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ABSTRACT In this paper, the self-alignment for stationary strapdown inertial navigation system (SINS) is
formulated as an optimization problem, and two gradient descent optimization-based SINS self-alignment
methods (GD1 and GD2) are proposed. The highlight lies in that two quaternion-based objective functions
are firstly formulated to solve the stationary SINS self-alignment problem. Different from conventional
initial alignment methods, we firstly construct a quaternion-based objective function for stationary SINS
using gravity, Earth rate and local latitude information in GD1, and employs gradient descent method to
achieve the minimum of the objective function. Secondly, we further improve the quaternion-based objective
function in GD2 by using the measurements from IMU to represent the Earth rate instead of using the local
latitude directly. Thus, GD2 method is more competent for SINS self-alignment when the local latitude
information is not available. In addition, we also analyze the bias errors of accelerometer and gyroscope
and the quaternion normality error for GD1 and GD2 method respectively. Moreover, based on the analysis
results, a scale factor is also introduced to reduce the alignment errors of GD1 caused by gyroscope biases.
Simulation and static experiment are implemented to test the performances of GD1 and GD2 method, and
the results verify the accuracy and speed of the proposed methods.

INDEX TERMS SINS self-alignment, gradient descent optimization, stationary base, error analysis.

I. INTRODUCTION
The main task of the self-alignment process of the strapdown
inertial navigation system (SINS) is to determine its initial
attitude using the measurements of the gravity vector and the
Earth rate vector [1]–[3]. As SINS is a dead-reckoning nav-
igation system, an accurate initial attitude determined by the
self-alignment process is crucial for guaranteeing the naviga-
tion accuracy of SINS [4]–[8]. High accuracy and rapid speed
are primary goals for SINS self -alignment. Self-alignment
approaches are able to operate using only measurements from
internal inertial measurement unit (IMU); without the need
for external reference, they are better suited to some applica-
tions which require autonomy and/or concealment [9]–[12].

For the restricted problem of aligning on a stationary base,
the conventional error model of SINS is not completely
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observable [13], and the estimability of the states esti-
mated by a Kalman or other optimal estimation-based filter
is weak. Poor observability degrades the accuracy and/or
speed of the SINS stationary alignment [14]–[16]. We note
in passing that multiposition techniques or maneuvering
schemes [14], [17]–[19] provide workarounds, but require
the base to move, so we do not further consider such
schemes.

For a stationary base, the components of the gravity and
Earth rate vector in the local geographic navigation frame
are constant and can be (pre)computed from local latitude
information. The analytical alignment method uses the com-
ponents of the gravity and Earth rate vector in the navi-
gation frame and their corresponding measurements from
IMU to determine the initial attitude [1], [20], [21]. For
representing the attitude the most common approaches are
Euler angles, direction-cosine matrix (DCM), quaternion
and rotating vector [1], [21]–[26]. The DCM-based method
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has been widely employed for SINS analytical alignment
[1], [21], [26]. In [1], Britting uses three non-coplanar
vectors—the gravity vector, the Earth rate vector, and a
vector generated by their cross product—to determine the
elements of the DCM; consequently, the scheme is called
the three-axis attitude determination-basedmethod (TRIAD).
Unfortunately, the east alignment error of TRIAD is affected
by both the accelerometer and gyroscope biases, with the lat-
ter generally dominating the former. The orthogonal-TRIAD
(O-TRIAD) method of Jiang [21] instead uses three orthogo-
nal vectors constructed from the cross products of the gravity
vector and Earth rate vector to determine the DCM ele-
ments, and the resulting east alignment accuracy is improved
because it is not affected by gyroscope biases. Additional
TRIAD-based methods have been constructed using other
choices for the vectors [21], [26], but all have to implement
orthogonalization techniques to modify the DCM in order to
cope with IMU bias error.

In [25], Li and Fang propose an analytical alignment
method and give the explicit expression for attitude repre-
sented as Euler angles; for brevity, we refer to this method
in this paper as the analytical Euler-angle method (AEA).
Silva et al. in [9] show that the attitude expression of the
AEA method is equivalent to that of the TRIAD method
before orthogonalization, and the horizontal component is
the same as the O-TRIAD method. Moreover, Silva et al.
propose an improved O-TRIAD method called orthogonal-
normal-TRIAD (ON-TRIAD) in [9] and [27], which also
employs the Euler angle to represent the attitude. Addition-
ally, ON-TRIAD can complete the stationary alignment with-
out using the local latitude information. Because there are
no orthogonality or normality issues in the Euler angles, the
error models of AEA and ON-TRIAD are easier to derive
by perturbation methods. In practice, however, because the
orthogonality and normality procedures in O-TRIAD may
decrease the alignment errors caused by IMU bias, the align-
ment accuracy of AEA and ON-TRIAD will be inferior to
O-TRIAD in many cases.

In this paper we focus on the quaternion representation.
Compared with the nine-element DCM, the quaternion vector
has only four elements, and hence we need not construct an
additional cross product vector to determine the quaternion
representation [28]. Additionally, quaternion doesn’t have
the singularity problem existing in the Euler angle method.
Thus, the quaternion is a promising way to represent the
attitude. Wu et al. in [29] construct the quaternion-based
objective function and propose the optimization-based align-
ment (OBA) method to solve the in-motion alignment prob-
lem. As the alignment errors of OBA accumulate with the
run-time, it will degrade the alignment accuracy of station-
ary SINS self-alignment. To deal with stationary SINS self-
alignment, the highlight of this paper is that we construct
two quaternion-based objective functions on the stationary
base and formulate the self-alignment problem as an opti-
mization problem. Moreover, two gradient descent (GD) [30]

optimization-based self-alignment methods are proposed to
determine the initial attitude in real time.

