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ABSTRACT In this study, a new broad learning (BL) model based on an improved complete ensemble
empirical mode decomposition adaptive noise (CEEMDAN) is proposed to resolve the low accuracy, poor
robustness, and long delay problems that are present in current drought assessments. First, the extreme delay
method was applied to improve the CEEMDAN end effect. The improved CEEMDAN method was then
used to decompose a series of non-steady-state signals from drought monitoring into multiple steady-state
components. A BL model based on orthogonal trigonometry (QR) was then used to predict these multiple
steady-state components, and the predicted components were further reorganised to obtain a high-precision
drought sequence. On this basis, CEEMDAN was introduced into the orthogonal triangular broad learning
(QR-BL), and a drought prediction model (CEEMDAN-QR-BL) combining CEEMDAN and QR-BL was
proposed. Finally, the De Martonne aridity index was used to calculate the drought sequence results and
determine the drought grades. To meet the real-time requirements of drought prediction, parallel computing
was introduced into the CEEMDAN-QR-BL model, and a drought prediction method based on parallel
CEEMDAN-QR-BL was constructed. The experimental results show that, when compared with a support
vector regression model combined with an empirical mode decomposition, the reliability and accuracy of
the CEEMDAN-QR-BL increases by 29.57% and 11.84%, respectively. In addition, when compared with
only BL, the prediction efficiency of QR-BL improved by 62.29%.

INDEX TERMS Broad learning, drought assessment, empirical mode decomposition, orthogonal triangular
matrix decomposition.

I. INTRODUCTION
Drought is a complex interdisciplinary issue involving mete-
orology, hydrology, geology, ecology, agriculture, the social
economy, and other multi-disciplinary and multi-sectoral
subjects. However, the intermittency, uncertainty, and ran-
domness of weather signals has brought great challenges to
weather and drought forecasting.

According to different prediction principles, drought pre-
diction can be divided intomechanism-driven and data-driven
models. Mechanism-driven models are often realised by
modelling the relationship between drought indicators and
potential drought factors [1]. For example, the Multivari-
ate Ensemble Streamflow Prediction model predicts future
drought states by analysing the relationship between pre-
cipitation, soil moisture, and drought [2]. By studying the
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time change of soil moisture in combination with the stan-
dardised precipitation evapotranspiration index, the model is
able to identify drought conditions in different seasons [3].
However, mechanism-driven models often involve problems
such as numerous external interference factors and a poor
understanding of the mechanism. Data-drivenmodels include
both single models and hybrid models. Monomer models
include the linear regression [4], random forest [5], support
vector regression [6], and the neural network [7] models.
Monomer models often have problems such as poor model
generalisation and weak noise processing abilities. Using
a hybrid model to predict drought can effectively solve
the shortcomings of a single model. Both genetic algo-
rithms [8] and particle swarm optimisation algorithms [9]
can effectively overcome the shortcomings of artificial neural
networks (ANN) that can easily fall into local optimums.
The combination of wavelet transform and support vector
regression (SVR) can effectively improve the prediction

6050 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4188-7907
https://orcid.org/0000-0003-2259-0294
https://orcid.org/0000-0001-5100-6072


Y. Liu, L. Wang: Drought Prediction Method Based on an Improved CEEMDAN-QR-BL Model

accuracy of SVR [10]. However, the wavelet transform can-
not describe the local characteristics of the signal in the
time domain and is not suitable for the decomposition of
non-stationary signals.

Empirical Mode Decomposition (EMD) performs signal
decomposition based on the time scale characteristics of
the data itself, which is fundamentally different from the
Fourier and wavelet decomposition methods based on a priori
wavelet basis function [11], [12]. Through the combination
of ANN and EMD to achieve drought prediction, the coef-
ficient of determination is increased from 0.83 to 0.95 [13].
Through the integration of EMD and Deep Confidence Net-
work (DBN) to predict the time series and obtain the future
drought situation, the accuracy of the prediction is effectively
improved [14]. To exert the advantages of EMD further,
polynomial fitting can be used to correct the error caused
by the end effect of EMD before applying it to time series
forecasting [15]. Combining the ensemble empirical mode
decomposition (EEMD) with white noise and an artificial
neural network, and subsequently applying it to drought pre-
diction can effectively avoid the modal aliasing problem of
the EMDmethod and further improve the accuracy of drought
prediction [16].

