dk−1) then
Dk−1 = Dk − D−, k = k + 1
go to step 2

else
go to step 1

Dtransfer = Dk+1

following cost function

J (W ) =
W T P̄1W

W T P̄2W
(10)

where P̄l, l = 1, 2 is the arithmetic mean of SCMs from the
EEG signals belonging to class l, which is computed as

P̄l =
1
Nt

Nt∑
i=1

Pli =
1

Nt (Ns − 1)

Nt∑
i=1

X li (X
l
i )
T (11)

where Nt and X li are the total number of EEG trials and the
ith EEG trial from class l respectively. The optimal projec-
tion matrix W̃ is composed of the eigenvectors of P̄−12 P̄1,
which corresponds to its m largest and m smallest eigen-
values (m = 3 in this study). The ith column of W̃ , w̃i ∈
RNC×1, is called a spatial filter. Once the projection matrix is
obtained, the feature vector used for classification is extracted
by f = log(W̃ TPW̃ ), where P is a single-trial covariance
matrix. The LDA classifier separates feature vectors using a
linear hyperplane [7]. With LDA, the classification output of
an input feature vector f is equal to aT f +b, where the normal
vector a and intercept b are calculated as follows

a = P̂−1(f̄1 − f̄2)T , b = −
1
2
(f̄1 + f̄2)a (12)

where f̄1 and f̄2 are the mean feature vectors from each class,
and P̂−1 is the composite feature vector of two classes.
In Riemannian space, Riemannian geometry provides a

tool to manipulate SCMs. Specifically, the SCM of an EEG
signal can be directly employed as a feature signal with-
out the need for spatial filtering. The minimum distance to
Riemannian mean (MDM) classifier is used for classifying
the SCM.
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FIGURE 1. The processing flowchart for classifying EEG signals based on transfer learning in Riemannian space using SCM and MDM algorithm
(a) and in Euclidean space using CSP and LDA (b). The subjects in a data set are divided into the source subjects and the target subject by
leave-one subject-out (LOO) cross validation.

The single-trial EEG signals from each subject in a MI
based BCI data set were first preprocessed by data segmen-
tation and band pass filtering, and then aligned by REA.
A leave-one subject-out (LOO) cross validation method is
used to divide the subjects into source subjects and the tar-
get subject. After the selection of relevant source subjects,
the aligned EEG trials from a chosen subset of source sub-
jects are transferred to the target subject as the training data.
A classification model based on transfer learning can be
created in either Riemannian space or Euclidean space. The
data processing flowchart for classifying MI EEG signals is
illustrated in Fig. 1.

III. EXPERIMENTAL DATA
In this study, two MI based EEG data sets were used for
evaluating the performance of the proposed algorithms. The
first one is the data set 2a of BCI Competition IV [40],
and the other is the second data set in the data base pro-
vided by the BNCI Horizon 2020 European Coordination
project [41]. The two data sets were adopted because of the
large number of subjects (9 in the first and 14 in the second).
The main difference between them is that they have different
number of channels, trials and mental tasks.

A. DATA SET 1
The data set contains EEG data from 9 subjects. The cue-
based BCI paradigm consisted of four different mental tasks,
namely MI of left hand, right hand, both feet and tongue.
During the experiment, the subjects were sitting in an arm-
chair in front of a computer screen. At the beginning of a
trial, a fixation cross appeared on the screen and meanwhile a
short acoustic warning tone was presented. After 2 s, an arrow
pointing to either the left, right, down or up (corresponding

to one of the four classes) appeared and stayed on the screen
for 1.25 s. This arrow cue prompted the subjects to perform
the desired MI task. The mental imagination lasted until
6 s. No feedback was provided. A short break followed that
lasted 1.5∼2.5 s. The timing scheme of each trial is shown
in Fig. 2(a).

FIGURE 2. The timing scheme of a trial in (a) the data set 1 and (b) the
data set 2.

