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ABSTRACT While parallax-tolerant image stitching is a relatively mature field, the performances of image
stitching methods have been assessed subjectively and qualitatively. These methods primarily provide the
stitched image itself to demonstrate the performance, rather than quantitative data. Although several objective
assessment methods have been proposed for quantifying the quality of stitched images, only the stitched
output images have been analyzed, without considering the parallax level in each input image. We propose a
method for quantifying the parallax level of the input images and clustering them accordingly. This facilitates
a quantitative assessment of the various stitching methods for each parallax level. The parallax levels of
the images are grouped based on the magnitude and variation in the planar parallax, as estimated with
the proposed metric using matching errors and patch similarity. The existing image stitching methods are
compared experimentally in terms of the residual misalignment errors, based on 73 pairs of different levels
of parallax images originally classified in this study. Among the existing methods, the elastic local alignment
method exhibits the least error. The shape-preserving half-projective method produces a larger misalignment
error, but creates a natural panorama with less geometric distortion. We introduce a quantitative assessment
method for considering the parallax of input images in image stitching methods. It can aid in specifying their
performances, and in finding an appropriate method depending on the parallax level of the input images.

INDEX TERMS Image alignment, image stitching, planar parallax, plane + parallax, quantitative
assessment.

I. INTRODUCTION
Image stitching has been extensively studied, and com-
mercial software is available for various camera systems.
One of the major challenges in image stitching is in
correcting the parallax error [1], [2]. A parallax error
occurs when the non-parallax point of a camera is moved
while capturing a three-dimensional (3D) scene, resulting
in image misalignments, such as a ghost artifact. Therefore,
many parallax-tolerant image stitching methods have been
developed, aiming to reduce image misalignments [3]–[5].

However, the performance of the parallax-tolerant image
stitching methods is generally assessed subjectively and
qualitatively by presenting an input parallax image and its
resulting panoramic image [6]–[9]. An observer subjectively
evaluates the level of parallax in the input image, and the
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quality of the resulting panoramic image. This subjective and
qualitative assessment has limitations in regards to specifying
the performance of the image stitching methods, and indi-
vidual evaluations can differ for an identical method. These
limitations make it difficult to select an appropriate image
stitching method for a given input image.

Several studies have attempted to quantify the quality of
output panoramic images for an objective evaluation and
comparison of the performance [5], [10]–[19]. However, they
only focused on the resulting panoramic image, without
considering whether the parallax of the input image was
objectively large or small. When the parallax level of the
input image differs, evaluating the performance with only the
resulting image may result in inaccurate conclusions. In other
words, it is difficult to accurately determine the extent to
which the parallax in input images has been addressed in the
panoramic image results. Until now, the parallax levels of
input images have been expressed as small, moderate, large,
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TABLE 1. Inconsistent expressions of parallax level for an identical image in previous studies.

and very large, based on subjective individual assessments.
Therefore, some studies have assigned different levels of
parallax to the same image (Table 1).

In this study, we propose a quantitative assessment method
that provides an objective analysis for determining the paral-
lax of an input image. The parallax in the input images was
quantified with the proposed metric based on matching errors
and patch similarity, and the images were divided into groups
based on the quantified parallax. The alignment performances
of the image stitching methods were quantitatively defined,
particularly with respect to differences in the parallax level.
In addition, we found that the open image dataset [3], [4], [7],
[8], [20], [21] used in previous image stitching studies was
biased toward small-parallax images; very few open images
had moderate or large parallaxes. We created a supplemen-
tary image dataset with moderate and large parallaxes, and
provided a full dataset with evenly distributed images at each
parallax level. The full image dataset with the grouped par-
allax levels is publicly available. Our quantitative assessment
can aid in searching for or developing an appropriate stitching
method, depending on the parallax of the input images. The
proposed assessment scheme can be used to compare various
methods, including novelmethods in the future. The proposed
method can also be applied in various computer vision studies
involving the parallax levels of images.