As the white noise of EEMD will not be completely
cancelled in practice, complete ensemble empirical mode
decomposition adaptive noise (CEEMDAN) is proposed, and
the reconstructed signal of CEEMDAN is almost identi-
cal to the original signal [17]. This research first uses the
extreme value delay method to improve the CEEMDAN
end effect; subsequently, orthogonal triangular decomposi-
tion (QR) is used to redefine the broad learning (BL) out-
put matrix solution method to improve the efficiency of
the BL calculation. On this basis, CEEMDAN is introduced
into orthogonal triangular broad learning (QR-BL) and com-
bined with parallel computing ideas, resulting in the pro-
posal of a drought prediction model combining CEEMDAN
and QR-BL (CEEMDAN-QR-BL). The drought prediction
model (EMD-SVR) after combining EMD and SVR is used
as a comparison model. The experimental results show that,
when compared with EMD-SVR, CEEMDAN-QR-BL has
a 29.57% increase in reliability and an 11.84% increase in
accuracy. In addition, when compared with only BL, the
prediction efficiency of QR-BL is improved by 62.29%.

II. CORRELATION THEORY
A. BROAD LEARNING
Broad learning (BL) is a random-vector single-layer neu-
ral network learning system that links the neural network
as a carrier and expands the designed network through the
increment of neural nodes [18]. As it ensures that the func-
tion approximation method has a good generalisation ability,
the BL method effectively eliminates the shortcomings of
long training processes [19]–[22], while exhibiting a stronger
generalisation ability and efficiency than those of the neural
networks. The basic BL principle is shown in Figure 1.

FIGURE 1. Topological structure of the broad learning model.

With given N arbitrarily different training samples
{(xi, ti)}Ni=1, xi is multiplied by a set of random weights, and
the random deviation is added to the enhancement layer. The
weights will not change in the subsequent process. Thematrix
H is obtained after the data passed to the enhancement layer
undergo the activation function. Finally, the original input
data matrix of the input layer is defined as the combination
of X and the output matrix H of the enhancement layer. The
mathematical model definition of a BL network with N input
neurons andM enhancement layer neurons is shown in (1):

[X |H ]β = T (1)

where T is the training set and matrix H is defined according
to (2):

H =
[
h(x1) h(x2) . . . h(xN )

]T
=

[
ξ (w1x1 + b11) . . . ξ (w1xn + b1n)

. . . . . . . . .
ξ (wmx1m + bm1) . . . ξ (wmxn + bmn)

]
n∗m

(2)

where ξ is the activation function of the enhancement layer,
w and b are the weight and bias of the enhancement layer,
respectively, and h(x) is the row vector of matrix H .

The output matrix H of the enhancement layer is deter-
mined after randomly generating the enhancement layer neu-
ron parameter (wi, bi) and given training samples according
to any continuous sampling distribution probability, which
is transformed to solve the minimum norm and least square
solution of formula (1) β, as shown in (3):

β = [X |H ]+T (3)

where [X |H ]+ is the Moore–Penrose generalised inverse of
matrix [X |H ], and β is the weight of output layers [23]–[26].

The standard breadth-learning algorithm is based on the
principle of empirical risk minimisation, and its training pro-
cess is prone to overfitting. Additionally, when there aremany
outliers in the training sample, the output matrix H of the
enhancement layer is uncertain, which weakens the generali-
sation ability and robustness of the model. The regularisation
theory can be used to resolve these issues [27], [28]. The
mathematical regularised BL (regularised BL, RBL) model
is shown in (4):

min
β∈RL∗m

1
2
‖β‖σ1p +

C
2
‖β‖σ2q

s.t.
{
h(xi)β = tT − ζ Ti

}
i = 1, 2, . . . ,N (4)
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where σ1 > 0, σ2 > 0, ‖•‖p is the Lp norm of a vector
or matrix. Therefore, the output of regularised BL can be
obtained using (5):

f (x) = [X |H ]T
(
I
C
+ [X |H ][X |H ]T

)+
T (5)

where C ≥ 0 is the regularisation or penalty parameter used
to balance the experience risk and model complexity, and I is
the number of training samples [22], [29].