The first method (‘‘GD1’’) utilizes the gravity and Earth
rate vector in the navigation frame and their corresponding
measurements from IMU to construct a quaternion-based
objective function. Then GD optimization is employed to
achieve the minimum of the objective function. Because the
GD1 method still requires the local latitude to be priori
known, furthermore, an improved self-alignment method
is proposed to solve the self-alignment problem without
using local latitude information. Instead, the second method
(‘‘GD2’’) directly uses the measurements from the IMU to
represent the components of the Earth rate in the navigation
frame, and then constructs an improved quaternion-based
objective function. Thus the GD2 method is more competent
for SINS initial alignment when the local latitude informa-
tion is not available. In addition, the error analysis is a
challenging but important procedure to evaluate the accu-
racy of the initial alignment method. We analyze the bias
errors of accelerometer and gyroscope and the quaternion
normality error for GD1 and GD2 respectively. As the error
analysis of the optimization-based method is a quite difficult
job, we can only analyze the error models of both methods
separately in different ways. Based on the analysis results,
a scale factor is also introduced to decrease the attitude error
of GD1 caused by gyroscope biases. Furthermore, simulation
and static experiment are implemented to test the perfor-
mances of the proposed methods.

II. GRADIENT DESCENT OPTIMIZATION-BASED
SINS SELF-ALIGNMENT METHOD
A. QUATERNION REPRESENTATION
In this paper, we use the East-North-Up (ENU) geographic
coordinate system as the navigation frame, and employ
the unit quaternion vector to represent the attitude. The
quaternion qnb represents the transformation from the body
frame (subscript or superscript b) to the navigation frame
(subscript or superscript n). If qnb = [ q0 q1 q2 q3 ]T ,
then the Euler angles ρ (pitch), θ (roll) and ψ (yaw) repre-
sentation of qnb can be expressed as [31]

ρ = Asin(2q0q1 + 2q2q3)

θ = Atan2(2q0q2 − 2q1q3, 1− 2q21 − 2q22)

ψ = Atan2(2q0q3 − 2q1q2, 1− 2q21 − 2q23). (1)

where the Euler angles ρ, θ and ψ are determined by the
Z-Y-X rotation sequence starting from the navigation frame.

Besides, the transformation between a vector in the nav-
igation frame (rn) and that in the body frame (rb) can be
described by

rb = qbn ⊗ rn ⊗ qb
∗

n = qn
∗

b ⊗ rn ⊗ qnb (2)

where ⊗ denotes the quaternion product, qn
∗

b denotes the
conjugate quaternion of qnb and ‖q

n
b‖ = 1.
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B. GRADIENT DESCENT OPTIMIZATION METHOD
In the paper, we formulate SINS self-alignment on the station-
ary base as an optimization problem, thus the initial attitude
can be determined when we achieve the minimum of the
objective function. Among these optimization methods for
practical applications, the gradient descent method is one of
the simplest to both implement and compute [32]. Therefore,
we employ gradient descent to determine the four elements
of the quaternion vector.

Given rn and rb, we can construct a suitable objective
function to estimate qnb using (2)

min
qnb
ζ (qnb, r

n, r̃b) =
1
2

∥∥∥f (qnb, rn, r̃b)∥∥∥2 (3)

f (qnb, r
n, r̃b) = rb − r̃b

= qn
∗

b ⊗ rn ⊗ qnb − r̃
b (4)

where r̃b is the measurement of rb, ‖ · ‖ is Euclidean 2-norm,
and the objective function ζ (qnb, r

n, r̃b) is a convex function.
It is stressed that the quaternion should be normalized to
guarantee ‖qnb‖ = 1 during each iteration.
Utilizing gradient descent to solve the objective function

in (3) yields

qnb(k + 1) = qnb(k)− λ
∇ζ (qnb, r

n, r̃b)

‖∇ζ (qnb, r
n, r̃b)‖

(5)

∇ζ (qnb, r
n, r̃b) = JT (qnb)f (q

n
b, r

n, r̃b) (6)

where λ is a variable step-size, and the Jacobian matrix is

J(qnb) =
∂f (qnb, r

n, r̃b)
∂(qnb)

T .

C. SINS SELF-ALIGNMENT METHOD WITH
KNOWN LOCAL LATITUDE (GD1)
In this subsection, we focus on the SINS self-alignment
for the case where the local latitude information is known.
From (3) and (4), we need to construct an objective function
whose unique solution determines the quaternion. Because
the quaternion contains four elements, a necessary condition
for uniqueness is that the objective function has at least
four independent constraints. We utilize the gravity vector
and Earth rate vector in the navigation frame (the latter
computed from the known latitude as shown below) and
their measurements from the IMU to construct an objective
function.