II. RELATED WORKS
A. PLANAR PARALLAX IN COMPUTER VISION
In a physics dictionary [22], parallax is defined as ‘‘the appar-
ent displacement of a distant object with respect to amore dis-
tant background when viewed from two different positions.’’
In the field of computer vision, a plane+ parallax method has
been developed and used for 3D scene analysis [23], [24].
The plane + parallax method divides the 2D image motion
between imaged 3D scene points caused by camera motion
into the motion of a reference plane and a residual motion,
called the ‘‘planar parallax.’’ The image motion of the ref-
erence plane is described by homography. The homography
contains a rotation of the camera and a calibration parameter,
whereas the planar parallax is related to the translation of the
camera and depth of the 3D scene point. Therefore, the plane
+ parallax method has been employed to simplify geometric
interpretations of scene structures, as aligning two images
with the motion of the reference plane eliminates the effects
from camera rotation, calibration, and zooming [25].

The plane + parallax division has been adopted to address
various challenges in computer vision. In [26], a synthe-
sized image was created between scene images using a

parallax constraint. In addition, planar parallax has been
used to distinguish an independently moving object from the
motion of a scene owing to camera motion [25], or to restore
3D scene structures relative to a reference plane [23], [27].
In this study, the planar parallax was used to quantify and
group the parallax levels of the input images used for image
stitching.

B. PARALLAX-TOLERANT IMAGE STITCHING
A global homography transformation can be applied to
stitch images of planar scenes or camera rotations around a
non-parallax point, because no parallax exists between the
images. However, if the non-parallax point of the camera
is moved while capturing 3D scenes, a parallax will occur
between the input images; this will hinder image alignment
based on using only global homography.

Many image stitching methods have been developed to
address parallax challenges by using local adaptive transfor-
mations. Gao et al. [21] used dual homography warp (DHW)
to stitch images with both distant and near planes. Lin et al.
[9] and Liu et al. [28] applied a smoothly varying local
affine (SVA) and homography transformations to general
scenes. However, these methods were deficient for parallax
images with wide baselines.

The as-projective-as-possible (APAP) method [3] exhibits
a high-precision local alignment in an overlap area. How-
ever, an unnatural projective distortion can appear in the
non-overlap area for large-parallax images. The shape-
preserving half-projective (SPHP) method [4] yields a nat-
ural panorama with less distortion in non-overlap regions,
based on a combination of homography and similarity warps.
Although the SPHP results appear to be considerably natural,
the panoramas occasionally fail in parallax images with large
viewpoint changes. Lin et al. developed the adaptive as-
natural-as-possible (ANAP) warp [20] for natural panoramas,
such as those from the SPHP method. The ANAP warp
uses linearized homography and a point set with the small-
est rotation angle for an optimal similarity transformation.
However, unnatural rotation and scaling can still occur while
stitchingmultiple images. Li et al. [5] used robust elastic local
alignment (ELA) model based on a thin plate spline with a
Bayesian model to remove outliers among feature matches.
The robust elastic warping simultaneously achieved an accu-
rate alignment and efficient processing. Overall, the existing
methods have exhibited good performance in parallax con-
ditions. However, their parallax-tolerant performances have
not been specified and compared according to the parallax
level(s).
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FIGURE 1. Evaluation process using the grouped parallax images for performance verification of the image stitching.

C. QUALITY ASSESSMENT OF STITCHED IMAGES
There has not been sufficient study regarding how to assess
the quality of stitched images resulting from different stitch-
ing methods, while several image stitching methods have
been developed and commercialized. An objective assess-
ment is required to validate and compare the performances
of the various stitching methods.

The quality-assessment methods for stitched images can be
classified into subjective and objective approaches. A subjec-
tive approach depends on the human visual system [6]–[9].
Many studies have compared the resultant panoramic images
to demonstrate the usefulness of their algorithms relative to
other algorithms. Although demonstrating the performances
of stitching algorithms based on the resultant panoramic
images is highly intuitive, the assessment can vary from
person to person.

To provide an objective evaluation of panoramic images,
a matching error metric has been used to measure the mis-
alignment in the overlap area [10]–[12], [29]. The match-
ing error metric determines a corresponding point between
two input images, and averages the Euclidean distance of
the corresponding points. The matching error metric can
directly calculate the error of the misaligned corresponding
points, but only indicates the misalignments in the regions
in which the corresponding points exist, i.e., not the entire
overlap area. A patch similarity metric has also been used
to quantify misalignments, even for areas where points are
not extracted. This metric is an indirect measurement of
the misalignment error, e.g., by using structural similarity
(SSIM) [5], [13], [14], normalized cross-correlation [10],
[11], or the peak signal-to-noise ratio [15]. The concept of
the patch similarity metric is that the larger the misalignment,
the less the similarity between the patches in the overlap area.
However, the disadvantage of this metric is that the similarity
value may be high despite the large parallax when the overlap
region includes a large featureless area.