B. ORTHOGONAL TRIGONOMETRIC DECOMPOSITION
QR decomposition achieves excellent performance for solv-
ing linear problems, with a simple and effective calcula-
tion process. During the solving process, QR decomposition
maintains its efficiency, regardless of the size of the Hussain
matrix [30]. The algorithm can be described as follows: Let
A = CD be the maximum rank decomposition of A, and use
the Gram–Schmidt standard orthogonality for the r linearly
independent column vectors of C Method, as shown in (6):

C = (µ1 µ2 . . . µr ) (6)

where µr represents the column vector of matrix A.

(µ1 µ2 . . . µr )

= ( 0
α1

0
α2 . . .

0
αr )


k11 k12 . . . k1r
0 k22 . . . k2r
. . . . . . . . . . . .

0 0 . . . krr

 (7)

where 0
α1

0
α2 . . .

0
αr is a pairwise orthogonal unit vector and

k11, . . . , krr is greater than zero; thus,

C = Q · K (8)

where Q is defined as shown in (9):

Q = ( 0
α1

0
α2 . . .

0
αr )

s.t.{QHQ = E} (9)

where E is the identity matrix. When KD = R, the orthog-
onal triangular decomposition of matrix A can be defined
using (10):

A = Q · R (10)

where Q is an orthogonal matrix and R is an upper triangular
matrix [31], [32].

C. COMPLETE ENSEMBLE EMPIRICAL MODE
DECOMPOSITION ADAPTIVE NOISE
EMD is a new method for processing non-stationary signals
proposed by Huang et al. in 1998 [33]. EMD continuously
extracts the various scale components of the original signal
from a high to low frequency, and finally obtains a residual
component with a frequency that is close to zero. EEMD
is an improved method based on EMD, which mainly adds
Gaussian white noise to the original signal to solve the modal
aliasing problem of the EMD method [34]–[37]. In practice,

the white noise of EEMD will not be completely cancelled;
therefore, CEEMDANwas proposed. CEEMDAN adaptively
adds white noise according to the signal, and obtains the
Intrinsic Mode Function (IMF) component by calculating the
unique residual signal; this ensures that the reconstructed sig-
nal is almost completely the same as the original signal [17],
[38]–[40]. The digital signal ¯x(t) with noise can be described
as follows:

¯x(t) = x(t)+ σn(t), t = 1, 2, . . . ,M (11)

where x(t) is the ideal noiseless signal, n(t) is the noise
obeying N(0,1), and σ is the variance of the noise.

CEEMDAN is an optimisation algorithm based on EMD,
and the specific steps are as follows:

1) Gaussian white noise x(t) with different amplitudes is
added to signal nk (t) to generate several new signals.

xk (t) = x(t)+ σknk (t) (12)

2) The EMDmethod is used to decompose xk (t) and obtain
the first IMF, and the average value is then calculated.

IMF1(n) =
1
K

K∑
k=1

IMFk1 (t) (13)

3) The residual signal component Rn of CEEMDAN is
calculated:

Rn =

{
x(t)− IMF1(n), n = 1
Rn−1 − IMFn(n), n > 1

(14)

4) Denoted asEj, i.e. the j-th component after EMDdecom-
position of the signal, the second IMF is acquired as follows:

IMF(2)(n) =
1
K

K∑
k=1

E1
{
R1(t)+ σ1E1(nk (t))

}
(15)

5) The L-th residual component is calculated by analogy:

RL(t) = RL−1(t) = IMFL(t) (16)

6) The L+1 IMF is calculated as follows:

IMF(L+1)(n) =
1
K

K∑
k=1

EL
{
RL(t)+ σLEL(nk (t))