Firstly, the gravity vector and its normalized form
in the navigation frame, as shown in Fig.1, can be
written as

gn =
[
0 0 0 −g

]T
(7)

ḡn = gn/‖gn‖ =
[
0 0 0 −1

]T
(8)

where ‖gn‖ = g, and g is the magnitude of the gravity vector.
Based on (2), the normalized gravity vector in the body frame

FIGURE 1. The gravity and Earth rate vector in ENU navigation frame.

is expressed as

ḡb = qbn ⊗ ḡn ⊗ qb
∗

n

= qn
∗

b ⊗ ḡn ⊗ qnb (9)

ḡb =

 2(q0q2 − q1q3)
−2(q0q1 + q2q3)
2q21 + 2q22 − 1

 (10)

We also define the gravity vector measurement (by three-axis
accelerometer) in the body frame

g̃b =
[
g̃bx g̃by g̃bz

]T
(11)

Secondly, the Earth rate, as shown in Fig.1, and its normal-
ized form in the navigation frame can be represented as

wn =
[
0 0 wie cosL wie sinL

]T
(12)

w̄n = wn/‖wn‖ =
[
0 0 cosL sinL

]T
(13)

where ‖wn‖ = wie, wie denotes the magnitude of the Earth
rate and L denotes the local latitude (which is assumed to
be priori known for this method). We can then write the
normalized Earth rate vector in the body frame as

w̄b = qn
∗

b ⊗ w̄n ⊗ qnb (14)

w̄b =

 2(q1q2 + q0q3) cosL + 2(q1q3 − q0q2) sinL
(1− 2q21 − 2q23) cosL + 2(q0q1 + q2q3) sinL
2(q2q3 − q0q1) cosL + (1− 2q21 − 2q22) sinL


(15)

Finally, we define the Earth rate vector measurement (by
three-axis gyroscope) in the body frame

w̃b =
[
w̃bx w̃by w̃bz

]T
(16)

As the measurements of the gravity vector or the Earth rate
vector alone cannot provide a unique solution to determine
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the quaternion from (4), we combine both of them to construct
a united function

f (qnb, g,w)

=

(
f g(q

n
b, g)

f w(q
n
b,w)

)
=

(
ḡb − g̃b/g
w̄b − w̃b/wie

)

=



2(q0q2 − q1q3)− g̃bx/g
−2(q0q1 + q2q3)− g̃by/g
(2q21 + 2q22 − 1)− g̃bz/g

2(q1q2+ q0q3)cosL+2(q1q3− q0q2)sinL−w̃bx/wie
(1− 2q21− 2q23)cosL+2(q0q1+ q2q3)sinL−w̃

b
y/wie

2(q2q3− q0q1)cosL+(1− 2q21− 2q22)sinL−w̃
b
z/wie


(17)

whose Jacobian is

J(qnb) =
∂f (qnb, g,w)
∂(qnb)

T =


∂f g(q

n
b, g)

∂(qnb)
T

∂f w(q
n
b,w)

∂(qnb)
T

 (18)

where

∂f g(q
n
b, g)

∂(qnb)
T =

 2q2 −2q3 2q0 −2q1
−2q1 −2q0 −2q3 −2q2
0 4q1 4q2 0

 (19)

and
∂f w(q

n
b,w)

∂(qnb)
T

=

 2q3 cosL − 2q2 sinL 2q2 cosL + 2q3 sinL
2q1 sinL −4q1 cosL + 2q0 sinL
−2q1 cosL −2q0 cosL−4q1 sinL

2q1 cosL − 2q0 sinL 2q0 cosL + 2q1 sinL
2q3 sinL −4q3 cosL + 2q2 sinL

2q3 cosL − 4q2 sinL 2q2 cosL


(20)

With these definitions, the quaternion vector can be deter-
mined by minimizing the objective function ζ (qnb, g,w)
with a gradient descent optimization algorithm. In this case
(3) and (4) take the form

qnb(k + 1) = qnb(k)− λk
∇ζ (qnb, g,w)
‖∇ζ (qnb, g,w)‖

(21)

∇ζ (qnb, g,w) = JT (qnb)f (q
n
b, g,w) (22)

Due to the existence of bias errors in the accelerometer
and gyroscope, we must normalize the quaternion at each
iteration. In addition, the iteration step size λk in (21) is a
function of the sampling time or iteration time. Based on [32],
we calculate λk as

λk = βk1t (23)

where βk is a scale factor related to physical measurement
dynamics and 1t is the sampling period. We observe that
an appropriate choice of the iteration step-size λk , or equiv-
alently the scale factor βk , is crucial to improve the con-
vergence rate. Generally, both convergence rate and accuracy

highly depend on the choice of β [30], [33]. The convergence
rate will be faster with a large β, but such a choice may
degrade the algorithm’s accuracy. On the other hand, we can
achieve a more accurate result with a small β, but the iteration
will take longer to converge to this result. We recommend to
choose a time-varying β that declines gradually with iteration
step for the SINS self-alignment application. We will also
mention in passing that the convergence rate of gradient
descent optimization can be accelerated through advanced
gradient descent optimizers, such as theMomentum,Adagrad
andAdam algorithms [34]; however, wewill not discuss these
accelerations further here.

D. SINS SELF-ALIGNMENT METHOD WITH
NO LOCAL LATITUDE (GD2)
In last subsection, we notice that the proposed self-alignment
method (GD1) cannot be implemented unless we obtain the
local latitude in advance. In fact, most existing SINS align-
ment methods, to the best of our knowledge, all require that
the local latitude information has to be known in advance.
The local latitude information, however, may be inaccu-
rate or hard to obtain in some situations, such as the elec-
tronic interferences and GPS outages. Under these situations,
the conventional self-methods will fail to determine the initial
attitude. To deal with the SINS self-alignment problem with
no local latitude information, we propose an improvement on
the gradient descent optimization-based SINS self-alignment
method (GD2) in this subsection.