Recently, objective approaches based on mathematical
models have been introduced [16]–[19]. Ling et al. [18]
developed a convolutional sparse coding-based metric,
and trained kernels to assess stitching specific distor-
tions and their compound effects. Madhusudana and
Soundararajan et al. [19] devised a stitched image quality

evaluator (SIQE) for capturing the ghosting and structural
changes of edges, based on a Gaussian mixture model and
steerable pyramid decompositions. The SIQE provided qual-
ity scores that could be validated using the consistency
of human assessments. However, the reliability of these
mathematical models has not yet been verified.

In this study, a metric combining the matching error met-
ric and patch similarity metric was used to measure the
planar parallax and panorama error, misalignment after the
homography transformation, and misalignment after the final
panorama transformation. We applied an optical flow to the
proposed metric to calculate the misalignment vectors for full
pixels in the overlap area, and used an SSIM-based patch
similarity to filter the outliers in the misalignment vectors.

III. METHODS
The scheme for the proposed assessment considering the
parallax level of the input image is depicted in Figure 1.
A planar parallax was used to define the parallax between
the images. A metric was developed to measure the planar
parallax of an open image dataset frequently cited in previous
studies. From the results of the parallax quantification using
the proposed metric, we observed that most of the open
images had small parallaxes, and that a few open images had
moderate or large parallaxes. We included a supplementary
image dataset with moderate or large parallaxes to compare
the various stitching methods. As a result, the parallax images
of the full dataset were evenly distributed with each parallax
level. The full dataset images were grouped into similar par-
allax images using K-means clustering, based on the parallax
magnitude and variation. Finally, the alignment performance
in the panoramic results for the grouped parallax images was
verified and compared using the proposed metric.

A. DEFINITION OF PLANAR PARALLAX
The parallax between images is represented by the planar
parallax of the plane + parallax method. The 2D image
motion caused by camera motion can be decomposed into
the motions of a reference plane and the residual planar
parallax [25], [30]–[32].

The geometry of the planar parallax between the two
images is depicted in Figure 2-a. The Cartesian coordinates of
a scene point with respect to the two cameras are represented
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FIGURE 2. Planar parallax. (a) Geometry of planar parallax, (b) four components to affect planar parallax level
(A: the perpendicular distance from the object point to the reference plane, B: the depth of the object point with
respect to the first camera, C: the perpendicular distance from the second camera to the reference plane, D:
translational distance of the camera.)

by P = (X,Y,Z)T and P′ =(X′,Y′,Z′)T , and the homoge-
neous image coordinates of the scene point P are p=(x, y)
and p′ = (x ′,y′), respectively. The rotation and translation
between the two cameras are expressed as a 3 × 3 matrix
(R) and 3 × 1 vector (T), respectively. K1 and K2 represent
3 × 3 matrices with the internal calibration parameters of
cameras 1 and 2, respectively. 5 denotes an arbitrary refer-
ence plane, and H denotes the homography that aligns the two
images based on the reference plane5.
u denotes the measurable 2D image displacement vector

between the corresponding points p and p′ in each image.
The plane + parallax method defines u = u5+µ, where u5
is the motion of the reference plane (the homography owing
to 5), and µ is the motion of the residual planar parallax.
If pw is a projected point of a scene point PW on the reference
plane 5, its corresponding point p′ will be aligned with
pw when image 2 is warped by the homography. However,
because p is a projected point of a non-planar point P, its
corresponding point after warping is given by pw. Subse-
quently, the displacement vector between pw and p in image
1 is the planar parallax motion µ. Therefore, the residual
image motion between image 1 and the warped image of
image 2 is the planar-parallax displacement. According to the
literature [24], [25], [27], [30], [33], the planar parallax is
affected by the four components A, B, C, and D (Figure 2-b).
Components A and D are proportional to the planar parallax,
and B and C are inversely proportional.