The EEG data were recorded using 22 Ag/AgCl elec-
trodes with the left and right mastoid serving as reference
and ground respectively. The EEG signals were sampled at
250 Hz and bandpass filtered between 0.5 Hz and 100 Hz.
An additional 50 Hz notch filter was used to suppress line
noise. Each subject performed two sessions (session T for
training and session E for evaluation) on different days. Each
session includes six runs separated by short breaks. One run
is composed of 48 trials, 12 trials per task, yielding a total
of 288 trials per session. Only the session T and the two
classes of EEG data from left and right hand were employed
in the study.
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B. DATA SET 2
The data set contains EEG data from 14 subjects, eight of
whom are naïve. The cue-based BCI paradigm consisted of
two different mental tasks, namely MI of right hand and feet.
During the experiment, the subject fixated on a computer
monitor 150 cm in front of her/him. Each trial is 8 s long and
starts with the presentation of a fixation cross at the center
of the monitor, followed by a short warning tone (beep) at
2 s. At 3 s, the fixation cross is overlaid with a cue arrow for
1.25 s, pointing to either the right or the down (corresponding
to the twoMI tasks). Depending on the direction of the arrow,
the subject is asked to imagine the desired mental task, which
sustains 5 s. A short break followed that lasted 0.5 ∼ 2.5 s.
The timing scheme of each trial is shown in Fig. 2(b).

The EEG data were recorded using 15 Ag/AgCl elec-
trodes with the left and right mastoid serving as reference
and ground respectively. These electrodes were placed for
obtaining three Laplacian derivations with center electrodes
at positions C3, Cz and C4 and four additional electrodes
around each center electrode. The EEG signals were sampled
at 512 Hz. Each subject performed a single session, which
consisted of eight runs, five of them for training and three
with feedback for validation. The feedback was presented in
form of a white bar graph, the length of which reflected the
amount of correct classifications over the last second. One run
was composed of 20 trials, 10 trials per task, yielding 50 trials
per class for training and 30 trials per class for validation.
Only the training runs were used in this study.

C. DATA PREPROCESSING
For the classification of mental tasks, each trial from the two
data sets was band-pass filtered by a 5-th order Butterworth
filter in the frequency band of 8–30 Hz. The data segments
of 3 s were intercepted from 2.5 s to 5.5s and from 5.5 s to
8.5 s for the first and the second data set respectively. For
the estimation of reference matrices, the data segments for
EA and REA were the same as those for the classification of
mental tasks, whereas those for RA were intercepted from
6.25 s to 7.25 s and from 8.5 s to 9.5 s for the first and
the second data set respectively.

IV. RESULTS
In this section, the proposed classification models are analy-
sized from five aspects, i.e. data visualization, the distribution
of channel weights, classification performance, regulariza-
tion parameter and the number of chosen source subjects.
Classification models built with REA trials are compared
with those built with the raw and RA or EA trials in the same
space and under two conditions, i.e. with and without the
selection of relevant source subject.

A. DATA VISUALIZATION
t-stochastic neighbor embedding (t-SNE) [42] was used as the
visualization tool. It reduces the dimensionality of the EEG
data to two or three so that the trials can be visualized in two

or three dimensions. The perplexity parameter was set at 50 in
all these t-SNE applications.We display the difference in data
distribution among the raw data and the aligned data by RA,
EA and REA. It is noted that the regularization parameter λ in
the REA is different for different alignment spaces. Thereby,
the data distributions of the raw data, the RA data and the
REA data are compared in the Riemannian space, whereas
those of the raw data, the EA data and the REA data are
compared in Euclidean space.

Fig. 3 and Fig. 4 show the data distributions from two
representative subjects in Riemannian and Euclidean space
respectively. In each subplot, the red dots denote the EEG
trials from a target subject, whereas the blue dots stand for
those from the source subjects. The two figures illustrate the
effect of cross-subject shifts caused by data alignment. All
the three alignment methods change the distributions of EEG
trials compared with the raw data. For the raw data, red and
blue dots are very dispersive. A classification model built

FIGURE 3. t-SNE visualization of the raw data, the RA data and the REA
data from subject 5 in data set 1 (the first row) and subject 8 in data set 2
(the second row). The regularization parameter λ in REA was determined
by a classification model based on SCM for feature extraction and MDM
for classification.

FIGURE 4. t-SNE visualization of the raw data, the EA data and the REA
data from subject 2 in data set 1 (the first row) and subject 8 in data set 2
(the second row). The regularization parameter λ in REA was determined
by a classification model based on CSP for feature extraction and LDA for
classification.
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with the blue trials may not classify the red trials very well.
After RA, EA or REA, the training and testing trials overlap
more with each other and the relative distance between them
is reduced accordingly. The difference between RA/EA and
REA is that the EA/RA trials aremore concentrated than REA
trials. The lower concentration of REA trials facilitates their
classification.