}
(17)

7) Finally, the original signal is represented as,

x(t) =
∑M

m=1
IMFm(t)+ R(t) (18)

III. CONSTRUCTION OF THE INTELLIGENT DROUGHT
PREDICTION MODEL
A. QR-RBL PREDICTION MODEL
This study proposes a new enhanced intelligent broad learn-
ing prediction model (QR-BL model) that uses the QR
orthogonal triangular decomposition method to decompose
the broad learning weight matrix, which replaces the tradi-
tional singular value decomposition (SVD) method, thereby
optimising the output board learning layer. TheQR-BLmodel
has a higher efficiency than that of the traditional BL model.
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To ensure that the model had a high generalisation ability,
the regularisation was introduced to the QR-BL model, and
a regular BL model was constructed based on orthogonal
triangle decomposition (QR-RBL model). The basic imple-
mentation is as follows:

LetM+N = L, thenN input neurons andM enhancement
layer neurons are defined as (19):

QLRL = AL . (19)

where

AL =
[
A1 A2 . . . Al

]
,

QL =
[
q1 q2 . . . ql

]
,

and

RL =

 r11 r12 . . . r1l
0 r22 . . . r2l
. . . . . . . . . . . .
0 0 . . . rll

 .
After expanding (19), we can get (20) as follows:

a1 = q1r11
a2 = q1r12 + q2r22
. . .

al = q1r1l + q2r2l + . . .+ qlrll

(20)

From this, (21) and (22) can be derived:

aT1 a1 = r11qT1 q1r11 = r2
11

s.t.

r11 =
√
aT
1
a1

q1 =
h1
r11
,

and (21)

al = qlrll = al −
L−1∑
i=1

qiril

s.t.

rll =
√
aTl al

ql =
hl
rll
.

(22)

According to the related properties of the inversion of the
block matrix, we can infer the following:[

B D
0 C

]−1
=

[
B−1 −B−1DC−1

0 C−1

]
(23)

where B and C are reversible, hence

R−1l+1 =
[
Rl rl+1
0 rl+1,l+1

]−1
=

[
R−1l −R−1l rl+1r−1l+1,l+1

0 r−1
l+1,l+1

]
(24)

Finally, the regularisation board learning can be defined as
follows:

f (x) = AT
(
I
C
+ AAT

)+
T

= R−1l+1Q
T
l+1T

=

[
R−1l −R−1l rl+1r−1l+1,l+1

0 r−1
l+1,l+1

][
QTl
qTl+1

]
T

=

[
fl − R

−1
l rl+1f Tl+1
f Tl+1

]
. (25)

Therefore, L consecutive neural nodes are updated, and the
calculation cost of QR-RBL is O(L2Nm) [41].

B. IMPROVED CEEMDAN BASED ON EXTREMUM
EXTENSION
The end effect refers to the phenomenonwhere the third-order
spline function is used to obtain the upper and lower enve-
lope of the signal during the EMD decomposition process,
the end point is divergent owing to the lack of extreme
point constraints, and the decomposition result is distorted.
To improve the boundary effect, we can consider the known
data information to extend or estimate the data at both ends of
the original signal. Pearson’s correlation coefficient was used
as a waveform matching function to delay the original signal
boundary in this study. The specific steps are as follows:
As shown in Figure 2, for a given meteorological sequence

x(t), the two leading extreme points on the left end are
recorded asM0 andN0 as the maximum andminimum values,
respectively, and the waveform from the starting point on the
left end toN0 is defined asW0 while the wavelength is defined
as I .

FIGURE 2. Extension of extreme values of meteorological series.

The algorithm can be defined as follows: Let the minimum
value set of x(t) be Emin, and the maximum value set be Emax.
Using each minimum point in Emin, except N0, as a reference
point, define the i-th minimum point as Ni, and define the
adjacent sub-signal with Ni as the end point and wavelength I
as waveformWi. Using the Pearson correlation coefficientMp
calculate the matching degree of waveformWi and W0:

Mp(Wi,W0)=

∑ N
i = 1

(
Wi − W̄i

) (
W0 − W̄0

)
√∑ N

i = 1
(
Wi−W̄i

)2∑ n
i = 1

(
W0−W̄0

)2
(26)

where Wi and W0 represent the mean value of Wi and W0,
respectively. Calculate the distance scale D between the
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sequencesWi andW0.