B. PLANAR PARALLAX ESTIMATION
In the estimation of the planar parallax motion between
the two input images, an image alignment was performed
to detect the planar motion (Algorithm 1). A homog-
raphy compatible with the planar motion was estimated
using the corresponding extracted points, and was matched
using a scale-invariant feature transform [34] from the two

Algorithm 1 Planar parallax estimation
1: Input:Matched points p, p and images I1, I2
2: Output:Magnitude and variation of planar parallax
3: Procedure
4: for j = 1, · · · ,30
5: for i = 1, · · · ,500
6: Random 4 pairs (p, p) and solve for h
7: εi =

∣∣hi(p)−p′∣∣
8: if εi< γ then
9: Save hi and Si
10: end if
11: end for
12: Select initial hj← hi with max Si
13: argminK1j,K2j,Rj

∣∣∣K2jRjK
−1
1j p− p

′

∣∣∣ with LM

14: Optimal hj = K2jRjK
−1
1j

15: εj =
∣∣hj(p)−p′∣∣

16: end for
17: Select optimal H ← hj with min εj
18: I2′← H(I2)
19: r map← apply pwc-net to I1 and I2′

20: 5× 5 Patch extraction of the r map
21: if SSIM (patch) > 0 then
22: r ′ map← r map
23: end if
24: Median and quartile deviation← r ′ map

input images. We used a global homography optimization
method. The homography was initialized using the direct
least transformation (DLT) [35], and was iteratively opti-
mized by applying the AutoStitch method [36]. The initial
homography (h) with the relationship p′ = hp was estimated
by the DLT, using four randomly selected pairs from the cor-
responding points. This process was repeated 500 times, and
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FIGURE 3. Comparison of the planar parallax estimation. (a) In the results
from the matching error metric, feature points were not extracted in
the area of the rail (red box) where a parallax occurred (yellow lines);
(b) the proposed metric can measure the displacement of planar parallax
in the area of the rail. The color represents the magnitude of the planar
parallax.

the homographywith themost inlier-corresponding points (S)
within a threshold (γ ) was determined as the initial homog-
raphy. Using the initial homography and inlier correspon-
dences, the calibration parameters (K1 and K2) and camera
rotation (R) of the homography components were optimized
using the Levenberg–Marquardt (LM) method [37], which is
frequently used for non-linear least square problems because
LMmethod can reliably find a solution even if an initial value
is far from the solution.We repeated this optimization process
30 times, and the optimal homography with the least error (ε)
was used to align the images.

We estimated the planar parallax in the overlap area of
the two aligned images using the proposed metric, which
combined the matching error metric and patch similarity
metric. Additionally, we improved the matching error metric
by incorporating a ‘‘PWC-Net’’ optical flow [38] to extract
the parallax vector in the overlap area where the feature points
were not extracted (Figure 3). Maps were obtained for the
x-directional parallax vector (x) and y-directional parallax
vector (y), and a map of the planar parallax vector (r) was
obtained using x2 + y2. From the r map, we extracted the
vector in the overlap area, and excluded the vectors whose
final pixel of the vector displacement was outside the overlap
area. In addition, if the SSIM similarity of the 5 × 5 pixel
corresponding patch (centered on the final pixel of the vector
displacement) had a negative value, the vector was eliminated
from the r map of the parallax vector. The filtered planar
parallax vector (r ′) was expressed as a histogram with a
left-skewed distribution. Therefore, the median and quartile
deviation (QD)were used as the representativemagnitude and
variation in the planar parallax, respectively.

FIGURE 4. Image dataset. The magnitude and variation in the planar
parallax in the image increase gradually from the first to fourth
group. (1–3 are from [3]; 4–6 and 13 are from [7]; 7, 9, and 10 are from
[8]; 8, 11, 12, and 14–16 are ours).