B. DISTRIBUTION OF ELECTRODE WEIGHTS
We show the distribution of electrode weights from a sub-
ject in data set 1 because data set 2 does not provide the
information of electrode labels. Fig. 5 shows the electrode
weights for corresponding spatial filters evoked by MI of left
hand and right hand for subject 4. The spatial filters were
estimated by the CSP algorithms from three types of data,
i.e. raw data, EA data and REA data, under two conditions,
i.e. before and after the selection of source subjects. It is
seen from the figure that for the raw data, the distributions of
electrode weights of both left- and right-hand class roughly
respect their representative regions, but strong weights from
right-hand class scatter in left temporal lobe. After data align-
ment by EA andREA, strongweights of right-hand class scat-
ter in two temporal lobes although the weight distributions of
left-hand class are improved largely. After the selection of
source subjects, the weight distribution of left-hand class is
further improved for the EA data, but that of right-hand is not.
The weight distributions of both classes for raw data and REA
data are perfect from a neurophysiological point of view.

FIGURE 5. The electrode weights for corresponding spatial filters evoked
by MI of left and right hand for subject 4 in data set 1. The spatial filters
were estimated by the CSP algorithms with three types of data, i.e. raw
data, EA data and REA data, and two conditions, i.e. before and after the
selection of source subjects.

C. CLASSIFICATION ACCURACY
The classification model based on transfer learning can be
created in either Euclidean or Riemannian space and thus
there are two triads of algorithms for comparison in each
space depending on whether the algorithm includes the selec-
tion of source subjects. Since the performance of a classi-
fication model is mainly determined by the quality of its

feature signals, these algorithms are thereby named according
to their feature extraction methods. In Euclidean space, one
triad is the basic CSP (CSP), the CSP with aligned data
by EA (EA-CSP) and by REA (REA-CSP), and the other
triad is the above three algorithms including subject selec-
tion (SS), named respectively as SS-CSP, EA-SS-CSP and
REA-SS-CSP. In Riemannian space, a SCM is indeed served
as a feature signal, and thus the two triads of algorithms
are named around SCM. Accordingly, one triad is SCM,
RA-SCM and REA-SCM, and the other is SS-SCM, RA-
SS-SCM and REA-SS-SCM. The classification accuracies of
the target subjects in data set 1 and 2 are illustrated in the
Fig. 6 and Fig. 7 respectively.

From the two figures, it is observed that without the selec-
tion of source subjects (the first row of the two figures), all
alignment-based algorithms outperform their original ones
for most subjects. In terms of the averaged accuracy across
subjects, the REA based algorithms consistently outperform
the other two in each subplot. Specifically, for data set 1,
REA-CSP outperforms CSP and EA-CSP by about 8% and
2% respectively; REA-SCMoutperforms SCM and RA-SCM
by about 17% and 3% respectively. For data set 2, REA-CSP
outperforms CSP and EA-CSP by about 9% and 2% respec-
tively; REA-SCM outperforms SCM and RA-SCM by about
13% and 14% respectively. These results confirm that as a
method for data alignment, REA has superior performance
compared to RA and EA and should be used to deal with
individual differences among subjects.

With the selection of source subjects (the second raw of the
two figures), the classification accuracies of all subjects are
increased significantly. However, for different algorithms, the
increase in accuracy is different. The worse the performance
of an algorithm, the larger is the increase in accuracy. Specifi-
cally, REA-SS-CSP and EA-SS-CSP achieved approximately
the same accuracy of 80% and 77%, and 3% and 4% higher
accuracy than SS-CSP, for data set 1 and 2 respectively;
REA-SS-SCM and RA-SS-SCM, however, behaved differ-
ently for the two data sets. For data set 1, REA-SS-SCM
achieved 1% lower accuracy than RA-SS-SCM, but still
3% higher accuracy than SS-SCM, whereas for data set 2,
REA-SS-SCM achieved 5% and 4% higher accuracy than
RA-SS-SCM and SS-SCM respectively. These results verify
that inMI based BCIs, subject selection is also very important
for transfer learning.

To compare the difference between each of the four REA
methods and the other two in each triad, the paired-sample
t-tests were applied on their accuracy rates in Fig. 6 and 7
respectively. In all the t-tests, the significance level was set
as α = 0.05. The results of the statistical tests are shown
in Table 1. It is observed from the table that REA-CSP and
REA-SCM are significantly better than the other two in the
same one triad with p < 0.05. Including the selection of
relevant source subjects, REA-SS-CSP is significantly better
than SS-CSP with p < 0.05 and p < 0.01 for data set
1 and 2 respectively, but there is no significant difference
betweenREA-SS-CAP and EA-SS-CAP for the two data sets.
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FIGURE 6. Classification accuracy rates achieved by the six CSP based algorithms (a, c) and the six SCM based
algorithms (b, d) designed in Euclidean and Riemannian space respectively on Data set 1.