D =

N∑
i=1
|Wi −W0|

N
(27)

If Mp(Wi,W0) < αD(α is a constant), take the sub-signal
containing two extreme points at the left end of Wi as the
continuation signal of the sequence x(t). If Mp(Wi,W0) ≥
αD, the average of the two minimum points N0 and N1 are
taken at the leftmost end as the minimum point Pmin of the
extension, and t(Nmin) = t(N1)−t(N0), where t represents the
time position of the point. The average of the two maximum
pointsM0 andM1 at the leftmost end is taken as the extended
maximum value Pmax, and t(Mmax) = t(M1)− t(M0).

C. CONSTRUCTION OF PARALLEL CEEMDAN-QR-BL
METHOD
The solution of the width learning output matrix was rede-
fined with orthogonal triangular decomposition, the CEEM-
DAN end effect with extreme extension was solved,
the improved CEEMDAN with the improved width learning
model was integrated, and this was combinedwith the parallel
thinking to build a ‘decomposition-synthesis’ strategy based
on the parallel CEEMDAN-QR-BL model; its basic realisa-
tion is as follows:

1) First, the two ends of the original signal were extended
by the extreme value extensionmethod, and then the extended
signal with CEEMDAN was decomposed to obtain N differ-
ent proof modal components to complete the transition from
the unsteady-state timing signal to the steady-state timing
signal.

2) Autocorrelation analysis of IMFs and x(t) was carried
out, and the wavelet high parameter threshold processing
was applied to the selected high-frequency IMF compo-
nents, and wavelet low parameter threshold processing to the
low-frequency IMF components. Finally, the original signal
was reconstructed from the filtered IMF components to obtain
the denoised result. The wavelet threshold function is defined
as follows:

Ŵj,k =



sgn
(
Wj,k

)∣∣Wj,k
∣∣− a

λ

N
√
|Wj,k |

N
−λN

λ

 , ∣∣Wj,k
∣∣ ≥ λ

0,
∣∣Wj,k

∣∣ < λ

(28)

In this formula, N is the number of wavelet decomposition
layers, sgn is the symbolic function, and λ is the threshold.
There are many ways to select the threshold; this study used
heuristic threshold estimation rules.

3) Each signal component (IMF) was used as the input of
the QR-BL model, and parallel prediction was performed on
the IMF to establish a QR-BL parallel computing model.

4) Sequence recombination of the predicted future signal
was performed to obtain the future predicted value of the
original signal. The model principle is shown in Figure 3.

D. DROUGHT PREDICTION METHOD BASED ON
PARALLEL CEEMDAN-QR-BL
This study used intelligent calculation methods to predict
the future meteorological status, and then classified future
droughts based on the existing drought evaluation indicators,
which have important practical guiding significance for the
regional drought prevention and mitigation work. This study
used the parallel CEEMDAN-QR-BL model to predict the
future monthly average rainfall and monthly average temper-
ature. The DeMartonne aridity index was used as the drought
grade classification standard to establish the drought risk
assessment model. The DeMartonne index is defined in (29).

Idm =
12R

T + 10
(29)

where R is the monthly precipitation and T is the monthly
average temperature. Index values below 30 indicate the
occurrence of droughts. Index values between 10 and 30 indi-
cate a moderate drought, while values below 10 indicate
a severe drought. The drought model was established as
follows:

1) Some cities in Henan Province are taken as experi-
mental objects. Their monthly urban meteorological data are
obtained, and illegal data, such as null and non-numerical
data, are filtered through a data cleaning technology.

2) The filtered data are decomposed by CEEMDAN into
several modal components (IMF).