C. COMPLETION OF THE IMAGE DATASET
A total of 73 pairs of image datasets were quantified using
the proposed metric. 44 pairs of images were obtained from
the open image dataset provided in the SVA [9], DHW [21],
APAP [3], SPHP [4], ANAP [20], and Seagull studies [7],
along with the Zhang & Liu dataset [8]; such images have
been used in many image stitching studies. The open image
dataset included parallaxes owing to camera motion without
moving objects in the static image. We included 29 pairs
of images as supplementary images with moderate or large
magnitudes, and variations that were insufficient for the open
image dataset (Figure 4). Static indoor and outdoor environ-
ments without moving objects were captured using a Galaxy
Note 10 camera.
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FIGURE 5. Reliability evaluation of the parallax estimation metric. (a) experimental setting, (b) parallax image pair,
(c) residual planar parallax after warping using the homography, and (d) conventional and proposed metric results on planar
parallax level of five steps in three configurations.

D. GROUPING OF PARALLAX IMAGES
Similar images in the 73 pairs of images were grouped based
on the vector magnitude and on variation in the planar paral-
lax in the overlap area. In most images, the small-sized par-
allax vector constituted a large portion of the r map, and the
parallax vector in the r map formed a left-skewed distribution.
Thus, the median value was used as a representative magni-
tude for the planar parallax vector in the input image. The
variation in parallax was represented as a quartile deviation,

and indicated whether the magnitude of the parallax was
uniform or non-uniform. The magnitude and variation values
were normalized using feature scaling between 0 and 1, and
the groups were determined using K-means clustering. The
cluster results were evaluated using the Dunn index [39] and
silhouette score [40]. The Dunn index is the ratio of the
minimum distance between clusters to the maximum distance
within clusters. Therefore, a higher index indicates better
clustering, with data compactness and cluster separation.
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FIGURE 6. Groups of parallax images. (a) Five groups by the magnitude and variation of the parallax, (b) silhouette score of the parallax
images.

FIGURE 7. Planar parallax level of a representative image in each group using a color map. (a) G1, (b) G2, (c) G3, (d) G4, and (e) GX.

The silhouette score shows the suitability of the cluster for
each dataset. The silhouette score ranges from−1 to 1, and a
score closer to 1 indicates better clustering.

IV. EXPERIMENTS AND RESULTS
A. RELIABILITY OF PARALLAX ESTIMATION METRIC
The reliability of the proposed parallax estimation metric was
verified based on correlations between known planar paral-
lax levels and the outputs from the metric. Various parallax
images with five levels were created by changing the four
components (A, B, C, D) affecting the planar parallax. The
experimental setup is shown in Figure 5. Using a patterned
cup, chessboard, and camera, five levels of parallax images
were produced in three configurations.

The first configuration involved changing the position
of the cup in five steps, while the positions of the chess-
board and camera were fixed. This indicated that the parallax
level increased as component A increased and component
B decreased from step 1 to step 5. The second configu-
ration changed the distance between the cameras in five
steps; this increased component D, resulting in an increase
in the parallax in the images. In the third configuration,
the positions of the chessboard and cup were fixed, and the
position of the camera was moved along the depth direction

in five steps. The parallax level increased as components B
and C decreased from step 1 to step 5. Theoretically, in the
three configurations, the parallax would increase as the step
increased. Thus, we confirmed the results from the metric
based on increasing the parallax in five steps in each con-
figuration.

The parallax images with five levels in each configuration
were aligned using the optimal homography estimated using
chessboard points on the reference plane, and the planar
parallax in the overlap was quantified. To exclude the par-
allax caused by the background other than the patterned cup,
we manually extracted a boundary of the cup.

The parallax estimation performance of the proposed met-
ric was compared with those of the conventional feature
matching metric, the patch similarity metric, and the math-
ematical model SIQE. As the outputs of the feature matching
metric and proposed metric are a distance of the parallax
vector, the outputs are expected to increase as the parallax
step increases. In contrast, the outputs of the patch similarity
metric and SIQE are expected to decrease as the parallax step
increases.

However, we found in the results that the feature matching
metric, patch similarity metric, and SIQE did not reliably
estimate the parallax. Although the feature matching metric
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TABLE 2. Residual misalignment errors of existing image stitching methods for the parallax groups. The magnitude/ variation of the misalignment errors
are described, and parallax improvement rate is shown in parentheses (in %). SPHP: Shape-preserving half-projective; APAP: As-projective-as-possible;
ANAP: As-natural-as-possible; ELA: Elastic local alignment.