From (13), it is noted that there are only y-axis and z-axis
components of the Earth rate vector in the navigation frame.
Thus, the general form of the normalized Earth rate vector in
the navigation frame can be represented by (24).

w̄n =
[
0 0 w̄y w̄z

]T
(24)

On the other hand, based on (1), (10) and (17), the horizon-
tal attitude ( pitch ρ and roll θ ) can be determined directly
from the outputs of three-axis accelerometer. The pitch ρ and
roll θ can be rewritten as

ρ = −Asin( g̃by/g)

θ = −Atan2( g̃bx , g̃
b
z ) (25)

Therefore, by using only the accelerometer measurements,
we can determine an orthogonal coordinate frame, of which
the horizontal plane is aligned with that of the navigation
frame. We set the initial yaw in the new orthogonal frame
as 0◦, so the deviation angle between the new orthogonal
frame and the navigation frame is the yaw angle, as denoted
by Fig.2. Besides, the transformation of the Earth rate vector
measured by the three-axis gyroscope from body frame to the
new orthogonal frame is described by (26) and (27).

ŵn = qnb ⊗
w̃b

wie
⊗ qn

∗

b (26)

ŵn =
[
0 ŵx ŵy ŵz

]T
(27)

VOLUME 9, 2021 8289



J. Li et al.: Gradient Descent Optimization-Based SINS Self-Alignment Method and Error Analysis

FIGURE 2. The projection of Earth rate vector in navigation frame and
new orthogonal frame.

Furthermore, the projection of the Earth rate vector on the
horizontal plane of the new orthogonal frame equals to its
y-axis component in the navigation frame (w̄y), as illustrated
by Fig.2, and the z-axis component of the Earth rate vector in
the new orthogonal frame equals to its z-axis component in
the navigation frame (w̄z). Thus we can obtain (28).{

w̄y =
√
ŵ2
x + ŵ2

y

w̄z = ŵz
(28)

And then, the normalized Earth rate vector w̄n in (13) can
be estimated as

w̄n =
[
0 0

√
ŵ2
x + ŵ2

y ŵz
]T

(29)

At this point, the Earth rate vector in the navigation frame
(w̄n) is obtained by using the measurements from the IMU
instead of directly using local latitude information. Then
substituting (29) into (14) yields the corresponding Earth rate
vector in the body frame (w̄b).

w̄b =


2(q1q2 + q0q3)

√
ŵ2
x + ŵ2

y + 2(q1q3 − q0q2)ŵz

(1− 2q21 + 2q23)
√
ŵ2
x + ŵ2

y + 2(q0q1 + q2q3)ŵz

2(q2q3 − q0q1)
√
ŵ2
x + ŵ2

y + (1− 2q21 − 2q22)ŵz


(30)

Hence, f w(q
n
b,w) in (17) is renewed as

f w(q
n
b,w)

=


2(q1q2+q0q3)

√
ŵ2
x+ ŵ2

y+2(q1q3−q0q2 )̂wz−w̃
b
x/wie

(1−2q21−2q
2
3)
√
ŵ2
x+ ŵ2

y+2(q0q1+q2q3 )̂wz−w̃
b
y/wie

2(q2q3−q0q1)
√
ŵ2
x+ ŵ2

y+(1− 2q21−2q
2
2 )̂wz−w̃

b
z/wie


(31)

Substituting (31) into (17) gives a new objective function
without using local latitude information. Moreover, utilizing

gradient descent optimization algorithm to minimize the new
obtained objective function, as represented by (18)-(22), can
determine the quaternion vector qnb.

III. ERROR ANALYSIS
In this section, we will analyze the error models of the pro-
posed SINS self-algorithms in Section II. For convenience,
we respectively call these two gradient descent methods as
GD1 method (using local latitude) and GD2 method (without
using local latitude) in the following. We only consider the
influences of accelerometer and gyroscope biases, which are
considered as constant values during a fast initial alignment
process. More specifically,∇b

g and∇b
w denote the bias error

of accelerometer and gyroscope in f g(q
n
b, g) and f w(q

n
b,w),

respectively.

A. GD1 METHOD
According to (17)-(22), the update of f g(q

n
b, g) and f w(q

n
b,w)

during each iteration are mutually independent before (21).
Thus, consider f g(q

n
b, g) and f w(q

n
b,w) in (17) separately,

and let

f g(q0, g) = ḡb(q0)− g
b
= 0

f g(q1, g) = ḡb(q1)− g
b
−∇b

g = 0

f g(q
n
b, g) = ḡb(qnb)− g

b
−∇b

g (32)

where q0 is the ideal quaternion without any errors, and gb

is the corresponding accelerometer measurement; q1 is the
quaternion disturbed by accelerometer bias ∇b

g alone, qnb is
the actual estimated quaternion disturbed by both accelerom-
eter bias and gyroscope bias, and the additional quaternion
error δq = qnb − q0. Thus, the value of f g(q

n
b, g) or the

difference between f g(q
n
b, g) and f g(q1, g) denotes the error

affected by the gyroscope bias.
According to (32), ignoring the second and higher order

terms of the differential of ḡb(q0), we have

f g(q
n
b, g)− f g(q1, g)

= ḡb(qnb)− ḡ
b(q1)

= ḡb(qnb)− ḡ
b(q0)−∇b

g

≈
∂ ḡb(q0)
∂(q0)T

δq−∇b
g (33)

∂ ḡb(q0)
∂(q0)T

δq = f g(q
n
b, g)+∇

b
g (34)

For f w(q
n
b,w), similarly we obtain

∂w̄b(q0)
∂(q0)T

δq = f w(q
n
b,w)+∇

b
w (35)