3) Based on the wavelet threshold, using the original signal
as a benchmark, the high-frequency IMF components are
subjected to wavelet high parameter threshold processing,
and the low frequency IMF components are subjected to
wavelet low parameter threshold processing.

4) The test and training data are imported into the intelli-
gent model in parallel (proportion of the test set was 0.35),
and predictions are made for the next two, four, and six
months.

5) The predicted components are reorganised to generate
the output sequence.

6) The forecast data are used as the input of the
De Martonne index to classify droughts. The detailed data
processing flow is shown in Figure 4.

E. MODEL EVALUATION
The Ens Nash efficiency coefficient was used to evaluate
the credibility and stability of the prediction model, which
ranges from negative infinity to one. Ens values being close
to one indicates that the studied model is of good quality
and has high credibility. Ens values being close to zero
indicates that the simulation result is close to the average
of the observed value; that is, the overall result is credible,
but the process simulation error is large. Ens values being
well below zero indicates that the model is not credible. The
relative error (RE) and mean absolute error (MAE) were
also determined. The real-time error and overall error were
evaluated separately. The definition of each indicator is as
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FIGURE 3. Structure flowchart of parallel CEEMDAN-QR-BL.

follows:

Ens = 1−


∑ n

i = 1
(
Qo − Qf

)2
∑ n

i = 1
(
Qo − Q̄o

)2
 (30)

MAE =
1
n

n∑
i=1

∣∣Qf − Qo∣∣ (31)

RE =
(
Qo − Qf
Qo

)
∗ 100 (32)

where Qo, Qf , Qo, Qf are the predicted value of the observed
value, the average observed value, and the average predicted
value, respectively. In addition, an energy-based evaluation
index θ is used to evaluate the end effect, where θ > 0 and
θ = 0 indicate that the end effect has no influence, and the
larger the value of θ , the greater the end effect. The definition
of the indicator is as follows:

θ =

∣∣∣∣∣
√

n∑
i=1

RMS2i − RMSorginal

∣∣∣∣∣
RMSorginal

(33)

where RMSorginal represents the effective value of the original
signal, RMSi represents the effective value of the i-th IMF,
and n represents the total number of IMFs. RMS is defined

as RMS =

√
m∑
i=1

s2(i)

m and s(i) represents the original signal
sequence. m represents the number of samples.

IV. RESULTS AND ANALYSIS
Kaifeng City, Henan Province, was selected as the research
object of this study. Precipitation is unevenly spatiotempo-
rally distributed in Kaifeng City, which often triggers drought
or flood disasters and impacts local agriculture. The meteo-
rological data of Kaifeng from 1951 to 2014 were selected as
the research object and used to compare the CEEMDAN-QR-
BL, EMD-SVR, BL, and QR-BL models. Figure 5 shows the
improvement effect of the extreme value extension method
for the end effect in the meteorological data.

Figure 5 shows part of the sample points at the end of
the meteorological data. The black, blue, and red curves in
Figures 5(a)–(f) represent the known endpoint extreme val-
ues; the endpoint extreme value is unknown and the extreme
value extension is extended and the endpoint is also unknown.
Table 2 numerically compares the evaluation index θ obtained
with and without extreme value extension. In the decomposi-
tion process of CEEMDAN, the upper and lower envelopes
diverge at both ends of the data sequence, and this diver-
gence will gradually move inward as the operation proceeds.
By comparing the IMF with the unknown endpoint extreme
value, it was found that the extreme value extension method
introduced in this article has a good inhibitory effect on the
CEEMDAN endpoint effect.

The black, blue, green, red, and dark-red curves in
Figures 6(a)–(f) represent the observed values and values
predicted by the CEEMDAN-QR-BL, EMD-SVR, BL, and
QR-BL methods. Figure 6 indicates that a stable average
temperature signal influenced the algorithm’s prediction
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FIGURE 4. Flowchart of drought model based on CEEMDAN-QR-BL.