FIGURE 8. Box plots of the magnitude of the residual misalignment error of the existing image stitching methods with respect to the
parallax groups.

showed better performance than the patch similarity metric
and SIQE, the metric results at step 1 (with the smallest
parallax level) were greater than those at steps 2 and 3. In the
results of the patch similarity metric, identical outputs were
obtained at different parallax levels (steps 3 and 4) in configu-
ration 3. In the SIQE results, the SIQE scores were not related
to the changes in parallax levels in configurations 1 and
3. In contrast, the output of the proposed metric constantly
increasedwhen the parallax increased from steps 1 to 5, for all

three configurations (Figure 5-d). In the first configuration,
the planar parallax exhibited the greatest increase at each
step. The rate of increase varied depending on the
arrangements of the reference plane, object, and camera.

B. GROUPING OF PARALLAX IMAGES
The 73 pairs of parallax images (comprising the open and
supplementary images) were divided into five groups accord-
ing to themagnitude and variation of the parallax (Figure 6-a).
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FIGURE 9. Box plots of the variation in the residual misalignment error of the existing image stitching methods with respect to the parallax groups.

The five groups were termed G1, G2, G3, G4, and GX. Most
of the open image dataset belonged to G1, with a magnitude
ranging from 0 to 10, and a variance ranging from 0 to 10.
The supplementary images belonged to other groups, with
magnitudes ranging from 10 to 50 and variances ranging
from 5 to 65. Most of the images exhibited a tendency of
the variation increasing with the parallax magnitude. Two
exceptional images in GX had a small magnitude, but a
large variation. This occurred very rarely, e.g., when distant
points were aligned by homography and a large displacement
occurred at the near points in the image with a large depth
difference. The Dunn index of the five parallax groups was
0.1147 and the average silhouette score was 0.7172, including
a minus silhouette score (Figure 6-(b)).

Figure 7 shows the parallax levels for a representative
image from each group using a color map. Blue and red repre-
sent small and large planar parallax levels, respectively. The
planar parallax magnitudes and variations of each grouped
image are provided in Table 2. The median magnitude of
the planar parallax for each group increased in the order
of G1, G2, G3, and G4. The median parallax magnitude
of group GX was similar to that of G2. In the variation,
the average QD value of each group increased in the order
of groups G1, G2, G3, G4, and GX. A two-way ANOVA
was used to statistically compare the parallax level in each
group; the parallax magnitude and variation were considered
as two independent variables. The level of significance was
set at P < 0.01. Significant differences were found between
the groups (P < 0.01) in both the parallax magnitude and
variation.

C. PERFORMANCE ASSESSMENT ON GROUPED IMAGES
The residual misalignment error of the existing image stitch-
ing methods was quantitatively verified and compared for
each grouped image (Table 2). The existing parallax-tolerant
methods, i.e., SPHP, APAP, ANAP, and ELA, generated the
resultant panoramic images for the 73 pairs of images. The
misalignment errors in the overlap areas of the panoramic
images were estimated using the proposed metric to assess
the performance of each method.

We quantitatively confirmed the extent to which the
stitching methods improved the magnitude and variation in
the parallax on the images of each group (Figures 8 and 9).
All methods exhibited the smallest magnitude and varia-
tion in the misalignment error in group G1, and the largest
error in group G4. In most groups, ELA exhibited the best
improvement in magnitude and variation, resulting in the
lowest average error regarding residual misalignment. APAP
and ANAP exhibited similar improvements in magnitude and
variation; SPHP showed less improvement. A comparison of
SPHP and ANAP (which were developed for naturality rather
than accurate alignment) indicated that SPHP outperformed
ANAP in group G1, but the results were reversed in other
groups. The misalignment errors of the existing methods can
be observed in a color map (Figure 10). Overall, the parallax
improvement performance of the ELA algorithm resulted in
the lowest misalignment error in the G2 and G4 images,
respectively.

However, the panorama generation of the ELA algorithm
occasionally failed, with severe image distortions. The
probability of success for creating a panoramic image was
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FIGURE 10. Resulting stitched images of the existing method using the input images of groups
G2 and G4.

the lowest in ELA, and the highest in APAP. The average
improvement from the four existing methods with respect to
each parallax group was the least for group GX.

V. DISCUSSION
A quantitative and objective parallax analysis of input images
is essential to specifying the performance of parallax-tolerant
image stitching methods. Assessing only the resulting
panoramic image may result in an inaccurate understanding.