FIGURE 7. Classification accuracy rates achieved by the six CSP based algorithms (a, c) and the six SCM based
algorithms (b, d) designed in Euclidean and Riemannian space respectively on Data set 2.

REA-SS-SCM is significantly better than SS-SCM and RA-
SS-SCM with p < 0.001 and p < 0.01 respectively for the
data set 2, but there is no significant difference among them
for data set 1.

Fig. 8 depicts the averaged classification accuracy across
all the six methods in the same raw of Fig. 6 and 7 for each
source subject in the two data sets. In each subplot, the blue
curve denotes the accuracy achieved without the selection of
relevant source subjects, whereas the red curve denotes that
obtained with the selection of relevant source subjects. It is
clearly seen that the two red curves lie above the blue curve
with a large interval between them for each subject in the
two data sets. This is further proved that subject selection
is effective and meaningful for transfer learning in MI based
BCIs.

Fig. 9 shows the evolution of averaged accuracy rates
across subjects of the six algorithms in each column with

TABLE 1. Results of paired t-tests of statistical significance between each
of the four REA based methods and the other two methods in each triad
of Fig. 6 and Fig. 7 for the two data sets.

the number of testing trials for the two data sets in each
raw. The results in the first raw are derived from data set
1 with total trials of 144 per subject, and those in the second
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FIGURE 8. Averaged classification accuracy across the six methods of each subject before and after selecting relevant transfer
subjects on (a) Data set 1; (b) Data set 2.

FIGURE 9. The evolution of averaged classification accuracies across subjects yielded by the six CSP based
algorithms (a, c) and the six SCM based algorithms (b, d) with the number of testing trials on data set 1
(a, b) and data set 2 (c, d).

raw are derived from data set 2 with total trials of 100 per
subject. In each subplot, the three accuracy curves with sub-
ject selection are consistently lying above those without sub-
ject selection. Looking carefully at those curves, it is revealed
that within the initial dozens of testing trials, the lower
three curves fluctuate up and down, whereas the upper three
decline monotonically. The reason may be that when the
target subjects had only a small amount of data, the reference
matrix used for data alignment was not accurately estimated
for all the six algorithms; The selection of source subjects
alleviated the problem to some extent, but meanwhile brought
overlearning.When the number of testing trials is greater than
40, all the six accuracy curves tend to be stable.

D. REGULARIZATION PARAMETER
Table 2 reports the regularization parameter λ in REA
selected by each of the four methods, i.e. REA-SCM,
REA-SS-SCM, REA-CSP and REA-SS-CSP, for each target

subject in the two data sets. The parameter λ for the former
two methods is the same, so is it for the latter two. For data
set 1, it is observed that if the classification model was built
in Riemannian space (REA-SCM and REA-SS-SCM), most
subjects selected Riemannian mean (λ = 1) as the reference
matrix for data alignment; otherwise most subjects selected
hybrid Riemannian and Euclidean mean (λ 6= 0, 1) as the
reference matrix. For data set 2, the situation was different.
If the classification model was built in Riemannian space,
most subjects selected hybrid Riemannian and Euclidean
mean (λ 6= 0, 1) as the reference matrix for data alignment;
otherwise 7, 4 and 3 subjects selected hybrid Riemannian and
Euclidean mean (λ 6= 0, 1), Riemannian mean (λ = 1) and
Euclidean mean (λ = 0) as the reference matrix respectively.
These results confirm that either RA or EA is not able to
achieve the best effect of data alignment and REA should be
used to deal with the problem of individual differences among
subjects.
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TABLE 2. The regularization parameter λ in REA selected by each of the four methods, i.e. REA-SCM, REA-SS-SCM, REA-CSP and REA-SS-CSP, for each
target subject in the two data sets.

TABLE 3. The number of relevant source subjects selected by the six methods, i.e. SS-SCM, RA-SS-SCM, REA-SS-SCM, SS-CSP, EA-SS-CSP and REA-SS-CSP,
for each target subject in the two data sets. M denotes Mean.

E. THE NUMBER OF CHOSEN SOURCE SUBJECTS
Table 3 reports the number of relevant source subjects
selected by the six methods, i.e. SS-SCM, RA-SS-SCM,
REA-SS-SCM, SS-CSP, EA-SS-CSP and REA-SS-CSP, for
each target subject in the two data sets. It is revealed from
the table that for the two data sets, the averaged number of
relevant source subjects across target subjects selected by
alignment-based algorithms is larger than that selected by
original algorithms except for REA-SS-SCM and REA-SS-
CSP, which selected the same number of source subjects as
SS-SCM and SS-CSP respectively in data set 1. Comparing
the two data sets, each algorithm in data set 2 selected more
source subjects than its counterpart in data set 1. These
results suggest that data alignment does increase the similar-
ity between a source subject and the target subject, and a data
set with more subjects is beneficial for transfer learning.