Combining (34) and (35) yields
∂ ḡb(q0)
∂(q0)T
∂w̄b(q0)
∂(q0)T

 δq = ( f g(qnb, g)+∇b
g

f w(q
n
b,w)+∇

b
w

)
(36)
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Therefore, the quaternion error δq is expressed as

δq = (ATA)−1ATB (37)

where A =

 ∂ ḡb(q0)
∂(q0)T
∂w̄b(q0)
∂(q0)T

, B =
(
f g(q

n
b, g)+∇

b
g

f w(q
n
b,w)+∇

b
w

)
, and both A

and B are column full rank matrices.
According to (1) and (37), the expression of the attitude

error of GD1 method is obtained using the perturbation
method, as denoted by (38).

dρ = dqρ/cos(ρ)

dθ = (dqθ1qθ2 − qθ1dqθ2 )/(q
2
θ1
+ q2θ2 )

dψ = (dqψ1qψ2 − qψ1dqψ2 )/(q
2
ψ1
+ q2ψ2

) (38)

where qρ = (2q0q1 + 2q2q3), qθ1 = 2q0q2 − 2q1q3,
qθ2 = 1 − 2q21 − 2q22, qψ1 = 2q0q3 − 2q1q2, qψ2 = 1 −
2q21 − 2q23, and dqρ, dqθ1 , dqθ2 , dqψ1 , dqψ2 are represented
by δq in (37). (Unfortunately, we cannot give the attitude
error expression in the form of sensor errors, or it would be
better for demonstrating the influences of sensor errors on the
alignment accuracy.)

Moreover, we will introduce a scale factor to decrease the
horizontal errors of GD1 method in the following, because
we notice that the horizontal attitude errors of GD1 method
after quaternion normalization process are affected by both
accelerometer and gyroscope biases. Comparing f g(q1, g)
and f g(q

n
b, g) in (32), and considering (33)-(34), we deduce

that f g(q
n
b, g) is the error affected by∇

b
w. Similarly, f w(q

n
b,w)

is the error affected by ∇b
g. In fact, both f g(q

n
b, g) and

f w(q
n
b,w) are the errors mainly caused by the quaternion

normalization. In order to diminish the horizontal errors or δq,
we need to decrease f g(q

n
b, g) or/and f w(q

n
b,w) in (37) since

A,∇b
g and∇b

w are fixed values.
According to (17)-(18), (22) can be rewritten as

∇ζ (qnb, g,w) = JTg (q
n
b)f g(q

n
b, g)+ J

T
w(q

n
b)f w(q

n
b,w)

= ∇ζ g +∇ζw

= q̇+ δq̇g + δq̇w (39)

where Jg(qnb) =
∂f g(q

n
b, g)

∂(qnb)
T , Jw(qnb) =

∂f w(q
n
b,w)

∂(qnb)
T ; δq̇g and

δq̇w are the errors affected by ∇b
g and ∇b

w, and q̇ is the
quaternion rate without being affected by∇b

g and∇b
w during

an iteration.
In practice, the bias error influence of ∇b

w on alignment
result generally is larger than that of ∇b

g, hence we intro-
duce a scale factor α to decrease the weight of δq̇w in (39).
Furthermore, (39) is rewritten as

∇ζ (qnb, g,w)

= q̇+ αδq̇g + (1− α)δq̇w
= α∇ζ g + (1− α)∇ζw
= αJTg (q

n
b)f g(q

n
b, g)+ (1− α)JTw(q

n
b)f w(q

n
b,w) (40)

where α can be set as 0.5 ≤ α < 1.

Therefore, a quaternion vector with better accuracy can
be achieved by substituting (40) into (21) for the gradient
descent optimization.

B. GD2 METHOD
Though the gradient descent optimization for GD1 and
GD2 method are similar to each other, the error models of
them are different. In GD2 method, we use the outputs of
accelerometers and gyroscopes to represent the Earth rate
vector in navigation frame ( w̄n) in (29), which is corrupted
by the accelerometer and gyroscope biases. Consequently,
we cannot analyze the error model of GD2 method using the
way for GD1, as we cannot derive the expression of f w(q

n
b,w)

as represented by (35).
Instead, the basic idea of GD2 method is firstly utiliz-

ing the accelerometer outputs to determine the horizontal
attitude, and then determining the yaw angle with the out-
puts of accelerometers and gyroscopes, which is the same
as the Analytical Euler-Angle (AEA) method. On the other
hand, as the objective function of GD2 is a standard convex
function, its optimal solution for minimizing the objective
function is unique. That is, it will be the unique solution
if it yields the minimum result. Therefore, based on (25)
and the conclusion of AEA method in [25], we give the
explicit attitude expression of GD2 method in terms of Euler
angle without derivations in (41), and numerical results in
Appendix illustrate that (41) is an optimal solution to yield
the minimum result.