TABLE 1. Comparison of numerical results of end effect evaluation index.

performance. CEEMDAN-QR-BL performed better than the
BL and EMD-SVR algorithm in low-latency future rainfall
prediction. As the number of forecast months increases,
the advantages of CEEMDAN-QR-BL over BL and
EMD-SVR remained. Overall, the mixed model is better than
the single model, and CEEMDAN-QR-BL performs best.

In Figure 7, the blue, green, red, and dark-red curves
represent the real-time error and Ens performance of the

CEEMDAN-QR-BL, EMD-SVR, BL, and QR-BL methods,
respectively. The figure shows that CEEMDAN-QR-BL per-
formed better than the BL, EMD-SVR, and QR-BL models
when predicting weather conditions for the next two, four,
and six months. The overall CEEMDAN-QR-BL had levels
of 0.5–0.7, which are slightly higher than the 0.5–0.6 level
of BL and EMD-SVR, and considerably higher than the
-0.5 to 0.1 level of BL andQR-BL. Additionally, the real-time
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FIGURE 5. Performance of extreme value extension in different IMFs.

errors of CEEMDAN-QR-BL were lower than those of BL,
EMD-SVR, and QR-BL, excluding individual points. Over-
all, CEEMDAN-QR-BL exhibited a higher stability and accu-
racy than those of the BL, EMD-SVR, and QR-BL models.

Figure 8 and Table 2 show the gap between the Ens
and MAE of the BL, EMD-SVR, and CEEMDAN-QR-BL
models. Table 3 shows the gap between the runtime
of BL, QR-BL, Serial CEEMDAN-QR-BL, and Parallel
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FIGURE 6. Forecast curves of the drought indices for different periods by the intelligent computing model.

CEEMDAN-QR-BL models. The number of prediction days
greatly influenced the model error; however, the error level
of the CEEMDAN hybrid model was lower than that of the
BL and EMD-SVRmodels. The runtime of the algorithm can

indicate the efficiency of the algorithm.When compared with
only BL, the prediction efficiency of QR-BL improved by
62.29%. The original BL model had a calculation prediction
time of 1.22 s, while that of parallel QR-BL was 0.98 s.

6058 VOLUME 9, 2021



Y. Liu, L. Wang: Drought Prediction Method Based on an Improved CEEMDAN-QR-BL Model

FIGURE 7. Real-time indicator curve of the intelligent calculation model under different forecast times.

The above evaluation indicates that the CEEMDAN-QR-BL
model exhibited a better accuracy and efficiency than those
of the BL model.

Figure 9 compares the future predictions and cal-
culated risk levels of the different models. The blue,
orange, green, and red bars represent the actual situation,

CEEMDAN-QR-BL, BL, and EMD-SVR fitting results,
respectively. The results indicate that the frequency of severe
and moderate droughts in the city has remained the same, but
it is much lower than the frequency of non-drought events.
The CEEMDAN-QR-BL model exhibited higher accuracy
and stability than those of the BL and EMD-SVR algorithms.
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TABLE 2. Comparison of the numerical results of various evaluation indicators.

TABLE 3. Comparison of computing efficiency of different models.

FIGURE 8. Evaluation of the performance of the intelligent computing model.

Figure 10 reflects the proportions of drought levels
in the city from January to December 2009–2014, and
indicates that few droughts occurred during the summer,

whereas severe droughts occurred in the autumn and
winter and moderate droughts frequently occurred in the
spring.
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FIGURE 9. Comparison of the risk levels of the intelligent calculation models at different forecast times.

FIGURE 10. Changes in the drought levels in the city from 2009 to 2014.

V. CONCLUSION
Effective drought control can contribute to resolving a coun-
try’s livelihood problems. In this study, weather time series
data were used to predict droughts in a city and drought risk
was determined by data analysis, mining, and other related
technologies. The CEEMDAN-QR-BL model was found to
be superior to the original BLmodel, as indicated by its higher
accuracy (MAE), efficiency, and stability. However, both the
introduced decomposition and extremum extension processes
caused the model efficiency to decrease. Although the intro-
duced parallelism can solve the problem to a certain extent,
it still cannot fundamentally solve the consumption caused by
CEEMDAN decomposition and endpoint extension.
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