V. DISCUSSION AND CONCLUSION
Minimizing or suppressing training time in MI based BCI
systems is a hard task. Transfer learning is a potential
approach for decreasing training time that requires in-depth
research. Data alignment and the selection of source subjects
are two existing methods for improving transfer learning in

MI based BCIs. To the best of our knowledge, no research has
combined the two methods for transfer learning. This paper
proposes a novel transfer learning algorithm, which incorpo-
rates a new method for data aliment and a method for subject
selection into the classification model. The hybrid Rieman-
nian and Euclidean space data alignment (REA) method is
used to reduce the variability across subjects, and hence
makes transfer learning better applied to a BCI. Besides,
the subject selection (SS) algorithm aims to select relevant
transfer subjects for a target subject, in order to further
decrease the difference between a chosen previous user and a
new user.

Data alignment enhances the similarity between EEG
signals of different subjects, but changes topographic rep-
resentations of the spatial filters for different mental tasks.
As shown in the first two columns of Fig. 5, this change is
sometimes desired for a certain category, e.g. the first column,
but sometimes undesired for another category, e.g. the second
column, where both EA and REA deteriorate the topographic
representation of the right-hand class compared to the raw
data. The selection of relevant source subjects overcomes the
problem to varying degrees, as shown in last column. From
Fig. 9, it is observed that with only 40 trials, 20 trials per class,
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the relatively high accuracy rates of about 80% and 75% can
be achieved for a target subject in data set 1 and 2 respectively.

In MI based BCIs, a typical classification model created
in Euclidean space is based on CSP, whereas that created in
Riemannian is based on SCM. Both CSP and SCM rely on the
estimation of sample covariance matrices, which are derived
from a single-trial multi-channel EEG signal. When the num-
ber of channels is large, the dimension of covariance matrices
is high. Working in high-dimensional space is computation-
ally expensive or even impossible for very high dimensions.
Moreover, when the dimension of SCMs is high, they may be
badly conditioned with respect to inversion, i.e. their smallest
eigenvalues are close to zero, harming the numerical stability
of subsequent manipulations based on spectral functions of
eigenvalues. Thus, it is necessary to reduce the dimension
of SCMs. Channel selection is one of effective methods for
dimensionality reduction. Recently, Jin et al. proposed two
good methods for the purpose. One of them uses the sum
of logarithmic amplitudes (SLA) and the first order spectral
moment (FOSM) features extracted from bispectrum analysis
to select EEG channels [43], whereas the other selects those
channels containing more correlated information based on
regularized feature optimization [44]. Both the two methods
were applied to three MI data sets for BCI competition and
the experimental results suggest that they achieved superior
classification accuracy compared to existing methods.

Feature selection is another useful dimensionality
reduction method. Recently, Jin et al. proposed an internal
feature selection method [45] that selects discriminative fea-
tures via suppressing outliers and discovering features with
larger interclass distances. A fusion algorithm based on the
Dempster–Shafer theory is used for internal feature selection.
The method was evaluated on two MI based BCI data set
and the experimental results show that the proposed method
consumes less additional computational cost and results in a
significant increase in the performance compared with other
methods for feature selection.

RA aligns data with the reference matrix derived from
resting-state EEG data, which might be affected by the
healthy status of subjects or the environment. Thereby, when
RA is used to preprocess EEG data from both source and
target subjects, the effect of transfer learning might be com-
promised to some extent. Ment et al. first investigated the
impacts of soft drinks such sugar, caffeine and regular cof-
fee on resting state EEG and BCI performance [46]. The
study shows that power in alpha and beta band after caffeine
consumption were decreased substantially compared with
control and sugar condition.

Two classification models were created with the data
aligned by REA from chosen source subjects in Rieman-
nian and Euclidean space respectively. Two MI data sets
were employed to assess the classification performance of
the two algorithms. The results show that REA significantly
outperforms RA and EA, and the two algorithms combining
REA and SS exhibits superior classification performance
compared to existing algorithms. The proposed algorithms

are helpful for improving transfer learning in BCIs and facil-
itate their applications in real world. This study analyzed the
proposed algorithms offline. Future work will focus on the
new method for the selection of relevant source subjects and
the online implementation of the proposed algorithms.
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