ρ = Asin(−̃gby /̃g)
θ = Atan2(−̃gbx , g̃

b
z )

ψ = Atan2( g̃bxw̃
b
z − g̃

b
z w̃

b
x , g̃w̃

b
y + f̃

b
y w̄z) (41)

where g̃ is the magnitude of gravity vector measured by
accelerometer, g̃ = norm( g̃bx , g̃

b
y, g̃

b
z ) ; w̄z is z-axis compo-

nent of the estimated Earth rate in navigation frame (w̄n), and
w̄z = ŵz = −sin(θ)cos(ρ)w̃bx + sin(ρ)w̃by + cos(θ )cos(ρ)w̃bz
Apart from analyzing the influence of bias errors, we also

analyze the quaternion normality error of GD2 method.
Hence, the perturbation method is employed to analyze the
influences of bias errors and normality errors, and the attitude
errors are given, up to one order of time, by

dρ =
∂ρ

∂ g̃by
dg̃by +

∂ρ

∂ g̃
dg̃

= −
1

cos(ρ)

(dg̃by
g̃
−
g̃bydg̃

g̃2

)
≈ −

∇
b
gy

g cos(ρ)
−
dg̃
g
tan(ρ) (42)

dθ =
∂θ

∂ g̃bx
dg̃bx +

∂θ

∂ g̃bz
dg̃bz

= −
1

1+ tan2(θ )

(
dg̃bx
g̃bz
−
g̃bx dg̃

b
z

(̃gbz )2

)
≈

sin(θ )∇bgz + cos(θ )∇bgx
g cos(ρ)

(43)
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where dw̄z is the estimate errors of z-axis component of the
Earth rate (w̄z), which is mainly caused by accelerometer
and gyroscope biases; dg̃ = g̃ − g = sin(θ )cos(ρ)∇bgx −
sin(ρ)∇bgy − cos(θ)cos(ρ)∇bgz, and the term with dg̃ in (42)
and (43) are the normality errors caused by quaternion nor-
malization. Particularly, for (42), supposing that |ρ| ≤ 45◦,
|θ | ≤ 45◦ and ∇bgx = ∇

b
gy = ∇

b
gz, then −1.5∇bgy <

dg̃ sin(ρ) ≤ 0.5∇bgy. Hence, the normality error term
dg̃
g
tan(ρ) in (42) cannot be ignored in some applications.

IV. SIMULATION AND EXPERIMENT RESULTS
To verify the performances of the proposed gradient descent
optimization-based SINS self-alignment methods, simula-
tion and static experiment are carried out in this section.
Besides, several popular SINS self-alignment methods—
O-TRIAD [21], ON-TRIAD [9] and AEA [25] and
optimization-based alignment (OBA) [29] are employed for
comparisons.

A. SIMULATION RESULTS
In this section, several simulations are implemented to test the
performance of the proposed GD1 and GD2 methods under
the stationary base. For the convenience of error analysis,
we mainly investigate the influences of accelerometer and
gyroscope constant biases, ∇b

g and ∇b
w, in the simulation.

Particularly, ∇bgi = 100µg and ∇bwi = 0.01◦/h, i = x, y, z.
Besides, the local latitude is 45.7796◦ and the sampling rate
is 100 Hz.

First of all, simulation is implemented to test the dynamic
characteristics and alignment errors of GD1 and GD2method
seprately, and three initial attitudes (10◦, 10◦, 45◦), (10◦, 10◦,
90◦), (10◦, 10◦, 135◦), are selected to demonstrate the per-
formances of GD1 and GD2. In order to guarantee that the
gradient descent optimization method comes to converge, it is
set to take 2000 iterations for each initial attitude.

Figs. 3-4 and Table 1 describe the dynamic convergence
characteristics and estimate errors of GD1 and GD2 for
different initial attitudes, respectively. It is noted that the
horizontal attitude errors of GD1 ( dρ and dθ ) differ in the
yaw angle. As demonstrated by Figs. 3-4, both GD1 and
GD2 take more iterations to converge for the larger initial
yaw angle. Table 1 shows that GD1 and GD2 take about 8 ms
for each 2000-iteration optimization, which is the average
cost time of 400 sample points in the simulation, and it also

FIGURE 3. Dynamic characteristics and alignment errors of GD1.

FIGURE 4. Dynamic characteristics and alignment errors of GD2.

indicates that GD1 and GD2 are capable for the real-time
applications.

Secondly, simulation is performed to investigate the error
characteristics of GD1 and GD2 with different yaw angles.
In the simulation, the yaw angle varies from 0◦ ∼ 360◦ with
fixed pitch and roll angle (10◦, 10◦). Besides, a series of scale
factor α are selected to verify the performance of the method
in (40) on improving alignment accuracy of GD1 method.

Fig.5 describes the error characteristics of GD1 and
GD2 methods when yaw angle varying from 0◦ ∼ 360◦.
Specifically, Fig.5(a) denotes the alignment error of

dψ =
∂ψ

∂ g̃bx
dg̃bx +

∂ψ

∂w̃bz
dw̃bz +

∂ψ

∂ g̃bz
dg̃bz +

∂ψ

∂w̃bx
dw̃bx +

∂ψ

∂w̃by
dw̃by +

∂ψ

∂ g̃by
dg̃by +

∂ψ

∂ g̃
dg̃+

∂ψ

∂w̄z
dw̄z

=
1

1+ tan2(ψ)

(
d (̃gbxw̃

b
z − g̃

b
z w̃

b
x)

g̃w̃by + f̃ by w̄z
−
(̃gbxw̃

b
z − g̃

b
z w̃

b
x)d (̃gw̃

b
y + f̃

b
y w̄z)

(̃gw̃by + f̃ by w̄z)2

)
≈

(∇bgxw̃
b
z + g̃

b
x∇

b
wz −∇

b
gzw̃

b
x − g̃

b
z∇

b
wx)( g̃w̃

b
y + f̃

b
y w̄z )

( g̃bxw̃bz − g̃bz w̃bx )2 + ( g̃w̃by + f̃ by w̄z )2
−

(̃gbxw̃
b
z − g̃

b
z w̃

b
x)(dg̃ w̃

b
y + g̃∇

b
wy +∇

b
gyw̄z + f̃

b
y dw̄z)

( g̃bxw̃bz − g̃bz w̃bx )2 + ( g̃w̃by + f̃ by w̄z )2
(44)
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TABLE 1. Alignment errors and cost time of GD1 and GD2.