In this study, a parallax estimation metric was proposed for
quantifying the parallax level, and was used to group the
images within a constant range. Using the grouped images,
the parallax-tolerant performances of the existing methods
were verified for various parallax levels.

In the reliability test for the parallax estimation metric,
the output of the proposed metric showed a continuous
increase responding to the increase in the parallax level.
In contrast, the feature matching metric and patch similarity
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metric (as well as the SIQE scores) did not show consistent
trend with respect to the parallax level, particularly in con-
figuration 3. When the increase rate of the parallax level was
relatively small like the case of configuration 3, it appears
difficult to employ the existing metrics.

Significant differences between the parallax image groups
were found by the two-way ANOVA test. The five groups,
constructed based on different parallax levels, can be used
as a standard evaluation dataset for any image stitching
method. All of the image stitchingmethods exhibited the least
misalignment error for group G1, and the largest error for
group G4. This result suggested that the different parallax
levels of the input images could affect the performance of
the resultant stitched image. Therefore, the parallax level
of an input image should be evaluated when performance
verification is required. In the experiments, the quantita-
tive assessment using the proposed five groups showed the
changeable performance of each stitching method depending
on the parallax level. In most groups, ELA exhibited the
least residual misalignment error. However, the probability of
success in the image stitching was the lowest. As the number
of inlier matching points decreased, the performance of the
feature refinement decreased, affecting the warping model.
ELA seemed to be sensitive to the outliers of matching points,
as the alignment term was based on a few anchor points [5]
When comparing SPHP and ANAP, which were developed
for natural panoramic images as well as accurate alignment,
SPHP appeared better for G1, and ANAP appeared better
for the other groups. For a natural panoramic image with an
accurate alignment, either SPHP or ANAP could be selected,
based on the parallax level(s) of the input images.

The five groups with similar parallax levels were cre-
ated using K-means clustering, and the validity of the group
assignment was evaluated using the Dunn index and silhou-
ette score. An image of G2 had a low negative silhouette
score. The average distance between images in G2 seemed
to be larger than that in G1, owing to the different levels of
compactness between the image data in each group. There-
fore, if additional data is included in the G2 parallax group,
the Dunn index and silhouette score will increase.

We also observed it is difficult to completely correct the
misalignment in the entire overlap area by warping the image
when the parallax magnitude is in the range of groups G2 to
G4. A seam-based image composition is more suitable than
a blending-based image composition that should align all the
pixels of the overlap area by image warping.

This study had the following limitations. The planar paral-
lax was affected by global homography. We used the homog-
raphy that satisfiedmost of the feature points in the entire area
with multiple iterations. If a reference homography can be
calculated for the input image, the parallax quantification will
be more reliable. An additional limitation is that error vectors
may have arose in the proposed metric when the image had
a large plain texture or wide baseline. Although the parallax
vector calculated by PWC-Net was filtered through the SSIM
image similarity, the error vector may have been included.

In addition, different optical flowmethods may affect the par-
allax vector estimation. However, minor changes may have
occurred in the representative parallax of the image owing to
the error vector or the different methods, as the median value
was selected as the representative parallax magnitude of the
image. Finally, the parallax groups were created based on the
magnitude and variation in the parallax. These criteria can be
changed depending on the aim, and the changed criteria will
result in different groups.

The proposed assessment method may aid in tuning the
performance of an image stitching method according to the
parallax level of the input images. This study may also con-
tribute to other computer vision fields, including reconstruc-
tion from 2D to 3D data or analyzing 3Dmotion with parallax
images.

VI. CONCLUSION
Quantifying and clustering parallax input images is important
for objectively evaluating image stitchingmethods, as the per-
formance differs according to the parallax level of the input
images. In this study, using a proposed parallax estimation
metric, parallax images were assigned into five groups to
create a standard testing dataset. In the dataset, the parallax
was evenly distributed, by supplementing the insufficient
parallax-level images. The proposed method can quantita-
tively assess the improvements of the parallax in a stitched
panoramic image, and can aid in finding an appropriate image
stitching method suitable for a parallax problem. This study
suggests a new performance assessment method for image
stitching, and indicates the importance of analyzing the input
parallax image.
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