FIGURE 5. Alignment error comparisons of GD1 and GD2. (a) Alignment
error of GD1 with different scale factor α. (b) Alignment error of
GD1 (α = 0.99) and GD2.

GD1 with different scale factor α, as represented by (40).
It is clear that the horizontal error of original GD1 method
(α = 0.5) is the largest among these scale factors. As we
expected, the horizontal errors caused by IMU biases are
significantly suppressed by choosing a larger α, which is
more effective to decrease the weight of attitude errors caused
by gyroscope bias. However, we cannot completely ignore
the weight of gyroscope bias in (40), as the measurements
from the gyroscope are indispensable to determine the yaw
angle. We will investigate the effect of the scale factor α on
improving the attitude accuracy and the principle of choosing
α in our future research.

According to Fig.5(b) and Table 1, the horizontal attitudes
of GD2 are ‘‘insensitive’’ to the changes of yaw angle, which
is consistent with the results of (42)-(45). On the other hand,
though affected by yaw angle, the accuracy of GD1 with
α = 0.99 is very close to GD2method, which testifies that the
method with a larger α (α<1) in (40) is effective to decrease
the horizontal attitude errors, as we analyzed in Section III.
Thirdly, simulation is also implemented to compare the

alignment accuracy of GD2 method with several popular sta-
tionary alignment methods, O-TRIAD [21], ON-TRIAD [21]
andAEAmethod [25]. In the simulation, the yaw angle varies
from 0◦ ∼ 360◦ with fixed pitch and roll angle (10◦, 10◦).

FIGURE 6. Alignment error comparisons of O-TRIAD, ON-TRIAD, AEA
and GD2.

TABLE 2. RMSs of O-TRIAD, ON-TRIAD, AEA and GD2 errors.

Moreover, the alignment errors of O-TRIAD, ON-TRIAD,
AEA and GD2 methods are presented in Fig.6, and the RMS
errors of their alignment results are shown in Table 2. Fig.7
denotes the error of the alignment results of GD2with respect
to AEA, O-TRIAD and ON-TRIAD method, respectively.
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FIGURE 7. Attitude error of GD2 with respect to AEA, O-TRIAD and
ON-TRIAD. (a) Error between GD2 and AEA. (b) Error between GD2 and
O-TRIAD. (c) Error between GD2 and ON-TRIAD.

As the basic idea and the attitude expression of GD2 are close
to and AEA method, we firstly analyze the alignment results
of GD2 with respect to AEA method.

In Fig.6 and Fig.7(a), the deviation of dρ betweenGD2 and
AEA method is caused by the quaternion normalization of
GD2 method, which is the second term in (42) and cannot
be ignored in some applications. Additionally, it demon-
strates that the normality error of quaternion is also helpful

to decrease the pitch error caused by sensor biases in some
situations. Secondly, the roll error dθ of GD2 andAEA equals
to each other, as shown in Fig.7(a) and Table 2, which also
verifies the result of (45). According to Table 2, the yaw RMS
error of GD2 is smaller than that of AEA method in terms of
the range of yaw angle 0◦ ∼ 360◦, which demonstrates that
the normality error of quaternion and the estimate error of
latitude caused by IMU biases can decrease the yaw error to
some extent.

According to Fig.6, Fig.7(b) and Table 2, we notice that
the alignment result of GD2 method equals to that of the
O-TRIAD method, which is an important discovery in the
simulation. Additionally, compared with O-TRIAD method,
GD2 can be applied to any stationary field alignment without
using the latitude information, which ismore autonomous and
flexible for the practical application. In view of Fig.6 and
Table 2, the roll error of GD2 is equal to ON-TRIAD, but
its pitch error is slightly smaller than the latter. From Fig.7(c)
and Table 2, the yaw error of GD2with respect to ON-TRIAD
varies in the form of persistent amplitude ‘‘sine’’ curve, and
the yaw RMS error of GD2 is equal to ON-TRIAD in the
range of yaw angle 0◦ ∼ 360◦.
Moreover, we also compare GD2 with the optimization-

based alignment (OBA) method [29], which uses quaternion
vector to represent the attitude. As OBA method requires
several measurements from different instants to determine the
attitude, we only consider the initial attitude (10◦, 10◦, 45◦)
and (10◦, 10◦, 135◦) in the simulation, of which the duration
is 300 seconds. As illustrated by Fig.8, the alignment errors
of GD2 are constant values, but the alignment errors of OBA
grow with run-time. Besides, the local latitude information
is required for OBA method to determine the attitude. Thus,
compared with OBA, GD2 is more competent for stationary
SINS alignment.

B. EXPERIMENT RESULTS
In this section, a static experiment of fiber optic gyroscope
(FOG)-based SINS developed by out lab is performed on a
three-axis turntable, as shown in Fig.9. The FOG-based SINS
consists of a three-axis accelerometer and a three-axis gyro-
scope, and its sampling rate is 100 Hz. Their specifications
are 100µg for the accelerometer bias and 0.01◦/h for the
gyroscope bias respectively, as shown in Table 3. The exper-
iment is carried out at Harbin, and local latitude is 45.7347◦.
Besides, the turntable attitude is set as (0◦, 0◦, 315◦).
However, due to the mechanical wear for a long time
usage and the dead zone of the mechanical rotational parts,
the actual attitude of turntable may not achieve the set value
accurately. Additionally, the test data are preprocessed by
averaging the raw data from IMU to reduce the distances of
sensor noises.

The alignment results of O-TRIAD, ON-TRIAD, AEA
and GD2 in the static experiment are presented in Fig.10,
Table 4 and Table 5. Fig.10 (a) denotes the alignment
results and Fig.10 (b) denotes their corresponding align-
ment errors. From Fig.10, we observe that the alignment
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FIGURE 8. Alignment errors of OBA and GD2 at different initial attitude.
(a) (10◦,10◦,45◦). (b) (10◦,10◦,135◦) .

FIGURE 9. Static experiment of FOG-based SINS on turntable.
(a) FOG-based SINS. (b) Three-axis turntable .

TABLE 3. High precision IMU specifications.

results of O-TRIAD, ON-TRIAD, AEA and GD2 are close
to each other in the static experiment. From Table 4,
we notice that both the horizontal errors and yaw error of

FIGURE 10. Alignment result comparisons of O-TRIAD, ON-TRIAD, AEA
and GD2. (a) Alignment results. (b) Alignment errors.

TABLE 4. RMSs of O-TRIAD, ON-TRIAD, AEA and GD2 errors.

TABLE 5. SDs of O-TRIAD,, ON-TRIAD, AEA and GD2 errors.

the attitude are larger than the theoretical analysis results
in Fig.6 and Table 2, especially the yaw error is about
0.429◦ with respective to the simulation result 0.0613◦.
Furthermore, we also analyze the standard deviations (SDs)
of O-TRIAD, ON-TRIAD, AEA and GD2 in Table 5
which indicates their alignment results are steady around
(0.0497◦, 0.0221◦, 314.571◦). In fact, the alignment errors
of O-TRIAD, ON-TRIAD, AEA and GD2 in the static
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FIGURE 11. Estimated attitude error (a) and the residual of estimated
error (b) of GD1.

FIGURE 12. The actual attitude with varying pitch and roll angle.

experiment are mainly caused by the dead zone of the
mechanical rotational parts for a long time usage. More
importantly, GD2 can achieve an alignment accuracy as good
as O-TRIAD, without using the priori local latitude informa-
tion, which is more autonomous and flexible for many field
applications.

V. CONCLUSION
In this paper, SINS self-alignment on the stationary base
is formulated as an optimization problem, and two gradient
descent (GD) optimization-based self-alignment methods
(GD1 and GD2) are proposed to determine the initial attitude
in real time. Different from conventional alignment methods,
GD1 constructs a quaternion-based objective function for
stationary SINS, and employs GD optimization to achieve the
minimum of the objective function. Furthermore, GD2 con-
structs an improved quaternion-based objective function

FIGURE 13. Estimated attitude error (a) and the residual of estimated
error (b) of GD2.

FIGURE 14. The actual attitude with varying yaw angle.

which utilizes the measurements from IMU to represent the
Earth rate instead of using the local latitude directly. In addi-
tion, we also analyze the bias errors of accelerometer and
gyroscope and the quaternion normality error for GD1 and
GD2 method respectively. Compared with GD2, the hori-
zontal errors of GD1 are affected by the gyroscope bias,
which mainly dominates the alignment errors. Based on the
analysis results, a scale factor is also introduced to decrease
the alignment error of GD1 caused by gyroscope biases.
Simulation and static experiment are implemented to test the
performances of GD1 and GD2method, and the results verify
the accuracy and speed of the proposed methods. Compared
with O-TRIAD, AEA and OBA, GD2 is more competent for
SINS self-alignment when the local latitude information is
not available. Besides, compared with OBA, the alignment
errors of GD2 don’t grow with run-time. Compared with
ON-TRIAD, GD2 can also achieve better alignment accuracy
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FIGURE 15. Estimated attitude error (a) and the residual of estimated
error (b) of GD1.

FIGURE 16. Estimated attitude error (a) and the residual of estimated
error (b) of GD2.

in many cases, though their yaw RMS errors are equal in the
range of yaw angle 0◦ ∼ 360◦. Moreover, the simulation
results in the Appendix prove the conclusions of the error
analysis of GD1 and GD2 methods.

APPENDIX
In this section, simulations are implemented to illustrate the
validity of error analysis results of GD1 and GD2 method in
Section III. In the first set of simulation, pitch and roll angle
vary from −45◦ ∼ 45◦, respectively, and the yaw angle
is a fixed angle ψ = 45◦, as demonstrated by Figs. 11-13.
In the second set of simulation, the yaw angle varies from
0◦ ∼ 360◦, and pitch and roll angle are fixed angles
(ρ = 10◦, θ = 10◦), as denoted by Figs. 14-16.

In Fig.11 and Fig.15, Figure (a) denotes the estimated atti-
tude error of GD1 method and Figure(b) represents the corre-
sponding residual of the attitude error model of GD1 method
in (38). In Fig.13 and Fig.16, Figure(a) denotes the estimated
attitude error of GD2 method, and Figure(b) not only rep-
resents the corresponding residual of the attitude error model
of GD2method in (42)-(43), but also demonstrate the error of
the attitude model in (41). As the objective function of GD2 is
a standard convex function, numerical results illustrate that
(41) is the optimal solution for minimizing the objective
function.

Compared with the estimated attitude errors on Figure (a)
of Fig. 11 and Figs. 13-16, the residuals of the estimated
attitude error on Figure (b) can be ignored, which illustrates
that the error models in (38) and (42)-(43) can correctly
reflect the changes of GD1 and GD2 method.
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